101
|
Wei M, Xin L, Feng S, Liu Y. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Mikrochim Acta 2020; 187:102. [PMID: 31912309 DOI: 10.1007/s00604-019-4089-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
A complementary DNA (cDNA) was designed to simultaneously hybridize with the ochratoxin A (OTA) aptamer and the fumonisin B1 (FB1) aptamer to form a unique Y-shaped DNA structure and to achieve simultaneous detection. Gold nanorods (AuNRs) were used to immobilize thionine (Th), thiolated ferrocene (Fc), thiolated OTA aptamer (Apt1), and thiolated FB1 aptamer (Apt2), to form an amplified signal element and a recognition element. The Apt1-AuNRs-Th complex and the Apt2-AuNRs-Fc complex hybridize with cDNA to form a unique Y-DNA structure on a gold electrode. This produces two initial electrochemical signals [with 177 μΑ cm-2 near -0.2 V, and 3121 μΑ cm-2 near +0.46 V (vs. Ag/AgCl)] by differential pulse voltammetry. Upon addition of 0.1 ng mL-1 OTA and 0.1 ng mL-1 FB1, the aptamers bind the two toxins. This results in the release of Apt1-AuNRs-Th and Apt2-AuNRs-Fc, so the peak currents densities decrease to 115 μΑ cm-2 and 209 μΑ cm-2. The assay allows simultaneous determination of OTA and FB1 in the 1.0 pg·mL-1 to 100 ng·mL-1 concentration ranges, with LODs of 0.47 and 0.26 pg·mL-1. The assay is reproducible, stable and specific. It was applied to the determination of OTA and FB1 in spiked beer, with recoveries between 89.0% and 102.0%. Graphical abstractSchematic representation of OTA and FB1 detection based on Apt2-AuNRs-Fc/Apt1-AuNRs-Th/cDNA/AuE. (AuNRs: Gold nanorods; Th: thionine; Fc: ferrocene; SH: thiol; BSA: Bovine serum albumin; cDNA: Complementary DNA; Apt1: Aptamer1; Apt2: Aptamer2; OTA: Ochratoxin A; FB1: Fumonisin B1).
Collapse
Affiliation(s)
- Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Lingkun Xin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Shuo Feng
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Jin Ming Avenue, Kaifeng, Henan Province, 475004, People's Republic of China
| |
Collapse
|
102
|
An X, Shi X, Zhang H, Yao Y, Wang G, Yang Q, Xia L, Sun X. An electrochemical immunosensor based on a combined amplification strategy with the GO–CS/CeO2–CS nanocomposite for the detection of aflatoxin M1. NEW J CHEM 2020. [DOI: 10.1039/c9nj04804a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a sensitive electrochemical immunosensor modified with graphene oxide–chitosan (GO–CS) and cerium oxide–chitosan (CeO2–CS) using screen-printed electrodes (SPEs) was developed for the determination of aflatoxin M1(AFM1) in milk.
Collapse
Affiliation(s)
- Xingshuang An
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xiaojie Shi
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Hui Zhang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yao Yao
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Lianming Xia
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
103
|
Li Z, Li X, Jian M, Geleta GS, Wang Z. Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins (Basel) 2019; 12:E20. [PMID: 31906152 PMCID: PMC7020412 DOI: 10.3390/toxins12010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good electrical conductivity and a large surface area with plenty of active groups for conjugating 2D nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize recent developments in the application of 2D nanomaterial-based electrochemical biosensors for detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer technologies into electrochemical biosensors has led to an unprecedented impact on improving the assaying performance of microbial toxins, and has shown great promise in public health and environmental protection.
