101
|
Phenolic Compounds, Vitamins C and E and Antioxidant Activity of Edible Honeysuckle Berries ( Lonicera caerulea L. var. kamtschatica Pojark) in Relation to Their Origin. Antioxidants (Basel) 2022; 11:antiox11020433. [PMID: 35204315 PMCID: PMC8869307 DOI: 10.3390/antiox11020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Honeysuckles are frost tolerant plants providing early-ripening fruits with health-promoting properties which have been used in traditional medicine in China. This study evaluates the impact of the climatic conditions of two areas on the chemical composition and antioxidant activity (AOA; by DPPH-2,2-diphenyl-1-picrylhydrazyl and photochemiluminescence assays) of eight cultivars of honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) of various ripening times. Expectedly, chemical composition and AOA values varied depending on the cultivars, locality and selected methods. Berries from Lednice (the area with more sunshine) showed higher average contents of total monomeric anthocyanins (TMAC; pH differential absorbance method), vitamins C and E and total phenolics (high-performance liquid chromatography). In contrast, berries from Žabčice (the area with more rain) performed higher average contents of total phenolics and flavonoids (UV/VIS spectroscopic analyses). Interestingly, fundamental amounts of chlorogenic acid were determined irrespective of the locality. Regarding TMAC and vitamin C content, early ripening Amphora from both areas has been assessed as the best cultivar; concerning the content of phenolic compounds, Fialka from both areas and Amphora from Lednice is considered as the most valuable. The obtained results may facilitate the selection of the most valuable cultivars for both producers and consumers.
Collapse
|
102
|
Ahmed OS, Tardif C, Rouger C, Atanasova V, Richard‐Forget F, Waffo‐Téguo P. Naturally occurring phenolic compounds as promising antimycotoxin agents: Where are we now? Compr Rev Food Sci Food Saf 2022; 21:1161-1197. [DOI: 10.1111/1541-4337.12891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Omar S. Ahmed
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Caroline Rouger
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA) INRAE Villenave d'Ornon France
| | | | - Pierre Waffo‐Téguo
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV Univ. Bordeaux 210 chemin de lysotte Villenave d'Ornon 33882 France
| |
Collapse
|
103
|
Gao Y, Liu X, Yang W, Li X, Li M, Li F. Dual inhibition of the renin and angiotensin converting enzyme activities of aqueous extracts of 22 edible flower petals. RSC Adv 2022; 12:4191-4198. [PMID: 35425451 PMCID: PMC8981010 DOI: 10.1039/d1ra08978a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
In order to explore novel blood pressure-regulating substances and fulfill the high-value utilization of various edible flowers, the inhibitory activities of aqueous solutions of 22 edible flower petals extracts on renin and angiotensin converting enzyme (ACE) were investigated. The results showed that almost all the aqueous sample extracts demonstrated an inhibition of renin and/or ACE. The Rosa rugosa Thunb. (IC50 = 25.13 and 60.00 μg mL-1) and Paeonia suffruticosa Andr. (IC50 = 50.54 and 292.47 μg mL-1) extracts showed prominent dual inhibitory activity against renin and ACE. The antioxidant activities and content of total phenols and flavonoids of the aqueous sample extracts were tested, because the oxidative damage of blood vessels is closely related to the occurrence and development of hypertension. The correlation between the contents of total phenolic substances and flavonoids, and the functional activities was analyzed. Renin and ACE inhibitory activities, DPPH and ABTS free radical scavenging capacity, and iron reduction ability of different sample extracts were significantly positively correlated with the total phenolic content (p <0.01), whereby the correlation coefficients were 0.87, 0.83, 0.93, 0.95, and 0.93 respectively. It was indicated that the aqueous phenolic compounds in Rosa rugosa Thunb and Paeonia suffruticosa Andr extracts tended to show stronger renin and ACE inhibitory activities, and exhibited a potential prospect for auxiliary blood pressure control.
