101
|
Biodegradation Study of Polyurethanes from Linseed and Passion Fruit Oils. COATINGS 2022. [DOI: 10.3390/coatings12050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bio-based polyurethanes (PU) have been developed as biodegradable and biocompatible, promising materials. In this work, PU foams with interesting properties and biodegradable characteristics were prepared from the polyols of linseed oil (LO) and passion fruit oil (PFO). The PUs reported herein were synthesized in 0.8 and 1.2 [NCO]/[OH] molar ratios, and were submitted to a soil degradation test, followed by analyses via scanning electron microscopy (SEM), stereomicroscope, thermogravimetry (TG/DTG), and Fourier transform infra-red (FTIR) spectroscopy. The results obtained indicate significant biodegradation activity. SEM micrographs of the PUs after soil the degradation test showed that the materials were susceptible to microbiological deterioration. TG/DTG curves showed that the PU samples were less thermally stable after the period of landfill than those freshly prepared. FTIR spectroscopy was used to identify chemical changes that occurred during biodegradation.
Collapse
|
102
|
Zhu P, Shen Y, Li X, Liu X, Qian G, Zhou J. Feeding preference of insect larvae to waste electrical and electronic equipment plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151037. [PMID: 34666086 DOI: 10.1016/j.scitotenv.2021.151037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Waste electrical and electronic equipment (WEEE) plastics not only pollute the environment, but are challenging to treat in an environmentally friendly manner. Biodegradation by insect larvae is potentially an eco-friendly method to treat WEEE plastics, but information about the feeding preference of insect larvae to WEEE plastics is lacking. In this study, a total of nine WEEE and pristine plastics were chosen to feed larvae of the following two insect species, i.e. Galleria mellonella and Tenebrio molitor. G. mellonella larvae significantly favor corresponding pristine plastics compared to two types of WEEE plastics, waste rigid polyurethane (RPU) and waste polystyrene (PS). One possible explanation is the increased chlorine or metals in the WEEE plastics measured using X-ray fluorescence spectrometer analysis. Scanning electron microscopy and Fourier transform infrared spectroscopy show that the destruction of physical structures and changes in surface functional groups were found in the two types of WEEE plastics in the larval frass, implying that the larvae partly biodegraded the plastics. Meanwhile, the powdered waste high impact polystyrene plastics (WHIPS) were ingested, but not the lumpy ones, indicating that the consumption by G. mellonella larvae is improved by the WHIPS physical modification. In addition, G. mellonella larvae presented the following decreasing preference for pristine plastics under individual-plastic-fed mode: RPU > phenol-formaldehyde resin > polyethylene (PE) > polypropylene > PS ≈ polyvinyl chloride; this is possibly due to differences in physical properties and chemical structures of the plastics; feeding preference of the larvae under multiple-plastics-fed mode is relatively consistent to that under individual-plastic-fed mode. Interestingly, the consumption by G. mellonella larvae of PE is higher than that of PS, while T. molitor larvae showed the opposite trend, implying that insect larvae have different plastics preference. The findings provide insights into biodegradation of WEEE plastics by insect larvae.
Collapse
Affiliation(s)
- Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Yilin Shen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| | - Xiankai Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - John Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
103
|
Wendels S, Balahura R, Dinescu S, Ignat S, Costache M, Avérous L. Influence of the Macromolecular architecture on the properties of biobased polyurethane tissue adhesives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
104
|
Di Bisceglie F, Quartinello F, Vielnascher R, Guebitz GM, Pellis A. Cutinase-Catalyzed Polyester-Polyurethane Degradation: Elucidation of the Hydrolysis Mechanism. Polymers (Basel) 2022; 14:polym14030411. [PMID: 35160402 PMCID: PMC8838978 DOI: 10.3390/polym14030411] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polyurethanes (PU) are one of the most-used classes of synthetic polymers in Europe, having a considerable impact on the plastic waste management in the European Union. Therefore, they represent a major challenge for the recycling industry, which requires environmentally friendly strategies to be able to re-utilize their monomers without applying hazardous and polluting substances in the process. In this work, enzymatic hydrolysis of a polyurethane-polyester (PU-PE) copolymer using Humicola insolens cutinase (HiC) has been investigated in order to achieve decomposition at milder conditions and avoiding harsh chemicals. PU-PE films have been incubated with the enzyme at 50 °C for 168 h, and hydrolysis has been followed throughout the incubation. HiC effectively hydrolysed the polymer, reducing the number average molecular weight (Mn) and the weight average molecular weight (Mw) by 84% and 42%, respectively, as shown by gel permeation chromatography (GPC), while scanning electron microscopy showed cracks at the surface of the PU-PE films as a result of enzymatic surface erosion. Furthermore, Fourier Transform Infrared (FTIR) analysis showed a reduction in the peaks at 1725 cm−1, 1164 cm−1 and 1139 cm−1, indicating that the enzyme preferentially hydrolysed ester bonds, as also supported by the nuclear magnetic resonance spectroscopy (NMR) results. Liquid chromatography time-of-flight/mass spectrometry (LC-MS-Tof) analysis revealed the presence in the incubation supernatant of all of the monomeric constituents of the polymer, thus suggesting that the enzyme was able to hydrolyse both the ester and the urethane bonds of the polymer.