Collapse
Affiliation(s)
- Zhuheng Li
- Jilin Provincial Institute of Education, Changchun 130022, China;
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Girma Selale Geleta
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma 378, Ethiopia
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| |
Collapse
|
104
|
Caglayan MO, Üstündağ Z. Detection of zearalenone in an aptamer assay using attenuated internal reflection ellipsometry and it's cereal sample applications. Food Chem Toxicol 2019; 136:111081. [PMID: 31883987 DOI: 10.1016/j.fct.2019.111081] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Mycotoxins are toxic compounds produced by the metabolism of certain fungi that threaten the food and agricultural industry. Over hundreds of mycotoxins, one of the most common toxins, zearalenone (ZEN), has toxic effects on human and animal health due to its mutagenicity, treatogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. In this work, attenuated internal reflection spectroscopic ellipsometry (AIR-SE) combined with the signal amplification via surface plasmon resonance conditions that were proved to be a highly sensitive analytical tool in bio-sensing was developed for the sensitive and selective ZEN detection in cereal products such as corn, wheat, rice, and oat. Combined with the oligonucleotide aptamer for ZEN recognition, our proposed method showed good performance with yielding 0.08 ng/mL LOD and 0.01-1000 ng/mL detection range. A mini-review was also introduced in, to compare various methods for ZEN detection.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Kutahya Dumlupinar University, Chemistry Department, Kutahya, Turkey
| |
Collapse
|
105
|
Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta 2019; 187:29. [PMID: 31813061 DOI: 10.1007/s00604-019-4034-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - M Satyanarayana
- Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
106
|
Goud KY, Kumar VS, Hayat A, Catanante G, Gobi KV, Marty JL. Polymer scaffold layers of screen-printed electrodes for homogeneous deposition of silver nanoparticles: application to the amperometric detection of hydrogen peroxide. Mikrochim Acta 2019; 186:810. [PMID: 31745658 DOI: 10.1007/s00604-019-3963-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
A method is described for electrochemical oxidation of polymers on the surface of screen-printed electrodes (SPCE). These act as scaffold layers for homogeneous deposition of silver nanoparticles (AgNPs). Hexamethylenediamine (HMDA) and poly(ethylene glycol) were immobilized on the SPCE surface via electrochemical oxidation. AgNPs were then electrodeposited on the scaffolds on the SPCE. This type of different carbon chain containing materials like PEG and HMDA act as big tunnels for electron mobility and are useful for the homogenous deposition of AgNPs on the SPCE surface without agglomeration. The resulting sensor was applied to the determination of hydrogen peroxide (H2O2) as a model analyte. It is found to display favorable catalytic and conductive properties towards the reduction of H2O2. Cyclic voltammetry and amperometry revealed that the modified electrode performs better than other modified SPCEs. Best operated at a potential of around -0.61 V (vs Ag|AgCl), the amperometric response is linear in the 10-180 μM H2O2 concentration range and the detection limit is 1.5 μM. The sensor is stable and reproducible. The resultant sensor was appplied to toothpaste analysis, and good recovery values were gained. Graphical abstractSchematic representation of electropolymerization of poly(ethylene glycol) and hexamethylenediamine scaffold layers on screen-printed electrodes for homogeneous electrodeposition of silver nanoparticles. This electrode was applied for the amperometric determination of hydrogen peroxide.
Collapse
Affiliation(s)
- K Yugender Goud
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860, Perpignan, France.
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - V Sunil Kumar
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860, Perpignan, France
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Islamabad, 54000, Pakistan
| | - Gaelle Catanante
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860, Perpignan, France.
| |
Collapse
|
107
|
Han Z, Tang Z, Jiang K, Huang Q, Meng J, Nie D, Zhao Z. Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and Au NPs (rMoS 2-Au) for multiplex detection of mycotoxins. Biosens Bioelectron 2019; 150:111894. [PMID: 31761484 DOI: 10.1016/j.bios.2019.111894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Multiple mycotoxin contamination has posed health risks in the area of food safety. In this study, co-reduced molybdenum disulfide and gold nanoparticles (rMoS2-Au) were designed and used for the first time as an efficient platform endowing electrochemical electrodes with superior electron transfer rates, large surface areas and strong abilities to firmly couple with large amounts of different aptamers. After further modification with thionine (Thi) and 6-(Ferrocenyl) hexanethiol (FC6S), a platform enabling sensitive, selective and simultaneous determination of two important mycotoxins, zearalenone (ZEN) and fumonisin B1 (FB1), was achieved. The established aptasensor showed excellent linear relationships (R2 > 0.99) when ZEN and FB1 concentrations were in the range of 1 × 10-3-10 ng mL-1 and 1 × 10-3-1 × 102 ng mL-1, respectively. High sensitivity of ZEN and FB1 with a limit of detection as low as 5 × 10-4 ng mL-1 was obtained with excellent selectivity and stability. The effectiveness of the aptasensor was verified in real maize samples, and satisfactory recoveries were attained. The established platform could be easily expanded to other aptamer-based multiplex screening protocols in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhanmin Tang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
108
|
Craven CB, Wawryk N, Jiang P, Liu Z, Li XF. Pesticides and trace elements in cannabis: Analytical and environmental challenges and opportunities. J Environ Sci (China) 2019; 85:82-93. [PMID: 31471034 DOI: 10.1016/j.jes.2019.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 06/10/2023]
Abstract
Cannabis is increasingly used for both medicinal and recreational purposes with an estimate of over 180 million users annually. Canada has recently legalized cannabis use in October 2018, joining several states in the United States of America (e.g., Colorado, California, and Oregon) and a few other countries. A variety of cannabis products including dry flowers, edibles, and oil products are widely consumed. With high demand for cannabis products worldwide, the quality of cannabis and its related products has become a major concern for consumer safety. Various guidelines have been set by different countries to ensure the quality, safety, and efficacy of cannabis products. In general, these guidelines require control of contaminants including pesticides, toxic elements, mycotoxins, and pathogens, as well as residual solvents in regard to cannabis oil. Accordingly, appropriate analytical methods are required to determine these contaminants in cannabis products for quality control. In this review, we focus on the current analytical challenges and method development for detection of pesticides and toxic elements in cannabis to meet various guidelines.
