101
|
Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling. Mucosal Immunol 2022; 15:1416-1430. [PMID: 36229573 PMCID: PMC9705245 DOI: 10.1038/s41385-022-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2-/- mice. Finally, TLR2-/- animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.
Collapse
|
102
|
Luberto L, Neroni B, Gandini O, Fiscarelli EV, Salvatori G, Roscilli G, Marra E. Genetic Vaccination as a Flexible Tool to Overcome the Immunological Complexity of Invasive Fungal Infections. Front Microbiol 2021; 12:789774. [PMID: 34975811 PMCID: PMC8715041 DOI: 10.3389/fmicb.2021.789774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has highlighted genetic vaccination as a powerful and cost-effective tool to counteract infectious diseases. Invasive fungal infections (IFI) remain a major challenge among immune compromised patients, particularly those undergoing allogeneic hematopoietic bone marrow transplantation (HSCT) or solid organ transplant (SOT) both presenting high morbidity and mortality rates. Candidiasis and Aspergillosis are the major fungal infections among these patients and the failure of current antifungal therapies call for new therapeutic aids. Vaccination represents a valid alternative, and proof of concept of the efficacy of this approach has been provided at clinical level. This review will analyze current understanding of antifungal immunology, with a particular focus on genetic vaccination as a suitable strategy to counteract these diseases.
Collapse
Affiliation(s)
- Laura Luberto
- Takis s.r.l., Rome, Italy
- *Correspondence: Laura Luberto,
| | - Bruna Neroni
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
103
|
Chen C, Zhu P, Zhang Y, Liu B. Effect of the "Normalized Epidemic Prevention and Control Requirements" on hospital-acquired and community-acquired infections in China. BMC Infect Dis 2021; 21:1178. [PMID: 34814857 PMCID: PMC8609257 DOI: 10.1186/s12879-021-06886-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND No studies have yet reported the effect of prevention and control measures, which were implemented to combat COVID-19, on the prevention and control of common HAIs. We aimed to examine the effect of the "Normalized Epidemic Prevention and Control Requirements" (implemented in May 2020) by comparison of hospital-acquired infections (HAIs) and community-acquired infections (CAIs) in China during 2018, 2019, and 2020. METHODS Data of inpatients before and after implementation of new requirements were retrospectively analyzed, including infection rate, use of alcohol-based hand cleaner, anatomical sites of infections, pathogen species, infection by multi-drug resistant species, and use of different antibiotics. RESULTS The HAI rate was significantly higher in 2020 than in 2018 and 2019 (P < 0.05), and the CAI rate was significantly higher in 2019 and 2020 than in 2018 (P < 0.001). Lower respiratory tract infections were the most common HAI during all years, with no significant changes over time. Lower respiratory tract infections were also the most common CAI, but were significantly more common in 2018 and 2019 than 2020 (P < 0.001). There were no changes in upper respiratory tract infections among HAIs or CAIs. Most HAIs and CAIs were from Gram-negative bacteria, and the percentages of fungal infections were greater in 2019 and 2020 than 2018. MRSA infections were more common in 2020 than in 2018 and 2019 (P < 0.05). The utilization rate and usage days of antibiotics decreased over time (P < 0.001) and the culture rate of microbial specimens before antibiotic usage increased over time (P < 0.001). CONCLUSIONS The new prevention and control requirements provided important benefits during the COVID-19 pandemic. However, their effects on HAIs were not obvious.
Collapse
Affiliation(s)
- Caiyun Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhu
- Department of Medical Service, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Zhang
- Department of Infection Prevention and Control, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Bo Liu
- Department of Infection Prevention and Control, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
- Department of Public Health and Infection Prevention and Control, Ke Zhou People's Hospital of Nanjing Medical University, Ke Zhou, China.