Collapse
Affiliation(s)
- Federico Di Bisceglie
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430 Tulln an der Donau, Austria; (F.D.B.); (R.V.); (G.M.G.)
| | - Felice Quartinello
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430 Tulln an der Donau, Austria; (F.D.B.); (R.V.); (G.M.G.)
- Austrian Centre of Industrial Biotechnology, 3430 Tulln an der Donau, Austria
- Correspondence: (F.Q.); (A.P.)
| | - Robert Vielnascher
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430 Tulln an der Donau, Austria; (F.D.B.); (R.V.); (G.M.G.)
| | - Georg M. Guebitz
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430 Tulln an der Donau, Austria; (F.D.B.); (R.V.); (G.M.G.)
- Austrian Centre of Industrial Biotechnology, 3430 Tulln an der Donau, Austria
| | - Alessandro Pellis
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, 3430 Tulln an der Donau, Austria; (F.D.B.); (R.V.); (G.M.G.)
- Austrian Centre of Industrial Biotechnology, 3430 Tulln an der Donau, Austria
- Dipartimento di Chimica e Chimica Industriale, Universitá degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
- Correspondence: (F.Q.); (A.P.)
| |
Collapse
|
105
|
Jin X, Dong J, Guo X, Ding M, Bao R, Luo Y. Current advances in polyurethane biodegradation. POLYM INT 2022. [DOI: 10.1002/pi.6360] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuerui Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Jixin Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xufan Guo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Rui Bao
- Center of Infectious Diseases, West China Hospital Sichuan University and Collaborative Innovation Center Chengdu China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University Tianjin China
- Georgia Tech Shenzhen Institute Tianjin University Tangxing Road 133, Nanshan District Shenzhen 518071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| |
Collapse
|
106
|
Gausas L, Donslund BS, Kristensen SK, Skrydstrup T. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples. CHEMSUSCHEM 2022; 15:e202101705. [PMID: 34510781 DOI: 10.1002/cssc.202101705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Polyurethane (PU) is a thermoset plastic that is found in everyday objects, such as mattresses and shoes, but also in more sophisticated materials, including windmills and airplanes, and as insulation materials in refrigerators and buildings. Because of extensive inter-cross linkages in PU, current recycling methods are somewhat lacking. In this work, the effective catalytic hydrogenation of PU materials is carried out by applying a catalyst based on the earth-abundant metal manganese, to give amine and polyol fractions, which represent the original monomeric composition. In particular, Mn-Ph MACHO is found to catalytically deconstruct flexible foam, molded foams, insulation, and end-of-life materials at 1 wt.% catalyst loading by applying a reaction temperature of 180 °C, 50 bar of H2 , and 0.9 wt.% of KOH in isopropyl alcohol. The protocol is showcased in the catalytic deconstruction of 2 g of mattress foam using only 0.13 wt.% catalyst, resulting in 90 % weight recovery and a turnover number of 905.