Collapse
Affiliation(s)
- Caley B Craven
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Nicholas Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Ping Jiang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| | - Zhongshan Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
109
|
Khan IM, Niazi S, Yu Y, Mohsin A, Mushtaq BS, Iqbal MW, Rehman A, Akhtar W, Wang Z. Aptamer Induced Multicolored AuNCs-WS 2 "Turn on" FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB 1 and Zearalenone. Anal Chem 2019; 91:14085-14092. [PMID: 31585033 DOI: 10.1021/acs.analchem.9b03880] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycotoxins posit serious threats to human and animal health, and numerous efforts have been performed to detect the multiple toxins by a single diagnostic approach. To best of our knowledge, for the first time, we synthesized an aptamer induced "turn on" fluorescence resonance energy transfer (FRET) biosensor using dual-color gold nanoclusters (AuNCs), l-proline, and BSA synthesized AuNCs (Lp-AuNCs and BSA-AuNCs), with WS2 nanosheet for simultaneous recognition of aflatoxinB1 (AFB1) and zearalenone (ZEN) by single excitation. Here, AFB1 aptamer stabilized blue-emitting AuNCs (AFB1-apt-Lp-AuNCs) (at 442 nm) and ZEN aptamer functionalized with red-colored AuNCs (ZEN-apt-BSA-AuNCs) (at 650 nm) were employed as an energy donor and WS2 nanosheet as a fluorescence quencher. With the addition of AFB1 and ZEN, the change in fluorescence intensity (F.I) was recorded at 442 and 650 nm and can be used for simultaneous recognition with a detection limit of 0.34 pg mL-1 (R2 = 0.9931) and 0.53 pg mL-1 (R2 = 0.9934), respectively. Most importantly, the semiquantitative determination of AFB1 and ZEN can also be realized through photovisualization. The current approach paves a new way to develop sensitive, selective, and convenient metal nanocluster-based fluorescent "switch-on" probes with potential applications in multipurpose biosensing.
Collapse
Affiliation(s)
- Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Ye Yu
- Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau , Zhangjiagang , 214114 , China
| | - Ali Mohsin
- East China University of Science and Technology , Shanghai , 200000 , China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Wasim Akhtar
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| |
Collapse
|
110
|
Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 2019; 1094:18-25. [PMID: 31761044 DOI: 10.1016/j.aca.2019.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 01/13/2023]
Abstract
A competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe is used to detect the breast cancer marker Mucin1 (MUC1). MXene (Ti3C2) nanosheets with excellent electrical conductivity and large specific surface area are selected as carriers for aptamer probes. The ferrocene-labeled complementary DNA (cDNA-Fc) is first bound on the surface of MXene to form a cDNA-Fc/MXene probe. Then, the MUC1 aptamer is fixed to the electrode by Au-S bonds. The sensing electrode is named Apt/Au/GCE. After the probe is complementary to the aptamer, a cDNA-Fc/MXene/Apt/Au/GCE aptasensor is fabricated. When the aptasensor is used for detection of MUC1, a competitive process happens between the cDNA-ferrocene/MXene probe and MUC1, which makes cDNA-Fc/MXene probe detach from the sensing electrode, resulting in a decrease in electrical signal. The difference in the corresponding peak current before and after the competition can be used to indicate the quantitative change in bound MUC1. The proposed competitive electrochemical aptasensor gives a wide linear range of 1.0 pM-10 μM and a low detection limit of 0.33 pM (S/N = 3), which is promising for clinical diagnosis.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China
| | - Jingjing Sun
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China
| | - Lin Lu
- Zibo Normal College, Zibo, 255200, Shandong, China
| | - Xiao Yang
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
111
|