| |
Collapse
|
104
|
Radionuclide Imaging of Invasive Fungal Disease in Immunocompromised Hosts. Diagnostics (Basel) 2021; 11:diagnostics11112057. [PMID: 34829403 PMCID: PMC8620393 DOI: 10.3390/diagnostics11112057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal disease (IFD) leads to increased mortality, morbidity, and costs of treatment in patients with immunosuppressive conditions. The definitive diagnosis of IFD relies on the isolation of the causative fungal agents through microscopy, culture, or nucleic acid testing in tissue samples obtained from the sites of the disease. Biopsy is not always feasible or safe to be undertaken in immunocompromised hosts at risk of IFD. Noninvasive diagnostic techniques are, therefore, needed for the diagnosis and treatment response assessment of IFD. The available techniques that identify fungal-specific antigens in biological samples for diagnosing IFD have variable sensitivity and specificity. They also have limited utility in response assessment. Imaging has, therefore, been applied for the noninvasive detection of IFD. Morphologic imaging with computed tomography (CT) and magnetic resonance imaging (MRI) is the most applied technique. These techniques are neither sufficiently sensitive nor specific for the early diagnosis of IFD. Morphologic changes evaluated by CT and MRI occur later in the disease course and during recovery after successful treatment. These modalities may, therefore, not be ideal for early diagnosis and early response to therapy determination. Radionuclide imaging allows for targeting the host response to pathogenic fungi or specific structures of the pathogen itself. This makes radionuclide imaging techniques suitable for the early diagnosis and treatment response assessment of IFD. In this review, we aimed to discuss the interplay of host immunity, immunosuppression, and the occurrence of IFD. We also discuss the currently available radionuclide probes that have been evaluated in preclinical and clinical studies for their ability to detect IFD.
Collapse
|
105
|
Kuchi Bhotla H, Balasubramanian B, Meyyazhagan A, Pushparaj K, Easwaran M, Pappusamy M, Alwin Robert A, Arumugam VA, Tsibizova V, Msaad Alfalih A, Aljowaie RM, Saravanan M, Di Renzo GC. Opportunistic mycoses in COVID-19 patients/survivors: Epidemic inside a pandemic. J Infect Public Health 2021; 14:1720-1726. [PMID: 34700291 PMCID: PMC8518133 DOI: 10.1016/j.jiph.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Being considered minor vexations, fungal infections hinder the life of about 15% of the world population superficially, with rare threats to life in case of invasive sepsis. A significant rise in the intrusive mycoses due to machiavellian fungal species is observed over the years due to increased pathology and fatality in people battling life-threatening diseases. Individuals undergoing therapy with immune suppressive drugs plus recovering from viral infections have shown to develop fungal sepsis as secondary infections while recovering or after. Currently, the whole world is fighting against the fright of Coronavirus disease (COVID-19), and corticosteroids being the primitive therapeutic to combat the COVID-19 inflammation, leads to an immune-compromised state, thereby allowing the not so harmful fungi to violate the immune barrier and flourish in the host. A wide range of fungal co-infection is observed in the survivors and patients of COVID-19. Fungal species of Candida, Aspergillus and Mucorales, are burdening the lives of COVID-19 patients/survivors in the form of Yellow/Green, White and Black fungus. This is the first article of its kind to assemble note on fungal infections seen in the current human health scenario till date and provides a strong message to the clinicians, researchers and physicians around the world "non-pathological fungus should not be dismissed as contaminants, they can quell immunocompromised hosts".
Collapse
Affiliation(s)
- Haripriya Kuchi Bhotla
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India
| | | | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India; Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Murugesh Easwaran
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India
| | - Asirvatham Alwin Robert
- Department of Endocrinology and Diabetes, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Valentina Tsibizova
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russian Federation
| | - Abdullah Msaad Alfalih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 24552, 11495, Riyadh, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 24552, 11495, Riyadh, Saudi Arabia
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, 1871, Ethiopia; Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, 600077, Chennai, Tamil Nadu, India.