Collapse
Affiliation(s)
- Laurynas Gausas
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Bjarke S Donslund
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Steffan K Kristensen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
107
|
Zhang Z, Liu L, Xu D, Zhang R, Shi H, Luan S, Yin J. Research Progress in Preparation and Biomedical Application of Functional Medical Polyurethane Elastomers ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
108
|
Du Y, Liu X, Dong X, Yin Z. A review on marine plastisphere: biodiversity, formation, and role in degradation. Comput Struct Biotechnol J 2022; 20:975-988. [PMID: 35242288 PMCID: PMC8861569 DOI: 10.1016/j.csbj.2022.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
The pollution of plastic waste has become an increasingly serious environmental crisis. Recently, plastic has been detected in various kinds of environments, even in human tissues, which is an increasing threat to the ecosystems and humans. In the ocean, the plastic waste is eventually fragmentized into microplastics (MPs) under the disruption of physical and chemical processes. MPs are colonized by microbial communities such as fungi, diatoms, and bacteria, which form biofilms on the surface of the plastic called “plastisphere”. In this review, we summarize the studies related to microorganisms in the plastisphere in recent years and describe the microbial species in the plastisphere, mainly including bacteria, fungi, and autotrophs. Secondly, we explore the interactions between MPs and the plastisphere. The depth of MPs in the ocean and the nutrients in the surrounding seawater can have a great impact on the community structure of microorganisms in the plastisphere. Finally, we discuss the types of MP-degrading bacteria in the ocean, and use the “seed bank” theory to speculate on the potential sources of MP-degrading microorganisms. Challenges and future research prospects are also discussed.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
| | - Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, PR China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
- Corresponding author.
| |
Collapse
|
109
|
Abstract
Designed polyurethanes with degradable ester units all throughout the polymer backbone and quaternized ammonium units in the hard segment (tensile strength ∼30 MPa, elongation at break ∼1400%) show degradation in 35 days in industrial compost.
Collapse
Affiliation(s)
- Pin Hu
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Anil Kumar
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Reza Gharibi
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
110
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
111
|
He P, Ruan H, Wang C, Lu H. Mechanical Properties and Thermal Conductivity of Thermal Insulation Board Containing Recycled Thermosetting Polyurethane and Thermoplastic. Polymers (Basel) 2021; 13:polym13244411. [PMID: 34960962 PMCID: PMC8708046 DOI: 10.3390/polym13244411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
This study used a mechanochemical method to analyze the recycling mechanism of polyurethane foam and optimize the recycling process. The use of mechanochemical methods to regenerate the polyurethane foam powder breaks the C–O bond of the polyurethane foam and greatly enhances the activity of the powder. Based on orthogonal test design, the mesh, proportion, temperature, and time were selected to produce nine recycled boards by heat pressing. Then, the influence of four factors on the thermal conductivity and tensile strength of the recycled board was analyzed. The results show that 120 mesh polyurethane foam powder has strong activity, and the tensile strength can reach 9.913 Mpa when it is formed at 205 °C and 40 min with 50% PP powder. With the help of the low thermal conductivity of the polyurethane foam, the thermal conductivity of the recycled board can reach 0.037 W/m·K at the parameter of 40 mesh, 80%, 185 °C, 30 min. This research provides an effective method for the recycling of polyurethane foam.
Collapse
Affiliation(s)
- Ping He
- Correspondence: ; Tel.: +86-177-0560-8398
| | | | | | | |
Collapse
|
112
|
Morinval A, Averous L. Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexis Morinval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg, Cedex 2, France
| |
Collapse
|
113
|
Trhlíková O, Vlčková V, Abbrent S, Valešová K, Kanizsová L, Skleničková K, Paruzel A, Bujok S, Walterová Z, Innemanová P, Halecký M, Beneš H. Microbial and abiotic degradation of fully aliphatic polyurethane foam suitable for biotechnologies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Luo K, Wang L, Tang J, Zeng X, Chen X, Zhang P, Zhou S, Li J, Zuo Y. Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair. J Mater Chem B 2021; 9:9191-9203. [PMID: 34698324 DOI: 10.1039/d1tb01554k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traditional shape memory polymers (SMPs) could avoid large volume trauma during implantation; however, for bone repair, scaffolds with high porosity and biomineralization are essential to promote bone regeneration. A novel porous composite scaffold with high biomineralization activity was developed by sequential gas foaming and a freeze-drying method. The results showed that the cross-linked block structure of the polymer matrix presented excellent shape memory properties, and osteogenesis was promoted by citrate functionalized amorphous calcium phosphate (CCACP). CCACP improved the mechanical strength of the scaffold, and the synergistic effect of CCACP and PEG promotes hydrophilicity and further promoted cell adhesion. Bending experiments indicated that the shape-memory effect of the scaffolds could be varied by varying the CCACP content. In addition, hydroxyapatite deposition was sped up as CCACP accelerated the mineralization of the scaffolds. Moreover, the result of the CCK-8 assessment suggested that composite scaffolds exhibited high biocompatibility, and the cells extended out abundant filopodia to adhere onto the scaffolds. In rat bone defect models, the obtained scaffolds promoted new bone formation compared to the control group. The developed composite scaffolds show potential for minimally invasive bone repair application.