Pan M, Yin Z, Liu K, Du X, Liu H, Wang S. Carbon-Based Nanomaterials in Sensors for Food Safety. NANOMATERIALS 2019; 9:nano9091330. [PMID: 31533228 PMCID: PMC6781043 DOI: 10.3390/nano9091330] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Food safety is one of the most important and widespread research topics worldwide. The development of relevant analytical methods or devices for detection of unsafe factors in foods is necessary to ensure food safety and an important aspect of the studies of food safety. In recent years, developing high-performance sensors used for food safety analysis has made remarkable progress. The combination of carbon-based nanomaterials with excellent properties is a specific type of sensor for enhancing the signal conversion and thus improving detection accuracy and sensitivity, thus reaching unprecedented levels and having good application potential. This review describes the roles and contributions of typical carbon-based nanomaterials, such as mesoporous carbon, single- or multi-walled carbon nanotubes, graphene and carbon quantum dots, in the construction and performance improvement of various chemo- and biosensors for various signals. Additionally, this review focuses on the progress of applications of this type of sensor in food safety inspection, especially for the analysis and detection of all types of toxic and harmful substances in foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoling Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Huilin Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
112
|
Zhang M, Ye J, Fang P, Zhang Z, Wang C, Wu G. Facile electrochemical preparation of NaOH nanorods on glassy carbon electrode for ultrasensitive and simultaneous sensing of hydroquinone, catechol and resorcinol. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
113
|
Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. J Colloid Interface Sci 2019; 552:426-431. [DOI: 10.1016/j.jcis.2019.05.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
|
114
|
Sirbu D, Zeng L, Waddell PG, Benniston AC. An unprecedented oxidised julolidine-BODIPY conjugate and its application in real-time ratiometric fluorescence sensing of sulfite. Org Biomol Chem 2019; 17:7360-7368. [PMID: 31339165 DOI: 10.1039/c9ob01316d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reaction of a julolidine-based BODIPY compound with silver(i) ions in the presence of white light produced the oxidised julolidine version (OXJUL) containing a quaternary nitrogen. The oxidation of one ring at the julolidine site is highly unusual and there is no other reported literature example. The fluorescence maximum of OXJUL is altered from 648 nm to 608 nm by the addition of an aqueous solution of Na2SO3 over several minutes. In the presence of a large excess of sulfite a further slower reaction is observed which further shifts the emission maximum to 544 nm. The alterations form the basis of a real-time ratiometric sensor for sulfite and its detection in a white wine.
Collapse
Affiliation(s)
- D Sirbu
- Molecular Photonics Laboratory, Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | |
Collapse
|
115
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
116
|
Goda ES, Gab-Allah M, Singu BS, Yoon KR. Halloysite nanotubes based electrochemical sensors: A review. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
117
|
Selvolini G, Lettieri M, Tassoni L, Gastaldello S, Grillo M, Maran C, Marrazza G. Electrochemical enzyme-linked oligonucleotide array for aflatoxin B 1 detection. Talanta 2019; 203:49-57. [PMID: 31202349 DOI: 10.1016/j.talanta.2019.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
In this work, an electrochemical enzyme-linked oligonucleotide array to achieve simple and rapid multidetection of aflatoxin B1 (AFB1) is presented. The assay is based on a competitive format and disposable screen-printed cells (SPCs). Firstly, the electrodeposition of poly(aniline-anthranilic acid) copolymer (PANI-PAA) on graphite screen-printed working electrodes was performed by means of cyclic voltammetry (CV). Aflatoxin B1 conjugated with bovine serum albumin (AFB1-BSA) was then immobilized by covalent binding on PANI-PAA copolymer. After performing the affinity reaction between AFB1 and the biotinylated DNA-aptamer (apt-BIO), the solution was dropped on the modified SPCs and the competition was carried out. The biotinylated complexes formed onto the sensor surface were coupled with a streptavidin-alkaline phosphatase conjugate. 1-naphthyl phosphate was used as enzymatic substrate; the electroactive product was detected by differential pulse voltammetry (DPV). The response of the enzyme-linked oligonucleotide assay was signal-off, according to the competitive format. A dose-response curve was obtained between 0.1 ng mL-1 and 10 ng mL-1 and a limit of detection of 0.086 ng mL-1 was achieved. Finally, preliminary experiments in maize flour samples spiked with AFB1 were also performed.