Collapse
Affiliation(s)
- Yifang Gao
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| | - Xueting Liu
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| | - Wenqing Yang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| | - Xixi Li
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| | - Mengru Li
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| | - Fengjuan Li
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education Tianjin 300457 PR China +86-22-60601457 +86-22-60912453
| |
Collapse
|
104
|
History of Grape in Anatolia and Historical Sustainable Grape Production in Erzincan Agroecological Conditions in Turkey. SUSTAINABILITY 2022. [DOI: 10.3390/su14031496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Anatolian peninsula has long been linked with the origins of viticulture and winemaking. Erzincan province in Anatolia hosted many civilizations in the past, and each civilization used grapes for different purposes. From past to present, viticulture carried out with the famous ‘Karaerik’ grape (Vitis vinifera L.) on old traditional Baran training system to avoid cold damage occurred in winter months. During the old civilizations, the cultivar was used only for wine production, but after the first period of the 1900s, this situation changed, and the cultivar was used for table consumption because wine is banned by Islam. The archaeological findings in Erzincan province revealed the cultivar has existed in the province for centuries, and in each historical period, the cultivar was used sustainably, added value to the region, and brought cultural heritage from generation to generation. Grape production in Erzincan province has been a symbol of abundance, fertility and productivity since mythological times. The historical facts indicated that viticulture and winemaking had been a dispensable part of the Erzincan economy and rural development. The vineyards apply the same sustainable management practices from which they receive their grapes. The traditional Baran training system is used for all vineyards. The viticulture in the province has been strongly committed to improving environmental and social sustainability throughout history.
Collapse
|
105
|
Xu W, Liu X, Huang Z, Du Y, Zhang B, Wang Q, Xiang J, Zou Y, Ma L. Acute Effects of Air Pollution on Ischemic Heart Disease Hospitalizations: A Population-Based Time-Series Study in Wuhan, China, 2017-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12527. [PMID: 34886253 PMCID: PMC8656788 DOI: 10.3390/ijerph182312527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Evidence of the acute effects of air pollutants on ischemic heart disease (IHD) hospitalizations based on the entire population of a megacity in central China is lacking. All IHD hospitalization records from 2017 to 2018 were obtained from the Wuhan Information Center of Health and Family Planning. Daily air pollutant concentrations and meteorological data were synchronously collected from the Wuhan Environmental Protection Bureau. A time-series study using generalized additive models was conducted to systematically examine the associations between air pollutants and IHD hospitalizations. Stratified analyses by gender, age, season, hypertension, diabetes, and hyperlipidemia were performed. In total, 139,616 IHD hospitalizations were included. Short-term exposure to air pollutants was positively associated with IHD hospitalizations. The age group ≥76 was at higher exposure risk, and the associations appeared to be more evident in cold seasons. PM2.5 and PM10 appeared to have greater effects on males and those without hypertension or diabetes, whereas NO2 and SO2 had greater effects on females and those with hypertension or diabetes. The risk of IHD hospitalization due to air pollutants was greater in people without hyperlipidemia. Our study provides new evidence of the effects of air pollution on the increased incidence of IHD in central China.
Collapse
Affiliation(s)
- Wanglin Xu
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Xingyuan Liu
- Information Center of Health and Family Planning, Wuhan 430021, China;
| | - Zenghui Huang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yating Du
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Biao Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Qiaomai Wang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Jing Xiang
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Yuliang Zou
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| | - Lu Ma
- School of Public Health, Wuhan University, Wuhan 430071, China; (W.X.); (Z.H.); (Y.D.); (B.Z.); (Q.W.); (J.X.)
| |
Collapse
|
106
|
Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. Int J Mol Sci 2021; 22:ijms222212380. [PMID: 34830261 PMCID: PMC8620148 DOI: 10.3390/ijms222212380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is strongly influenced by platelet activation. Platelet activation and thrombus formation at atherosclerotic plaque rupture sites is a dynamic process regulated by different signaling networks. Therefore, there are now focused efforts to search for novel bioactive compounds which target receptors and pathways in the platelet activation process while preserving normal hemostatic function. The antiplatelet activity of numerous fruits and vegetables and their multiple mechanisms of action have recently been highlighted. In this review, we review the antiplatelet actions of bioactive compounds via key pathways (protein disulfide isomerase, mitogen-activated protein kinases, mitochondrial function, cyclic adenosine monophosphate, Akt, and shear stress-induced platelet aggregation) with no effects on bleeding time. Therefore, targeting these pathways might lead to the development of effective antiplatelet strategies that do not increase the risk of bleeding.