Collapse
Affiliation(s)
- Kun Luo
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Li Wang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiajing Tang
- Research Center for Nano-biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiyang Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Xiaohu Chen
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Peicong Zhang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Shiyi Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Junfeng Li
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China.
| | - Yi Zuo
- Research Center for Nano-biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
115
|
A Brief Introduction to the Polyurethanes According to the Principles of Green Chemistry. Processes (Basel) 2021. [DOI: 10.3390/pr9111929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Polyurethanes are most often called “green” when they contain natural, renewable additives in their network or chemical structure, such as mono- and polysaccharides, oils (mainly vegetable oils), polyphenols (e.g., lignins, tannins), or various compounds derived from agro-waste white biotechnology (Principle 7). This usually results in these polyurethanes obtained from less hazardous substrates (Principle 4). Appropriate modification of polyurethanes makes them susceptible to degradation, and the use of appropriate processes allows for their recycling (Principle 10). However, this fulfilment of other principles also predisposes them to be green. As in the production of other polymer materials, the synthesis of polyurethanes is carried out with the use of catalysts (such as biocatalysts) (Principle 9) with full control of the course of the reaction (Principle 11), which allows maximization of the atomic economy (Principle 2) and an increase in energy efficiency (Principle 6) while minimizing the risk of production waste (Principle 1). Moreover, traditional substrates in the synthesis of polyurethanes can be replaced with less toxic ones (e.g., in non-isocyanate polyurethanes), which, at the same time, leads to a non-toxic product (Principle 3, Principle 5). In general, there is no need for blocking compounds to provide intermediates in the synthesis of polyurethanes (Principle 8). Reasonable storage of substrates, their transport, and the synthesis of polyurethanes guarantee the safety and the prevention of uncontrolled reactions (Principle 12). This publication is a summary of the achievements of scientists and technologists who are constantly working to create ideal polyurethanes that do not pollute the environment, and their synthesis and use are consistent with the principles of sustainable economy.
Collapse
|
116
|
Vargas-Suárez M, Savín-Gámez A, Domínguez-Malfavón L, Sánchez-Reyes A, Quirasco-Baruch M, Loza-Tavera H. Exploring the polyurethanolytic activity and microbial composition of landfill microbial communities. Appl Microbiol Biotechnol 2021; 105:7969-7980. [PMID: 34554272 DOI: 10.1007/s00253-021-11571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The microbial composition of polyurethane degrading communities has been barely addressed, and it is unknown if microenvironmental conditions modify its composition, affecting its biodegradative capacity. The polyurethanolytic activity and taxonomic composition of five microbial communities, selected by enrichment in the polyether-polyurethane-acrylic (PE-PU-A) coating PolyLack®, from deteriorated PU foams collected at different microenvironments in a municipal landfill (El Bordo Poniente, BP) were explored. All BP communities grew similarly in PolyLack® as the sole carbon source, although BP1, BP4, and BP5 showed better performance than BP2 and BP7. FTIR spectroscopy showed that ester, urethane, ether, aromatic and aliphatic groups, and the acrylate component were targets of the biodegradative activity. Extracellular esterase activity was higher at 5 days of cultivation and decreased at 21 days, while urease activity showed the opposite. Microbial composition analysis, assessed by 16S rDNA V3 region PCR-DGGE, revealed a preponderance of Rhizobiales and Micrococcales. The reported PU-degrading genera Paracoccus, Acinetobacter, and Pseudomonas were identified. In contrast, Advenella, Bordetella, Microbacterium, Castellaniella, and Populibacterium, some of them xenobiotics degraders, can be considered potentially PU-degrading genera. Correspondence analysis identified independent groups for all communities, except the BP4 and BP5. Although partial taxonomic redundancy was detected, unique OTUs were identified, e.g., three members of the Weeksellaceae family were present only in the BP4/BP5 group. These results suggest that the microenvironmental conditions where the landfill microbial communities were collected shaped their taxonomical composition, impacting their PE-PU biodegradative capacities. These BP communities represent valuable biological material for the treatment of PU waste and other xenobiotics. KEY POINTS: • Landfill microbial communities display slightly different capacities for growing in polyether-polyurethane-acrylic. • Ester, urethane, ether, aromatic, aliphatic, and acrylate groups were attacked. • Esterase activity was more significant at early culture times while urease activity at latter. • Landfill microenvironments shape partial taxonomical redundancy in the communities. • Best communities' performance seems to be related to unique members' composition.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Alba Savín-Gámez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Lilianha Domínguez-Malfavón
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco-Baruch
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico.