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
106
|
Seyedjavadi SS, Khani S, Goudarzi M, Zare-Zardini H, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M. Characterization, Biological Activity, and Mechanism of Action of a Plant-Based Novel Antifungal Peptide, Cc-AFP1, Isolated From Carum carvi. Front Cell Infect Microbiol 2021; 11:743346. [PMID: 34708005 PMCID: PMC8544420 DOI: 10.3389/fcimb.2021.743346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the increasing rate of invasive fungal infections and emerging antifungal resistance, development of novel antifungal drugs has been an urgent necessity. Antifungal peptides (AFPs) have recently attracted attention due to their unique ability to evade drug-resistant fungal pathogens. In this study, a novel AFP, Cc-AFP1, with a molecular weight of ~3.759 kDa, was isolated from Carum carvi L., purified by ammonium sulfate precipitation and reversed-phase HPLC and finally identified by sequence analysis using Edman degradation. Peptide sequence analysis revealed a fragment of 36 amino acid residues as RVCFRPVAPYLGVGVSGAVRDQIGVKLGSVYKGPRG for Cc-AFP1 with a net charge of +5 and a hydrophobicity ratio of 38%. The antifungal activity of Cc-AFP1 was confirmed against Aspergillus species with MIC values in the range of 8–16 µg/ml. Cc-AFP1 had less than 5% hemolytic activity at 8–16 µg/ml on human red blood cells with no obvious cytotoxicity against the HEK293 cell line. Stability analysis showed that the activity of Cc-AFP1 was maintained at different temperatures (20°C to 80°C) and pH (8 to 10). The results of a propidium iodide uptake and transmission electron microscopy showed that the antifungal activity of Cc-AFP1 could be attributed to alteration in the fungal cell membrane permeability. Taken together, these results indicate that Cc-AFP1 may be an attractive molecule to develop as a novel antifungal agent combating fungal infections cause by Aspergillus species.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | | | | |
Collapse
|
107
|
Thrombin-Derived C-Terminal Peptide Reduces Candida-Induced Inflammation and Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:e0103221. [PMID: 34424043 PMCID: PMC8522777 DOI: 10.1128/aac.01032-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infections due to the opportunistic fungus Candida have been on the rise in the last decades, especially in immunocompromised individuals and hospital settings. Unfortunately, the treatments available today are limited. Thrombin-derived C-terminal peptide (TCP-25) is an antimicrobial peptide (AMP) with antibacterial and immunomodulatory effects. In this work, we, for the first time, demonstrate the ability of TCP-25 ability to counteract Candidain vitro and in vivo. Using a combination of viable count assay (VCA), radial diffusion assay (RDA), and fluorescence and transmission electron microscopy analyses, TCP-25 was found to exert a direct fungicidal activity. An inhibitory activity of TCP-25 on NF-κB activation induced by both zymosan alone and heat-killed C. albicans was demonstrated in vitro using THP-1 cells, and in vivo using NF-κB reporter mice. Moreover, the immunomodulatory property of TCP-25 was further substantiated in vitro by analyzing cytokine responses in human blood stimulated with zymosan, and in vivo employing a zymosan-induced peritonitis model in C57BL/6 mice. The therapeutic potential of TCP-25 was demonstrated in mice infected with luminescent C. albicans. Finally, the binding between TCP-25 and zymosan was investigated using circular dichroism spectroscopy and intrinsic fluorescence analysis. Taken together, our results show that TCP-25 has a dual function by inhibiting Candida as well as the associated zymosan-induced inflammation. The latter function is accompanied by a change in secondary structure upon binding to zymosan. TCP-25, therefore, shows promise as a novel drug candidate against Candida infections.
Collapse
|
108
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
109
|
Pérez ME, Durantini JE, Reynoso E, Alvarez MG, Milanesio ME, Durantini EN. Porphyrin-Schiff Base Conjugates Bearing Basic Amino Groups as Antimicrobial Phototherapeutic Agents. Molecules 2021; 26:molecules26195877. [PMID: 34641420 PMCID: PMC8510454 DOI: 10.3390/molecules26195877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
New porphyrin–Schiff base conjugates bearing one (6) and two (7) basic amino groups were synthesized by condensation between tetrapyrrolic macrocycle-containing amine functions and 4-(3-(N,N-dimethylamino)propoxy)benzaldehyde. This approach allowed us to easily obtain porphyrins substituted by positive charge precursor groups in aqueous media. These compounds showed the typical Soret and four Q absorption bands with red fluorescence emission (ΦF ~ 0.12) in N,N-dimethylformamide. Porphyrins 6 and 7 photosensitized the generation of O2(1Δg) (ΦΔ ~ 0.44) and the photo-oxidation of L-tryptophan. The decomposition of this amino acid was mainly mediated by a type II photoprocess. Moreover, the addition of KI strongly quenched the photodynamic action through a reaction with O2(1Δg) to produce iodine. The photodynamic inactivation capacity induced by porphyrins 6 and 7 was evaluated in Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the photoinactivation of these microorganisms was improved using potentiation with iodide anions. These porphyrins containing basic aliphatic amino groups can be protonated in biological systems, which provides an amphiphilic character to the tetrapyrrolic macrocycle. This effect allows one to increase the interaction with the cell wall, thus improving photocytotoxic activity against microorganisms.
