101
|
Baba SA, Ashraf N. Pharmacological Importance of Crocus sativus Apocarotenoids. APOCAROTENOIDS OF CROCUS SATIVUS L: FROM BIOSYNTHESIS TO PHARMACOLOGY 2016. [DOI: 10.1007/978-981-10-1899-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
102
|
Mard SA, Pipelzadeh MH, Teimoori A, Neisi N, Mojahedin S, Khani MZS, Ahmadi I. Protective activity of crocin against indomethacin-induced gastric lesions in rats. J Nat Med 2016; 70:62-74. [PMID: 26439477 DOI: 10.1007/s11418-015-0938-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
The present study was designed to elucidate the mechanism(s) of the gastro-protective effect of crocin against indomethacin-induced gastric lesions. Crocin or pantoprazole was administered to rats 30 min before indomethacin. Five hours later, the animals were killed and their stomachs were removed and examined macroscopically. Samples of gastric mucosa were collected for microscopic evaluation, mRNA expression of caspase-3, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 was quantified by RT-PCR, and protein levels of COX-1, COX-2, iNOS and caspase-3 were assessed by Western blotting. The pH, volume of gastric effluent and antioxidant activity were measured in 5 separate groups of rats following pylorus ligation. Indomethacin induced significant increases in mRNA and protein expression of iNOS and caspase-3 and increased MDA levels, and reduced the pH of the gastric effluent and protein and mRNA expression of COX-2 and protein expression of COX-1 and mucus content associated with gastric ulceration. Crocin and pantoprazole significantly inhibited mRNA and protein expression of iNOS, caspase-3 and MDA, and reduced mucus content induced by indomethacin. However, unlike pantoprazole, crocin failed to increase COX-1 and pH, but had variable increasing effects on mRNA and protein expression of COX-2. Macroscopic and microscopic observations showed that mucosal erosions induced by indomethacin were significantly inhibited by pantoprazole and crocin. These findings suggest that crocin exerts its gastro-protective effects mainly by inhibition of MDA, reduction in iNOS and caspase-3, and inhibition of the reduction in mucus content induced by indomethacin. Crocin is a novel agent that has potential in the prevention of ulceration induced by NSAIDs.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Physiology Research Center (PRC), Research center for Infectious Diseases of Digestive System and Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Hasan Pipelzadeh
- Toxicology Research Center and Department of Pharmacology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Research center for Infectious Diseases of Digestive System and Department of Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Research center for Infectious Diseases of Digestive System and Department of Virology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Simindokht Mojahedin
- Physiology Research Center (PRC), Research center for Infectious Diseases of Digestive System and Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Zolfaghari Sabzeh Khani
- Physiology Research Center (PRC), Research center for Infectious Diseases of Digestive System and Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iraj Ahmadi
- Physiology Research Center (PRC), Research center for Infectious Diseases of Digestive System and Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
103
|
Mehrnia MA, Jafari SM, Makhmal-Zadeh BS, Maghsoudlou Y. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. Int J Biol Macromol 2015; 84:261-7. [PMID: 26708427 DOI: 10.1016/j.ijbiomac.2015.12.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Spontaneous emulsification may be used for encapsulating bioactive compounds in food and pharmaceutical industry. It has several advantages over high energy and other low energy methods including, protecting sensitive compounds against severe conditions of high energy method and its ability to minimize surfactant, removal of cosurfactant and thermal stability compared with other low energy methods. In this study, we examined possibility of encapsulating highly soluble crocin in W/O micro-emulsions using spontaneous method which further could be used for making double emulsions. Nonionic surfactants of Span 80 and polyglycerol polyricinoleate (PGPR) were used for making micro-emulsions that showed the high potential of PGPR for spontaneous method. Surfactant to water ratio (SWR%) was evaluated to find the highest amount of aqueous phase which can be dispersed in organic phase. Droplet size decreased by increasing SWR toward the SWR=100% which had the smallest droplet size and then increased at higher levels of surfactant. By increasing SWR, shear viscosity increased which showed the high effect of PGPR on rheological properties. This study shows in addition to W/O micro-emulsions, spontaneous method could be used for preparing stable O/W micro-emulsions.