| |
Collapse
|
117
|
Ballerstedt H, Tiso T, Wierckx N, Wei R, Averous L, Bornscheuer U, O’Connor K, Floehr T, Jupke A, Klankermayer J, Liu L, de Lorenzo V, Narancic T, Nogales J, Perrin R, Pollet E, Prieto A, Casey W, Haarmann T, Sarbu A, Schwaneberg U, Xin F, Dong W, Xing J, Chen GQ, Tan T, Jiang M, Blank LM. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:99. [PMID: 34458054 PMCID: PMC8380104 DOI: 10.1186/s12302-021-00536-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/31/2021] [Indexed: 05/16/2023]
Abstract
This article introduces the EU Horizon 2020 research project MIX-UP, "Mixed plastics biodegradation and upcycling using microbial communities". The project focuses on changing the traditional linear value chain of plastics to a sustainable, biodegradable based one. Plastic mixtures contain five of the top six fossil-based recalcitrant plastics [polyethylene (PE), polyurethane (PUR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS)], along with upcoming bioplastics polyhydroxyalkanoate (PHA) and polylactate (PLA) will be used as feedstock for microbial transformations. Consecutive controlled enzymatic and microbial degradation of mechanically pre-treated plastics wastes combined with subsequent microbial conversion to polymers and value-added chemicals by mixed cultures. Known plastic-degrading enzymes will be optimised by integrated protein engineering to achieve high specific binding capacities, stability, and catalytic efficacy towards a broad spectrum of plastic polymers under high salt and temperature conditions. Another focus lies in the search and isolation of novel enzymes active on recalcitrant polymers. MIX-UP will formulate enzyme cocktails tailored to specific waste streams and strives to enhance enzyme production significantly. In vivo and in vitro application of these cocktails enable stable, self-sustaining microbiomes to convert the released plastic monomers selectively into value-added products, key building blocks, and biomass. Any remaining material recalcitrant to the enzymatic activities will be recirculated into the process by physicochemical treatment. The Chinese-European MIX-UP consortium is multidisciplinary and industry-participating to address the market need for novel sustainable routes to valorise plastic waste streams. The project's new workflow realises a circular (bio)plastic economy and adds value to present poorly recycled plastic wastes where mechanical and chemical plastic recycling show limits.
Collapse
Affiliation(s)
- Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Research Center Jülich, Wilhelm Johnen Straße, 52428 Jülich, Germany
| | - Ren Wei
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Uwe Bornscheuer
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kevin O’Connor
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tilman Floehr
- everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Luo Liu
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Victor de Lorenzo
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Haarmann
- AB Enzymes GmbH, Feldbergstraße 78, 64293 Darmstadt, Germany
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Jiamin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190 PR China
| | - Guo-Qiang Chen
- School of Life Sciences (SLS), Tsinghua University, Beijing, 100084 PR China
| | - Tianwei Tan
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
118
|
Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, Koutra E, Metwally MA, Kornaros M, Sun J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146590. [PMID: 34030345 DOI: 10.1016/j.scitotenv.2021.146590] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | | | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
119
|
Tai NL, Ghasemlou M, Adhikari R, Adhikari B. Starch-based isocyanate- and non-isocyanate polyurethane hybrids: A review on synthesis, performance and biodegradation. Carbohydr Polym 2021; 265:118029. [PMID: 33966823 DOI: 10.1016/j.carbpol.2021.118029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The challenges related to the persistence of plastics in natural ecosystems fostered strong interest in developing biodegradable bioplastics. Among natural biopolymers, starch gained both academic and industrial interest owing to its impressive physicochemical properties. The use of starch in production of polyurethane (PU) composites not only yields PUs with outstanding mechanical properties but also makes the final PU products biodegradable. The hydrophilic nature of starch limits its dispersion in hydrophobic PU polymers, although it is a significant benefit in creating starch-embedded non-isocyanate polyurethane (NIPU) composites. We present a comprehensive overview to highlight important strategies that are used to improve the compatibility of starch with various PU matrices. This review also gives an overview of the recent advances in the synthesis of starch-NIPU hybrids. Moreover, we aim to deliver critical insight into strategies that boost the biodegradation characteristics of PUs along with a discussion on various methods to assess their biodegradation.