Collapse
Affiliation(s)
- María E. Pérez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - Javier E. Durantini
- IITEMA, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina;
| | - Eugenia Reynoso
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - María G. Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
| | - María E. Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
- Correspondence: (M.E.M.); (E.N.D.)
| | - Edgardo N. Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, Río Cuarto X5804BYA, Córdoba, Argentina; (M.E.P.); (E.R.); (M.G.A.)
- Correspondence: (M.E.M.); (E.N.D.)
| |
Collapse
|
110
|
Melchor-Martínez EM, Tamez-Fernández JF, González-González GM, Silva-Mares DA, Waksman-Minsky N, Pérez-López LA, Rivas-Galindo VM. Active Flavonoids from Colubrina greggii var. greggii S. Watson against Clinical Isolates of Candida spp. Molecules 2021; 26:5760. [PMID: 34641305 PMCID: PMC8510013 DOI: 10.3390/molecules26195760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is the most commonly implicated agent in invasive human fungal infections. The disease could be presented as minimal symptomatic candidemia or can be fulminant sepsis. Candidemia is associated with a high rate of mortality and high healthcare and hospitalization costs. The surveillance programs have reported the distribution of other Candida species reflecting the trends and antifungal susceptibilities. Previous studies have demonstrated that C. glabrata more frequently presents fluconazole-resistant strains. Extracts from Mexican plants have been reported with activity against pulmonary mycosis, among them Colubrina greggii. In the present study, extracts from the aerial parts (leaves, flowers, and fruits) of this plant were evaluated against clinical isolates of several species of Candida (C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis) by the broth microdilution assay. Through bioassay-guided fractionation, three antifungal glycosylated flavonoids were isolated and characterized. The isolated compounds showed antifungal activity only against C. glabrata resistant to fluconazole, and were non-toxic toward brine shrimp lethality bioassay and in vitro Vero cell line assay. The ethyl acetate and butanol extracts, as well as the fractions containing the mixture of flavonoids, were more active against Candida spp.
Collapse
Affiliation(s)
- Elda M. Melchor-Martínez
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Juan F. Tamez-Fernández
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
| | - Gloria María González-González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico;
| | - David A. Silva-Mares
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
| | - Noemí Waksman-Minsky
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
| | - Verónica M. Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Av. Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico; (E.M.M.-M.); (J.F.T.-F.); (D.A.S.-M.); (N.W.-M.); (L.A.P.-L.)