Collapse
Affiliation(s)
- Mohammad-Amin Mehrnia
- Faculty of Food Science, University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid-Mahdi Jafari
- Faculty of Food Science, University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Cereals Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Behzad S Makhmal-Zadeh
- Nanotechnology Research Center, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Yahya Maghsoudlou
- Faculty of Food Science, University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
104
|
Neuroprotective Effect of Natural Products on Peripheral Nerve Degeneration: A Systematic Review. Neurochem Res 2015; 41:647-58. [DOI: 10.1007/s11064-015-1771-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
|
105
|
Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58. [DOI: 10.1016/j.pbb.2015.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
106
|
Liu T, Chu X, Wang H, Zhang X, Zhang Y, Guo H, Liu Z, Dong Y, Liu H, Liu Y, Chu L, Zhang J. Crocin, a carotenoid component of Crocus cativus, exerts inhibitory effects on L-type Ca(2+) current, Ca(2+) transient, and contractility in rat ventricular myocytes. Can J Physiol Pharmacol 2015; 94:302-8. [PMID: 26674933 DOI: 10.1139/cjpp-2015-0214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crocin, a carotenoid component of Crocus sativus L. belonging to the Iridaceae family, has demonstrated cardioprotective effects. To investigate the cellular mechanisms of these cardioprotective effects, here we studied the influence of crocin on L-type Ca(2+)current (I(Ca-L)), intracellular Ca(2+) ([Ca(2+)]i), and contraction of isolated rat cardiomyocytes by using the whole-cell patch-clamp technique and video-based edge detection and dual excitation fluorescence photomultiplier systems. Crocin inhibited I(Ca-L) in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) of 45 μmol/L and the maximal inhibitory effect of 72.195% ± 1.54%. Neither current-voltage relationship of I(Ca-L), reversal potential of I(Ca-L), nor the activation/inactivation of I(Ca-L) was significantly changed. Crocin at 1 μmol/L reduced cell shortening by 44.64% ± 2.12% and the peak value of the Ca(2+) transient by 23.66% ± 4.52%. Crocin significantly reduced amplitudes of myocyte shortening and [Ca(2+)]i with an increase in the time to reach 10% of the peak (Tp) and a decrease in the time to 10% of the baseline (Tr). Thus, the cardioprotective effects of crocin may be attributed to the attenuation of [Ca(2+)]i through the inhibition of I(Ca-L) in rat cardiomyocytes and negative inotropic effects on myocardial contractility.
Collapse
Affiliation(s)
- Tao Liu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Xi Chu
- b The Fourth Hospital of Hebei Medical University, No. 12, Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Hua Wang
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Xuan Zhang
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yuanyuan Zhang
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Hui Guo
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Zhenyi Liu
- c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Yongsheng Dong
- d Intensive Care Unit, Air Force General Hospital, No. 30, Fucheng Road, Haidian 100142, Beijing, China
| | - Hongying Liu
- e Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shijiazhuang, China
| | - Yang Liu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China
| | - Li Chu
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China.,c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- a Hebei Medical University, No. 361, East Zhongshan Road, Shijiazhuang 050017, Hebei, China.,c Hebei University of Chinese Medicine, No. 3, Xingyuan Road, Shijiazhuang 050200, Hebei, China
| |
Collapse
|
107
|
Mard SA, Nikraftar Z, Farbood Y, Mansouri E. A preliminary study of the anti-inflammatory and anti-apoptotic effects of crocin against gastric ischemia-reperfusion injury in rats. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000300015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of the present study was to investigate the protective effect of crocin on gastric mucosal lesions caused by ischemia-reperfusion (I/R) injury in rats. Thirty-two male rats were randomly divided into sham, I/R, I/R + crocin pretreatment and crocin alone groups. To induce I/R lesions, the celiac artery was clamped for 30 min, and the clamp was then removed to allow reperfusion for 3 h. Crocin-pretreated rats received crocin (15 mg/kg, i.p.) 30 min prior to the induction of I/R injury. Samples of gastric mucosa were collected to quantify the protein expression of caspase-3, an apoptotic factor, and inducible nitric oxide synthase (iNOS), a pro-inflammatory protein, by Western blot. Pretreatment with crocin decreased the total area of gastric lesions and decreased the protein expression levels of caspase-3 and iNOS induced by I/R injury. Our findings showed a protective effect of crocin in gastric mucosa against I/R injury. This effect of crocin was mainly mediated by reducing the protein expression of iNOS and caspase-3.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Zahra Nikraftar
- Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Yaghoob Farbood
- Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Esrafil Mansouri
- Ahvaz Jundishapur University of Medical Sciences, Iran; Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
108
|
Crocin prevention of anemia-induced changes in structural and functional parameters of mice testes. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
109
|
Xiong Y, Wang J, Yu H, Zhang X, Miao C. Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol 2015; 37:236-43. [PMID: 25753844 DOI: 10.3109/08923973.2015.1021356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Crocin, a diterpenoid glucoside, has multitudinous activities such as anti-inflammation, anti-allergy, anti-oxidation and relaxing smooth muscles. OBJECTIVE In this study, the potential of crocin as an anti-asthma agent was investigated in a murine model. MATERIALS AND METHODS BALB/c mice were sensitized and challenged by ovalbumin (OVA) to induce allergic airway inflammation, with crocin administered one hour before every OVA challenge. Airway hyper-reactivity was evaluated by lung function analysis systems. Leukocyte counts in bronchoalveolar lavage fluid (BALF) were measured by a hemocytometer and Diff-Quick-stained smears. Lung tissues were stained with hematoxylin-eosin, Congo red and methylene blue for histopathological inspection. Inflammatory mediators in serum, BALF and lung were measured by ELISA or RT-PCR. Effects of crocin on MAPK signaling pathways were investigated by western blot analysis. RESULTS Crocin significantly suppressed airway inflammation and hyper-reactivity, reduced levels of BALF interleukin (IL-4), IL-5, IL-13 and tryptase, lung eosinophil peroxidase and serum OVA-specific IgE, and inhibited the expression of lung eotaxin, p-ERK, p-JNK and p-p38 in the OVA-challenged mice. CONCLUSIONS These results demonstrated that the suppression of crocin on airway inflammation and hyper-reactivity in a murine model, thus crocin might have a great potential to be a candidate for the treatment of asthma.
Collapse
Affiliation(s)
- Youyi Xiong
- College of Food and Drug, Anhui Science and Technology University , Fengyang, Anhui , China and
| | | | | | | | | |
Collapse
|
110
|
Arjunolic acid, a pentacyclic triterpenoidal saponin of Terminalia arjuna bark protects neurons from oxidative stress associated damage in focal cerebral ischemia and reperfusion. Pharmacol Rep 2015; 67:890-5. [PMID: 26398381 DOI: 10.1016/j.pharep.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Arjunolic acid (AA), a pentacyclic triterpenoidal saponin of Terminalia arjuna is well recognized for its antioxidant properties. We proposed to evaluate its antioxidant potential against focal cerebral ischemia reperfusion (I/R) injury in rats subjected to middle cerebral artery occlusion (MCAO). METHODS In the present study, rats were randomly divided into a sham, MCAO, AA (10 and 20mg/kg) treated groups. Rats received their respective treatment orally by gavage for 7 days prior to MCAO. Rats were anaesthetized with ketamine (100mg/kg), xylazine (10mg/kg) and subjected to 2h occlusion and 22h reperfusion. Neurological deficit, brain water content and oxidative stress markers were measured after 22h of reperfusion. RESULTS Rats pretreated with AA showed significantly reduced neurological deficit score, infarct size. AA prevented neuronal damage induced by I/R by regulating the levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), protein carbonyl content and mitochondria generated reactive oxygen species. In addition, it also controlled the enzyme activities of Na(+)-K(+) ATPase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). CONCLUSIONS Pre-treatment with AA effectively prevented the cerebral I/R induced oxidative damage by virtue of its antioxidant potential. These results indicate that supplementation of AA may be beneficial in stroke prone population.