Collapse
Affiliation(s)
- Nyok Ling Tai
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia
| | - Mehran Ghasemlou
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia.
| | - Raju Adhikari
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia
| | - Benu Adhikari
- School of Science, College of Science, Technology, Engineering & Mathematics (STEM), RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
120
|
Magnin A, Entzmann L, Pollet E, Avérous L. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 132:23-30. [PMID: 34304019 DOI: 10.1016/j.wasman.2021.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Development of green, efficient and profitable recycling processes for plastic material will contribute to reduce the expanding plastic pollution and microplastics accumulation in the environment. Polyurethanes (PU) are versatile polymers with a large range of chemical compositions and structures. This variability increases the complexity of PU waste management. Biological recycling researchers have recently demonstrated great interest in polyethylene terephthalate. The adaptation of this route towards producing polyurethanes requires the discovery of enzymes that are able to depolymerize a large variety of PU. A laccase mediated system (LMS) was tested on four representative PU models, with different structures (foams and thermoplastics), and chemical compositions (polyester- and polyether-based PU). Size exclusion chromatography was performed on the thermoplastics and this revealed a significant reduction in the molar masses after 18 days of incubation at 37 °C. Degradation of foams under the same conditions was demonstrated by microscopy and compression assay for both polyester- and polyether-based PU. This study represents a major breakthrough in PU degradation, as it is the first time that enzymatic degradation has been clearly demonstrated on a polyether-based PU foam. This work is a step forward in the development of a sustainable recycling pathway, adapted to a large variety of PU materials.
Collapse
Affiliation(s)
- Audrey Magnin
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Lisa Entzmann
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
121
|
Allami T, Alamiery A, Nassir MH, Kadhum AH. Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications. Polymers (Basel) 2021; 13:2467. [PMID: 34372071 PMCID: PMC8347130 DOI: 10.3390/polym13152467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU-polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU-clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg's) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU-CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.
Collapse
Affiliation(s)
- Tyser Allami
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (A.A.); (M.H.N.); (A.H.K.)
| | | | | | | |
Collapse
|
122
|
Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE, Román-Leshkov Y, Wierckx N, Beckham GT. Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 2021. [DOI: 10.1038/s41929-021-00648-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
123
|
Hu K, Tian W, Yang Y, Nie G, Zhou P, Wang Y, Duan X, Wang S. Microplastics remediation in aqueous systems: Strategies and technologies. WATER RESEARCH 2021; 198:117144. [PMID: 33933920 DOI: 10.1016/j.watres.2021.117144] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the ubiquitous detection and accumulation of microplastics (MPs) in the aquatic environment have raised significant concerns on water security and long-term ecological impacts all around the world. Nevertheless, critical reviews on strategic control and effective remediation of MPs in the aqueous phase are still lacking. In this work, we summarise the origins and types of MPs, and then introduce the methodologies for extraction, identification and quantification. More importantly, we for the first time provide a comprehensive overview of the recent advances in the emerging MPs removal and transformation technologies. Except for biodegradation, this review presents new applications of advanced oxidation processes (AOPs) for MPs degradation and utilisation, including photocatalysis, photoreforming and Fenton-like reactions. Physical or catalytic thermal treatment can transform plastics into value-added nanocarbons or hydrocarbons. These transformation technologies demonstrate great potentials in dealing with MPs. The review will guide researchers to further explore the feasible approaches and develop new strategies for advanced control and remediation of MPs in the future.
Collapse
Affiliation(s)
- Kunsheng Hu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA 5005, Australia
| | - Yangyang Yang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA 5005, Australia
| | - Gang Nie
- Department of Environmental Science and Engineering, Wuhan University, Wuhan 430079, China
| | - Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
124
|
Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim EA, Zhu D, Sun J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144719. [PMID: 33548729 DOI: 10.1016/j.scitotenv.2020.144719] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
Accumulation of plastic wastes has been recently recognized as one of the most critical environmental challenges, affecting all life forms, natural ecosystems and economy, worldwide. Under this threat, finding alternative environmentally-friendly solutions, such as biodegradation instead of traditional disposal, is of utmost importance. However, up to date, there is limited knowledge on plastic biodegradation mechanisms and efficiency. From this point of view, the purpose of this review is to highlight the negative effects of the accumulation of the most conventional plastic waste (polyethylene, polypropylene, polystyrene, polyvinylchloride, polyethylene terephthalate and polyurethane) on the environment and to present their degradability potential through abiotic and biotic processes. Furthermore, the ability of different microbial species for degradation of these polymers is thoroughly discussed. The present review also addresses the contribution of invertebrates, such as insects, in plastic degradation process, highlighting the vital role that they could play in the future. In total, a schematic pathway of an innovative approach to improve the disposal of plastic wastes is proposed, with view to establishing an effective and sustainable practice for plastic waste management.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
125
|
Ackermann YS, Li WJ, Op de Hipt L, Niehoff PJ, Casey W, Polen T, Köbbing S, Ballerstedt H, Wynands B, O'Connor K, Blank LM, Wierckx N. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng 2021; 67:29-40. [PMID: 33965615 DOI: 10.1016/j.ymben.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h-1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate-1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.