| |
Collapse
|
111
|
Normile TG, Rella A, Del Poeta M. Cryptococcus neoformans Δ sgl1 Vaccination Requires Either CD4 + or CD8 + T Cells for Complete Host Protection. Front Cell Infect Microbiol 2021; 11:739027. [PMID: 34568097 PMCID: PMC8455912 DOI: 10.3389/fcimb.2021.739027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen causing life-threatening meningoencephalitis in susceptible individuals. Fungal vaccine development has been hampered by the fact that cryptococcosis occurs during immunodeficiency. We previously reported that a C. neoformans mutant (Δsgl1) accumulating sterylglucosides (SGs) is avirulent and provides complete protection to WT challenge, even under CD4+ T cell depletion, an immunodeficient condition commonly associated with cryptococcosis. We found high levels of SGs in the lungs post-immunization with Δsgl1 that decreased upon fungal clearance. Th1 cytokines increased whereas Th2 cytokines concurrently decreased, coinciding with a large recruitment of leukocytes to the lungs. Depletion of B or CD8+ T cells did not affect either Δsgl1 clearance or protection from WT challenge. Although CD4+ T cell depletion affected clearance, mice were still protected indicating that clearance of the mutant was not necessary for host protection. Protection was lost only when both CD4+ and CD8+ T cells were depleted, highlighting a previously unexplored role of fungal-derived SGs as an immunoadjuvant for host protection against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Antonella Rella
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
112
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
113
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
114
|
Scharf S, Bartels A, Kondakci M, Haas R, Pfeffer K, Henrich B. fuPCR as diagnostic method for the detection of rare fungal pathogens, such as Trichosporon, Cryptococcus and Fusarium. Med Mycol 2021; 59:1101-1113. [PMID: 34379780 DOI: 10.1093/mmy/myab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fungal respiratory tract colonisation is a common finding in patients with hematologic neoplasms due to immunosuppression inherent in the diseases and exacerbated by therapy. This greatly increases the risk of fungal infections of the lungs, which is associated with significant mortality. Therefore, reliable diagnostic methods with rapidly available results are needed to administer adequate antifungal therapy.We have established an improved method for fungal DNA extraction and amplification that allows simultaneous detection of fungal families based on a set of multiplexed real time PCR reactions (fuPCR). We analysed respiratory rinses and blood of 94 patients with haematological systemic diseases by fuPCR and compared it with the results of culture and serological diagnostic methods. 40 healthy subjects served as controls.Regarding Candida species, the highest prevalence resulted from microbiological culture of respiratory rinses and from detection of antibodies in blood serum in patients (61% and 47%, respectively) and in the control group (29% and 51%, respectively). Detection of other pathogenic yeasts, such as Cryptococcus and Trichosporon, and moulds, such as Fusarium, was only possible in patients by fuPCR from both respiratory rinses and whole blood and serum. These fungal species were found statistically significantly more frequent in respiratory rinses collected from patients after myeloablative therapy for stem cell transplantation compared to samples collected before treatment (p<<0.05i>).The results show that fuPCR is a valuable complement to culturing and its inclusion in routine mycological diagnostics might be helpful for early detection of pathophysiologically relevant respiratory colonisation for patients with hematologic neoplasms. LAY ABSTRACT We validated a set of PCR reactions (fuPCR) for use in routine diagnostic. In contrast to culture and serological methods, only by fuPCR pathogenic yeasts (Cryptococcus and Trichosporon) and moulds (Aspergillus and Fusarium) were detected in respiratory rinses and blood of haematological patients.
Collapse
Affiliation(s)
- Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Anna Bartels
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Mustafa Kondakci
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
115
|
Invasive sinus aspergillosis with mycotic aneurysm of the vertebral artery and subarachnoid hemorrhage - Case report. Radiol Case Rep 2021; 16:2651-2657. [PMID: 34336072 PMCID: PMC8318899 DOI: 10.1016/j.radcr.2021.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Invasive sinus aspergillosis is a rare life-threatening condition usually found in immunocompromised patients. The fungus spreads from paranasal sinuses into the central nervous system by direct extension or through blood vessels. Perineural spread is an uncommon mechanism of spread in invasive aspergillosis. A mycotic aneurysm is a dangerous complication of invasive sinus aspergillosis because of its insidious development and is often diagnosed only post-mortem after causing fatal intracranial hemorrhage. Intracranial vascular complications of invasive sinus aspergillosis require prompt recognition and treatment and should always be considered when a diagnosis of CNS aspergillosis is made. We present a case of invasive sinus aspergillosis in an apparently immunocompetent patient that manifested with a brain abscess, perineural spread of the infection, and mycotic aneurysm of the vertebral artery with subsequent rupture and fatal subarachnoid hemorrhage. This case highlights the possibility of perineural spread and hemorrhagic complications in invasive cerebral aspergillosis.