Collapse
|
107
|
Horie K, Maeda H, Nanashima N, Oey I. Potential Vasculoprotective Effects of Blackcurrant ( Ribes nigrum) Extract in Diabetic KK-A y Mice. Molecules 2021; 26:molecules26216459. [PMID: 34770868 PMCID: PMC8587626 DOI: 10.3390/molecules26216459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Polyphenols are bioactive compounds found naturally in fruits and vegetables; they are widely used in disease prevention and health maintenance. Polyphenol-rich blackcurrant extract (BCE) exerts beneficial effects on vascular health in menopausal model animals. However, the vasculoprotective effects in diabetes mellitus (DM) and atherosclerotic vascular disease secondary to DM are unknown. Therefore, we investigated whether BCE is effective in preventing atherosclerosis using KK-Ay mice as a diabetes model. The mice were divided into three groups and fed a high-fat diet supplemented with 1% BCE (BCE1), 3% BCE (BCE2), or Control for 9 weeks. The mice in the BCE2 group showed a considerable reduction in the disturbance of elastic lamina, foam cell formation, and vascular remodeling compared to those in the BCE1 and Control groups. Immunohistochemical staining indicated that the score of endothelial nitric oxide synthase staining intensity was significantly higher in both BCE2 (2.9) and BCE1 (1.9) compared to that in the Control (1.1). Furthermore, the score for the percentage of alpha-smooth muscle actin was significantly lower in the BCE2 (2.9%) than in the Control (2.1%). Our results suggest that the intake of anthocyanin-rich BCE could have beneficial effects on the blood vessels of diabetic patients.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
- Correspondence: ; Tel.: +81-172-39-5527
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan;
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
108
|
Shao T, Verma HK, Pande B, Costanzo V, Ye W, Cai Y, Bhaskar LVKS. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front Physiol 2021; 12:751374. [PMID: 34690818 PMCID: PMC8531728 DOI: 10.3389/fphys.2021.751374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Physical activity (PA) and nutrition are the essential components of a healthy lifestyle, as they can influence energy balance, promote functional ability of various systems and improve immunity. Infections and their associated symptoms are the common and frequent challenges to human health that are causing severe economic and social consequences around the world. During aging, human immune system undergoes dramatic aging-related changes/dysfunctions known as immunosenescence. Clinically, immunosenescence refers to the gradual deterioration of immune system that increases exposure to infections, and reduces vaccine efficacy. Such phenomenon is linked to impaired immune responses that lead to dysfunction of multiple organs, while lack of physical activity, progressive loss of muscle mass, and concomitant decline in muscle strength facilitate immunosenescence and inflammation. In the present review, we have discussed the role of nutrition and PA, which can boost the immune system alone and synergistically. Evidence suggests that long-term PA is beneficial in improving immune system and preventing various infections. We have further discussed several nutritional strategies for improving the immune system. Unfortunately, the available evidence shows conflicting results. In terms of interaction with food intake, PA does not tend to increase energy intake during a short time course. However, overcoming nutritional deficiencies appears to be the most practical recommendation. Through the balanced nutritious diet intake one can fulfill the bodily requirement of optimal nutrition that significantly impacts the immune system. Supplementation of a single nutrient as food is generally not advisable. Rather incorporating various fruits and vegetables, whole grains, proteins and probiotics may ensure adequate nutrient intake. Therefore, multi-nutrient supplements may benefit people having deficiency in spite of sufficient diet. Along with PA, supplementation of probiotics, bovine colostrum, plant-derived products and functional foods may provide additional benefits in improving the immune system.