Collapse
Affiliation(s)
- Yannic S Ackermann
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Wing-Jin Li
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Leonie Op de Hipt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - William Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Kevin O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
126
|
Affiliation(s)
- Pengxiang Si
- Department of Chemical Engineering Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Biotechnology and Bioengineering, University of Waterloo Waterloo Ontario Canada
| | - Boxin Zhao
- Department of Chemical Engineering Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Biotechnology and Bioengineering, University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
127
|
Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, Lam PKS. Understanding plastic degradation and microplastic formation in the environment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116554. [PMID: 33529891 DOI: 10.1016/j.envpol.2021.116554] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Plastic waste are introduced into the environment inevitably and their exposure in the environment causes deterioration in mechanical and physicochemical properties and leads to the formation of plastic fragments, which are considered as microplastics when their size is < 5 mm. In recent years, microplastic pollution has been reported in all kinds of environments worldwide and is considered a potential threat to the health of ecosystems and humans. However, knowledge on the environmental degradation of plastics and the formation of microplastics is still limited. In this review, potential hotspots for the accumulation of plastic waste were identified, major mechanisms and characterization methods of plastic degradation were summarized, and studies on the environmental degradation of plastics were evaluated. Future research works should further identify the key environmental parameters and properties of plastics affecting the degradation in order to predict the fate of plastics in different environments and facilitate the development of technologies for reducing plastic pollution. Formation and degradation of microplastics, including nanoplastics, should receive more research attention to assess their fate and ecological risks in the environment more comprehensively.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, University of Tehran, Karaj, 31587-77878, Iran; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - James K H Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
128
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
129
|
Amobonye A, Bhagwat P, Singh S, Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143536. [PMID: 33190901 DOI: 10.1016/j.scitotenv.2020.143536] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 05/07/2023]
Abstract
Plastic polymers with different properties have been developed in the last 150 years to replace materials such as wood, glass and metals across various applications. Nevertheless, the distinct properties which make plastic desirable for our daily use also threaten our planet's sustainability. Plastics are resilient, non-reactive and most importantly, non-biodegradable. Hence, there has been an exponential increase in plastic waste generation, which has since been recognised as a global environmental threat. Plastic wastes have adversely affected life on earth, primarily through their undesirable accumulation in landfills, leaching into the soil, increased greenhouse gas emission, etc. Even more damaging is their impact on the aquatic ecosystems as they cause entanglement, ingestion and intestinal blockage in aquatic animals. Furthermore, plastics, especially in the microplastic form, have also been found to interfere with chemical interaction between marine organisms, to cause intrinsic toxicity by leaching, and by absorbing persistent organic contaminants as well as pathogens. The current methods for eliminating these wastes (incineration, landfilling, and recycling) come at massive costs, are unsustainable, and put more burden on our environment. Thus, recent focus has been placed more on the potential of biological systems to degrade synthetic plastics. In this regard, some insects, bacteria and fungi have been shown to ingest these polymers and convert them into environmentally friendly carbon compounds. Hence, in the light of recent literature, this review emphasises the multifaceted roles played by microorganisms in this process. The current understanding of the roles played by actinomycetes, algae, bacteria, fungi and their enzymes in enhancing the degradation of synthetic plastics are reviewed, with special focus on their modes of action and probable enzymatic mechanisms. Besides, key areas for further exploration, such as the manipulation of microorganisms through molecular cloning, modification of enzymatic characteristics and metabolic pathway design, are also highlighted.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | - Prashant Bhagwat
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
130
|
Zhu B, Wang D, Wei N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol 2021; 40:22-37. [PMID: 33676748 DOI: 10.1016/j.tibtech.2021.02.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Dong Wang
- Department of Computer Science and Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
131
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
132
|
Johnson AN, Barlow DE, Kelly AL, Varaljay VA, Crookes‐Goodson WJ, Biffinger JC. Current progress towards understanding the biodegradation of synthetic condensation polymers with active hydrolases. POLYM INT 2020. [DOI: 10.1002/pi.6131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Daniel E Barlow
- Chemistry Division Naval Research Laboratory Washington, DC USA
| | | | - Vanessa A Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate Air Force Research Laboratory Wright‐Patterson Air Force Base OH USA
| | - Wendy J Crookes‐Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate Air Force Research Laboratory Wright‐Patterson Air Force Base OH USA
| | | |
Collapse
|
133
|
Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Natl Acad Sci U S A 2020; 117:25476-25485. [PMID: 32989159 PMCID: PMC7568301 DOI: 10.1073/pnas.2006753117] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deconstruction of recalcitrant polymers, such as cellulose or chitin, is accomplished in nature by synergistic enzyme cocktails that evolved over millions of years. In these systems, soluble dimeric or oligomeric intermediates are typically released via interfacial biocatalysis, and additional enzymes often process the soluble intermediates into monomers for microbial uptake. The recent discovery of a two-enzyme system for polyethylene terephthalate (PET) deconstruction, which employs one enzyme to convert the polymer into soluble intermediates and another enzyme to produce the constituent PET monomers (MHETase), suggests that nature may be evolving similar deconstruction strategies for synthetic plastics. This study on the characterization of the MHETase enzyme and synergy of the two-enzyme PET depolymerization system may inform enzyme cocktail-based strategies for plastics upcycling. Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.