Collapse
Affiliation(s)
- Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Mariagrazia Lettieri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Tassoni
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | | | - Maria Grillo
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Claudio Maran
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie D'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
118
|
Huang Q, Zhao Z, Nie D, Jiang K, Guo W, Fan K, Zhang Z, Meng J, Wu Y, Han Z. Molecularly Imprinted Poly(thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Anal Chem 2019; 91:4116-4123. [PMID: 30793880 DOI: 10.1021/acs.analchem.8b05791] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative approach based on a surface functional monomer-directing strategy for the construction of a sensitive and selective molecularly imprinted electrochemical sensor for patulin recognition is described. A patulin imprinted platinum nanoparticle (PtNP)-coated poly(thionine) film was grown on a preformed thionine tailed surface of PtNP-nitrogen-doped graphene (NGE) by electropolymerization, which provided high capacity and fast kinetics to uptake patulin molecules. Thionine acted not only as a functional monomer for molecularly imprinted polymer (MIP), but also as a signal indicator. Enhanced sensitivity was obtained by combining the excellent electric conductivity of PtNPs, NGE, and thionine with multisignal amplification. The designed sensor displayed excellent performance for patulin detection over the range of 0.002-2 ng mL-1 (R2 = 0.995) with a detection limit of 0.001 ng mL-1 for patulin. In addition, the resulting sensor showed good stability and high repeatability and selectivity. Furthermore, the feasibility of its applications has also been demonstrated in the analysis of real samples, providing novel tactics for the rational design of MIP-based electrochemical sensors to detect a growing number of deleterious substances.
Collapse
Affiliation(s)
- Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China.,College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Keqiu Jiang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China.,College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , P. R. China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Key Laboratory of Protected Horticultural Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture , Shanghai Academy of Agricultural Sciences , 1000 Jingqi Road , Shanghai 201403 , P. R. China
| |
Collapse
|
119
|
Guo Z, Wang M, Wu J, Tao F, Chen Q, Wang Q, Ouyang Q, Shi J, Zou X. Quantitative assessment of zearalenone in maize using multivariate algorithms coupled to Raman spectroscopy. Food Chem 2019; 286:282-288. [PMID: 30827607 DOI: 10.1016/j.foodchem.2019.02.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/13/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2023]
Abstract
Zearalenone is a contaminant in food and feed products which are hazardous to humans and animals. This study explored the feasibility of the Raman rapid screening technique for zearalenone in contaminated maize. For representative Raman spectra acquisition, the ground maize samples were collected by extended sample area to avoid the adverse effect of heterogeneous component. Regression models were built with partial least squares (PLS) and compared with those built with other variable selection algorithms such as synergy interval PLS (siPLS), ant colony optimization PLS (ACO-PLS) and siPLS-ACO. SiPLS-ACO algorithm was superior to others in terms of predictive power performance for zearalenone analysis. The best model based on siPLS-ACO achieved coefficients of correlation (Rp) of 0.9260 and RMSEP of 87.9132 μg/kg in the prediction set, respectively. Raman spectroscopy combined multivariate calibration showed promising results for the rapid screening large numbers of zearalenone maize contaminations in bulk quantities without sample-extraction steps.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Mingming Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingzhu Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology & Business University, Beijing 100048, China
| | - Feifei Tao
- Geosystems Research Institute, Mississippi State University, Building 1021, Stennis Space Center, MS 39529, USA
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingyan Wang
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Sino-British Joint Laboratory of Food Nondestructive Detection, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Sino-British Joint Laboratory of Food Nondestructive Detection, Zhenjiang 212013, China
| |
Collapse
|
120
|
Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycotoxins are a group of secondary metabolites produced by different species of filamentous fungi and pose serious threats to food safety due to their serious human and animal health impacts such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection of mycotoxins include gas chromatography and high-performance liquid chromatography coupled with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively enforce regulations and ensure the safety of food and feed. In this sense, several studies have been done with the aim of developing strategies to detect mycotoxins using sensing devices that have high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently emerged as a good candidate technique to meet such requirements. This review summarizes the application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.
Collapse
|
121
|
Yugender Goud K, Sunil Kumar V, Hayat A, Vengatajalabathy Gobi K, Song H, Kim KH, Marty JL. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
122
|
Li B, Pu W, Xu H, Ge L, Kwok HF, Hu L. Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres. Analyst 2019; 144:1433-1441. [DOI: 10.1039/c8an01978a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new electrochemical immunosensing protocol by coupling with a magneto-controlled flow-through microfluidic device was developed for the sensitive detection of alpha-fetoprotein (AFP) on magnetic beads (MB) using ferrocene derivative polymer nanospheres (FDNP) as the electroactive mediators.