Collapse
Affiliation(s)
- Tianyi Shao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur, India
| | - Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Weibing Ye
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuyan Cai
- Department of Physical Education, Guangdong University of Technology, Guangzhou, China
| | | |
Collapse
|
109
|
Patel DK. Pharmacological activities and Therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc Hematol Disord Drug Targets 2021; 21:104-114. [PMID: 34387174 DOI: 10.2174/1871529x21666210812111931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Herbal drugs and their derived phytochemicals are valuable for human being as a source of vital component of food material and drugs. Flavonoids are naturally occurring phytochemical produced in plants through metabolisms and they are having anti-hyperlipidemia, anti-inflammatory, anti-oxidant and anti-apoptotic activity. Flavonoids have been identified in the fruits, nuts, vegetables, seeds, stem, flowers and tea. Kaempferol is a natural flavonoidal compound present in edible plants such as apples, broccoli, strawberries, beans, grapefruit, propolis and medicinal plants such as Aloe vera, Ginkgo biloba, Rosmarinus officinalis, Crocus sativus L., Hypericum perforatum L. Kaempferol have anti-oxidant, anti-inflammatory, anti-apoptotic, pro-apoptotic, cardio-protective and anti-cancer activities. METHODS Glycosides of kaempferol such as kaempferitrin also called kaempferol 3,7-dirhamnoside are known to be more abundant than their flavonoid monomers in plants. Various literature databases have been searched to collect all the scientific information of kaempferitrin in the present investigation and analyzed in order to know the therapeutic benefit and biological potential of kaempferitrin. Moreover all the information has been presented here in two broad sections i.e. pharmacological and analytical. RESULTS From the analysis of all the collected and presented information, it was found that kaempferitrin has potent insulin-mimetic potential and could be used for the treatment of diabetes and related complication. However, it has also shown anti-oxidant, anti-inflammatory, anti-convulsant, anti-osteoporotic, anti-depressant, anthelmintic, immunostimulatory and natriuretic properties and inhibits cell proliferation and apoptosis. Kaempferitrin also improves meat quality of broiler chickens. CONCLUSIONS The presented information in this work will be valuable to justify the biological importance and therapeutic potential of kaempferitrin in the scientific field.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Naini, Prayagraj, 211007, Uttar Pradesh. India
| |
Collapse
|
110
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
111
|
Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021; 26:molecules26154621. [PMID: 34361774 PMCID: PMC8347607 DOI: 10.3390/molecules26154621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Polyphenols play a therapeutic role in vascular diseases, acting in inherent illness-associate conditions such as inflammation, diabetes, dyslipidemia, hypertension, and oxidative stress, as demonstrated by clinical trials and epidemiological surveys. The main polyphenol cardioprotective mechanisms rely on increased nitric oxide, decreased asymmetric dimethylarginine levels, upregulation of genes encoding antioxidant enzymes via the Nrf2-ARE pathway and anti-inflammatory action through the redox-sensitive transcription factor NF-κB and PPAR-γ receptor. However, poor polyphenol bioavailability and extensive metabolization restrict their applicability. Polyphenols carried by nanoparticles circumvent these limitations providing controlled release and better solubility, chemical protection, and target achievement. Nano-encapsulate polyphenols loaded in food grade polymers and lipids appear to be safe, gaining resistance in the enteric route for intestinal absorption, in which the mucoadhesiveness ensures their increased uptake, achieving high systemic levels in non-metabolized forms. Nano-capsules confer a gradual release to these compounds, as well as longer half-lives and cell and whole organism permanence, reinforcing their effectiveness, as demonstrated in pre-clinical trials, enabling their application as an adjuvant therapy against cardiovascular diseases. Polyphenol entrapment in nanoparticles should be encouraged in nutraceutical manufacturing for the fortification of foods and beverages. This study discusses pre-clinical trials evaluating how nano-encapsulate polyphenols following oral administration can aid in cardiovascular performance.
Collapse
|
112
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
113
|
Liang Q, Zhao X, Fu X, Wang J, Li Q, Zhao X. Identification of selective ligands targeting two GPCRs by receptor-affinity chromatography coupled with high-throughput sequencing techniques. Bioorg Chem 2021; 112:104986. [PMID: 34029972 DOI: 10.1016/j.bioorg.2021.104986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
The rapid growth of demands for drug discovery has necessitated the ongoing pursuit of new methods for specific ligands screening and identification. This work combined receptor-affinity chromatography (RAC) with high-throughput sequencing techniques to rapidly screen and identify the specific ligands. By this method, immobilized angiotensin II type I receptor (AT1R) and endothelin receptor A (ETAR) based on RAC were utilized for lead screening from a DNA-encoded library. The specific ligands of AT1R (ligand A1, A2) and ETAR (ligand B1, B2) were synthesized after decoding by high-throughput sequencing techniques. The dissociation rate constants (kd) of ligand A1, A2 to AT1R and B1, B2 to ETAR were 9.65 × 10-4, 31.1 × 10-4 and 0.66, 1.22 s-1 by peak profiling assay. The association constant (KA) to the receptors of four ligands was 5.4 × 106, 3.3 × 106 and 1.6 × 106, 2.2 × 105 by injection amount dependent method. The kinetic and thermodynamic parameters of the four specific ligands are similar to those of the positive drugs. This indicates that they are promising to drug candidates. The druggability of the four ligands through pharmacokinetic investigation by HPLC-MS/MS presented desired pharmacokinetic behavior including the fast absorption, the relatively slow elimination. These results, taking together, indicated that the RAC combined with high-throughput sequencing techniques can screen and identify the specific ligands according to various proteins, thus creating a general strategy for rapid discovery of promising drug candidates.
Collapse
Affiliation(s)
- Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
114
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|