Collapse
|
116
|
Jawale CV, Biswas PS. Local antifungal immunity in the kidney in disseminated candidiasis. Curr Opin Microbiol 2021; 62:1-7. [PMID: 33991758 DOI: 10.1016/j.mib.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Disseminated candidiasis is a hospital-acquired infection that results in high degree of mortality despite antifungal treatment. Autopsy studies revealed that kidneys are the major target organs in disseminated candidiasis and death due to kidney damage is a frequent outcome in these patients. Thus, the need for effective therapeutic strategies to mitigate kidney damage in disseminated candidiasis is compelling. Recent studies have highlighted the essential contribution of kidney-specific immune response in host defense against systemic infection. Crosstalk between kidney-resident and infiltrating immune cells aid in the clearance of fungi and prevent tissue damage in disseminated candidiasis. In this review, we provide our recent understanding on antifungal immunity in the kidney with an emphasis on IL-17-mediated renal defense in disseminated candidiasis.
Collapse
Affiliation(s)
- Chetan V Jawale
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
117
|
Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E. Native and IgE-primed rat peritoneal mast cells exert pro-inflammatory activity and migrate in response to yeast zymosan upon Dectin-1 engagement. Immunol Res 2021; 69:176-188. [PMID: 33704666 PMCID: PMC8106611 DOI: 10.1007/s12026-021-09183-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 01/12/2023]
Abstract
Mast cells (MCs) play an essential role in host defense, primarily because of their location, their ability to pathogen destruction via several mechanisms, and the pattern recognition receptors they express. Even though most data is available regarding MC activation by various bacteria- or virus-derived molecules, those cells' activity in response to constituents associated with fungi is not recognized enough. Our research aimed to address whether Saccharomyces cerevisiae-derived zymosan, i.e., β-(1,3)-glucan containing mannan particles, impacts MC activity aspects. Overall, the obtained results indicate that zymosan has the potential to elicit a pro-inflammatory response of rat peritoneal MCs. For the first time ever, we provided evidence that zymosan induces fully mature MC migration, even in the absence of extracellular matrix (ECM) proteins. Moreover, the zymosan-induced migratory response of MCs is almost entirely a result of directional migration, i.e., chemotaxis. We found that zymosan stimulates MCs to degranulate and generate lipid mediators (cysLTs), cytokines (IFN-α, IFN-β, IFN-γ, GM-CSF, TNF), and chemokine (CCL2). Zymosan also upregulated mRNA transcripts for several cytokines/chemokines with pro-inflammatory/immunoregulatory activity. Moreover, we documented that zymosan activates MCs to produce reactive oxygen species (ROS). Lastly, we established that the zymosan-induced MC response is mediated through activation of the Dectin-1 receptor. In general, our results strongly support the notion that MCs contribute to innate antifungal immunity and bring us closer to elucidate their role in host-pathogenic fungi interactions. Besides, provided findings on IgE-sensitized MCs appear to indicate that exposure to fungal zymosan could affect the severity of IgE-dependent disorders, including allergic ones.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
118
|
Gu X, Hua YH, Zhang YD, Bao DI, Lv J, Hu HF. The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine. Pol J Microbiol 2021; 70:3-11. [PMID: 33815522 PMCID: PMC8008755 DOI: 10.33073/pjm-2021-003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines' current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.