Collapse
|
134
|
Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100513] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
135
|
Kemona A, Piotrowska M. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers (Basel) 2020; 12:E1752. [PMID: 32764494 PMCID: PMC7464512 DOI: 10.3390/polym12081752] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Growing water and land pollution, the possibility of exhaustion of raw materials and resistance of plastics to physical and chemical factors results in increasing importance of synthetic polymers waste recycling, recovery and environmentally friendly ways of disposal. Polyurethanes (PU) are a family of versatile synthetic polymers with highly diverse applications. They are class of polymers derived from the condensation of polyisocyanates and polyalcohols. This paper reports the latest developments in the field of polyurethane disposal, recycling and recovery. Various methods tested and applied in recent years have proven that the processing of PU waste can be economically and ecologically beneficial. At the moment mechanical recycling and glycolysis are the most important ones. Polyurethanes' biological degradation is highly promising for both post-consumer and postproduction waste. It can also be applied in bioremediation of water and soil contaminated with polyurethanes. Another possibility for biological methods is the synthesis of PU materials sensitive to biological degradation. In conclusion, a high diversity of polyurethane waste types and derivation results in demand for a wide range of methods of processing. Furthermore, already existing ones appear to be enough to state that the elimination of not reprocessed polyurethane waste in the future is possible.
Collapse
Affiliation(s)
- Aleksandra Kemona
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 71/173, 90-924 Łódź, Poland;
| | | |
Collapse
|
136
|
Ru J, Huo Y, Yang Y. Microbial Degradation and Valorization of Plastic Wastes. Front Microbiol 2020; 11:442. [PMID: 32373075 PMCID: PMC7186362 DOI: 10.3389/fmicb.2020.00442] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
A growing accumulation of plastic wastes has become a severe environmental and social issue. It is urgent to develop innovative approaches for the disposal of plastic wastes. In recent years, reports on biodegradation of synthetic plastics by microorganisms or enzymes have sprung up, and these offer a possibility to develop biological treatment technology for plastic wastes. In this review, we have comprehensively summarized the microorganisms and enzymes that are able to degrade a variety of generally used synthetic plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET). In addition, we have highlighted the microbial metabolic pathways for plastic depolymerization products and the current attempts toward utilization of such products as feedstocks for microbial production of chemicals with high value. Taken together, these findings will contribute to building a conception of bio-upcycling plastic wastes by connecting the biodegradation of plastic wastes to the biosynthesis of valuable chemicals in microorganisms. Last, but not least, we have discussed the challenges toward microbial degradation and valorization of plastic wastes.
Collapse
Affiliation(s)
- Jiakang Ru
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yixin Huo
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yu Yang
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
137
|
Bardoňová L, Mamulová Kutláková K, Kotzianová A, Kulhánek J, Židek O, Velebný V, Tokarský J. Electrospinning of Fibrous Layers Containing an Antibacterial Chlorhexidine/Kaolinite Composite. ACS APPLIED BIO MATERIALS 2020; 3:3028-3038. [DOI: 10.1021/acsabm.0c00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lenka Bardoňová
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kateřina Mamulová Kutláková
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Center of Advanced Innovation Technologies, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Adéla Kotzianová
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jaromír Kulhánek
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Ondřej Židek
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jonáš Tokarský
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Institute of Environmental Technology, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| |
Collapse
|