Collapse
Affiliation(s)
- Bin Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
- Institute of Translational Medicine
| | - Wenyuan Pu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Houxi Xu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Lilin Ge
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Hang Fai Kwok
- Institute of Translational Medicine
- Faculty of Health Sciences
- University of Macau
- Avenida de Universidade
- Macau SAR
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
123
|
Liu X, Liu X, Huang P, Wei F, Ying G, Zhang S, Lu J, Zhou L, Kong W. Regeneration and Reuse of Immunoaffinity Column for Highly Efficient Clean-Up and Economic Detection of Ochratoxin A in Malt and Ginger. Toxins (Basel) 2018; 10:E462. [PMID: 30413078 PMCID: PMC6266469 DOI: 10.3390/toxins10110462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023] Open
Abstract
Immunoaffinity columns (IACs) are most popularly used for mycotoxin clean-up in complex matrices prior to chromatographic analysis. But, their high cost has limited their wide application and the regeneration of IACs for multiple instances of reuse is important. This study aimed to investigate the feasibility of regeneration and reuse of IACs for purification of ochratoxin A (OTA) in spiked raw malt and dried ginger samples followed by high performance liquid chromatography-fluorescence detection. After each use, the IACs were filled with phosphate buffer saline (PBS) as the preservation solution and stored at 8 °C overnight for regeneration and reuse until the recovery rate was <70%. The results showed that matrix type, preparation procedure, and pH value of sample extraction exhibited major effects on the reuse of IACs for OTA clean-up. While, after modifying the sample preparation procedure using water as the diluent and the solution at a pH of 7 to 8, the IACs could be used eight and three times for the spiked raw malt and dried ginger samples with OTA after regeneration. Regarding the traditional procedure recommended in Chinese Pharmacopoeia (2015 edition), the IACs could be used for three and two times for the spiked raw malt and dried ginger samples with OTA, respectively. Therefore, the corresponding experimental cost could be reduced to one-eighth and one-third of the original cost. This is the first study on the regeneration and reuse of IACs for OTA clean-up in complex Chinese herbal medicines, providing a green and economical tool for a large number of samples analysis with low cost.
Collapse
Affiliation(s)
- Xi Liu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiaofei Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Pinxuan Huang
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Fang Wei
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Guangyao Ying
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Shuwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China.
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
124
|
Zhang X, Wang Z, Fang Y, Sun R, Cao T, Paudyal N, Fang W, Song H. Antibody Microarray Immunoassay for Simultaneous Quantification of Multiple Mycotoxins in Corn Samples. Toxins (Basel) 2018; 10:toxins10100415. [PMID: 30326616 PMCID: PMC6215206 DOI: 10.3390/toxins10100415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022] Open
Abstract
We developed and tested a prototype of an antibody microarray immunoassay for simultaneous quantitative detection of four typical mycotoxins (aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁) in corn samples. The test kit consisted of a nitrocellulose membrane layered with immobilized monoclonal antibodies against mycotoxins. During the assay, the mycotoxin-protein conjugates were biotinylated. The signal detection was enhanced by a combination of the biotin-streptavidin system and enhanced chemiluminescence (ECL). This improved the sensitivity of the assay. Under the optimized conditions, four calibration curves with goodness of fit (R² > 0.98) were plotted. The results showed that the detection limits for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ were 0.21, 0.19, 0.09, and 0.24 ng/mL, with detection ranges of 0.47⁻55.69, 0.48⁻127.11, 0.22⁻31.36, and 0.56⁻92.57 ng/mL, respectively. The limit of detection (LOD) of this antibody microarray for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ in corn was 5.25, 4.75, 2.25, and 6 μg/kg, respectively. The recovery rates from the spiked samples were between 79.2% and 113.4%, with coefficient of variation <10%. The results of the analysis of commercial samples for mycotoxins using this new assay and the liquid chromatography-tandem mass spectrometry (LC-MS/MS) were comparable and in good agreement. This assay could also be modified for the simultaneous detection of other multiple mycotoxins, as well as low-weight analytes, hazardous to human health.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Yun Fang
- Technic Center of Zhejiang Entry-Exit Inspection and Quarantine Bureau, 126 Fuchun Road, Hangzhou 310012, Zhejiang, China.
| | - Renjie Sun
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|