Collapse
Affiliation(s)
- Xiang Gu
- College of Law and Political Science, Nanjing University of Information Science and Technology, Nanjing, China.,The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yan-Hong Hua
- The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yang-Dong Zhang
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - D I Bao
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin Lv
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hong-Fang Hu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
119
|
Agazzi ML, Durantini JE, Quiroga ED, Alvarez MG, Durantini EN. A novel tricationic fullerene C 60 as broad-spectrum antimicrobial photosensitizer: mechanisms of action and potentiation with potassium iodide. Photochem Photobiol Sci 2021; 20:327-341. [PMID: 33721278 DOI: 10.1007/s43630-021-00021-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
A novel amphiphilic photosensitizing agent based on a tricationic fullerene C60 (DMC603+) was efficiently synthesized from its non-charged analogue MMC60. These fullerenes presented strong UV absorptions, with a broad range of less intense absorption up to 710 nm. Both compounds showed low fluorescence emission and were able to photosensitize the production of reactive oxygen species. Furthermore, photodecomposition of L-tryptophan sensitized by both fullerenes indicated an involvement of type II pathway. DMC603+ was an effective agent to produce the photodynamic inactivation (PDI) of Staphylococcus aureus, Escherichia coli and Candida albicans. Mechanistic insight indicated that the photodynamic action sensitized by DMC603+ was mainly mediated by both photoprocesses in bacteria, while a greater preponderance of the type II pathway was found in C. albicans. In presence of potassium iodide, a potentiation of PDI was observed due to the formation of reactive iodine species. Therefore, the amphiphilic DMC603+ can be used as an effective potential broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- Maximiliano L Agazzi
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Ezequiel D Quiroga
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
120
|
Qadri H, Qureshi MF, Mir MA, Shah AH. Glucose - The X factor for the survival of human fungal pathogens and disease progression in the host. Microbiol Res 2021; 247:126725. [PMID: 33676311 DOI: 10.1016/j.micres.2021.126725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
The incidence of human fungal infections is increasing due to the expansion of the immunocompromised patient population. The continuous use of different antifungal agents has eventually resulted in the establishment of resistant fungal species. The fungal pathogens unfold multiple resistance strategies to successfully tackle the effect of different antifungal agents. For the successful colonization and establishment of infection inside the host, the pathogenic fungi switch to the process of metabolic flexibility to regulate distinct nutrient uptake systems as well as to modulate their metabolism accordingly. Glucose the most favourable carbon source helps carry out the important survival and niche colonization processes. Adopting glucose as the center, this review has been put forward to provide an outline of the important processes like growth, the progression of infection, and the metabolism regulated by glucose, affecting the pathogenicity and virulence traits in the human pathogenic fungi. This could help in the identification of better treatment options and appropriate target-oriented antifungal drugs based on the glucose-regulated pathways and processes. In the article, we have also presented a summary of the novel studies and findings pointing to glucose-based potential therapeutic avenues to be explored to tackle the problem of globally increasing multidrug-resistant human fungal infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Munazah Fazal Qureshi
- Department of Biotechnology, Central University of Kashmir, Ganderbal, 191201, J&K, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India.
| |
Collapse
|
121
|
Giusiano G. The Trojan Horse Model in Paracoccidioides: A Fantastic Pathway to Survive Infecting Human Cells. Front Cell Infect Microbiol 2021; 10:605679. [PMID: 33680980 PMCID: PMC7928272 DOI: 10.3389/fcimb.2020.605679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most relevant systemic endemic mycosis limited to Latin American countries. The etiological agents are thermally dimorphic species of the genus Paracoccidioides. Infection occurs via respiratory tract by inhalation of propagules from the environmental (saprophytic) phase. In the lung alveoli the fungus converts to the characteristic yeast phase (parasitic) where interact with extracellular matrix proteins, epithelial cells, and the host cellular immunity. The response involves phagocytic cells recognition but intracellular Paracoccidioides have demonstrated the ability to survive and also multiply inside the neutrophils, macrophages, giant cells, and dendritic cells. Persistence of Paracoccidioides as facultative intracellular pathogen is important in terms of the fungal load but also regarding to the possibility to disseminate penetrating other tissues even protected by the phagocytes. This strategy to invade other organs via transmigration of infected phagocytes is called Trojan horse mechanism and it was also described for other fungi and considered a factor of pathogenicity. This mini review comprises a literature revision of the spectrum of tools and mechanisms displayed by Paracoccidioides to overcame phagocytosis, discusses the Trojan horse model and the immunological context in proven models or the possibility that Paracoccidioides apply this tool for dissemination to other tissues.
Collapse
Affiliation(s)
- Gustavo Giusiano
- Mycology Department, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Resistencia, Argentina
| |
Collapse
|
122
|
Antifungal, phyto, cyto, genotoxic and lipophilic properties of three complexes of sulfadimethoxine (HSDM) with Ag(I). Synthesis and characterization of [Ag3SDM(SCN)2]·H2O and [Ag2(SDM)2o-phenanthroline]·H2O. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|