Collapse
|
111
|
Wang K, Zhang L, Rao W, Su N, Hui H, Wang L, Peng C, Tu Y, Zhang S, Fei Z. Neuroprotective effects of crocin against traumatic brain injury in mice: Involvement of notch signaling pathway. Neurosci Lett 2015; 591:53-58. [PMID: 25681620 DOI: 10.1016/j.neulet.2015.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 02/02/2023]
Abstract
This study investigated the protective effects and mechanisms of crocin, an extract of saffron, on brain damage after traumatic brain injury (TBI) in mice. C57BL/6 mice were subjected to controlled cortical impact (CCI)-induced TBI. Pretreatment with crocin (20mg/kg) had protective effects against TBI, demonstrated by improved neurological severity score (NSS) and brain edema, decreased microglial activation and release of several pro-inflammatory cytokines, and decreased cell apoptosis. TBI activated Notch signaling, as shown by upregulated levels of Notch intracellular domain (NICD) and Hes1 mRNA, and pretreatment with crocin further increased Notch activation. However, pretreatment with DAPT (100mg/kg), a gamma-secretase inhibitor, significantly suppressed crocin-induced activation of Notch signaling and attenuated the ability of crocin to protect mice against TBI-induced inflammation and apoptosis. Therefore, these results suggest that crocin has neuroprotective effects against TBI in mice, and these effects are at least partially dependent on activation of Notch signaling.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Rao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ning Su
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hao Hui
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Li Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Cheng Peng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yue Tu
- Department of Neurosurgery, Affiliated Hospital of Logistics University of Chinese Armed Police Forces, Chenglin Road, Tianjian 300162, PR China
| | - Sai Zhang
- Department of Neurosurgery, Affiliated Hospital of Logistics University of Chinese Armed Police Forces, Chenglin Road, Tianjian 300162, PR China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
112
|
The Effect of Crocus sativus L. and Its Constituents on Memory: Basic Studies and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:926284. [PMID: 25713594 PMCID: PMC4331467 DOI: 10.1155/2015/926284] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
Memory-related disorders are a common public health issue. Memory impairment is frequent in degenerative diseases (such as Alzheimer's disease and Parkinson disease), cerebral injuries, and schizophrenia. The dried stigma of the plant Crocus sativus L. (C. sativus), commonly known as saffron, is used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus and its constituents are implicated in cognition. Here we critically review advances in research of these emerging molecular targets for the treatment of memory disorders, and discuss their advantages over currently used cognitive enhancers as well remaining challenges. Current analysis has shown that C. sativus and its components might be a promising target for cognition impairments.
Collapse
|
113
|
Zhang Q, Guo P, Wang J, Yang M, Kong L. Gender-specific metabolic responses in focal cerebral ischemia of rats and Huang-Lian-Jie-Du decoction treatment. RSC Adv 2015. [DOI: 10.1039/c5ra19934d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR based metabolomics approach combined with biochemical, histological and immunohistochemistry observations was successfully applied to explore gender-specific metabolic differences in ischemic stroke and the protective effect of HLJDD.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Pingping Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Junsong Wang
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
114
|
Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats. Adv Pharm Bull 2014; 4:493-9. [PMID: 25671180 DOI: 10.5681/apb.2014.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic - stress induced oxidative stress damage of the brain, liver and kidneys. METHODS Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. RESULTS In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). CONCLUSION These observations indicate that saffron and its active constituent crocin can prevent chronic stress-induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress.
Collapse
Affiliation(s)
- Ahmad Reza Bandegi
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran. ; Laboratory of Endocrine Research, Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Behshid Ghadrdoost
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
115
|
Liang J, Li F, Wei C, Song H, Wu L, Tang Y, Jia J. Rationale and design of a multicenter, phase 2 clinical trial to investigate the efficacy of traditional Chinese medicine SaiLuoTong in vascular dementia. J Stroke Cerebrovasc Dis 2014; 23:2626-2634. [PMID: 25294055 DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/08/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vascular dementia (VaD) is the second most prevalent type of dementia among the aged, for whom limited pharmacologic options are available so far. SaiLuoTong capsule is a modern traditional Chinese medicine formula, which has been demonstrated to improve cognition of VaD by the reports of animal experiments and preliminary clinical trial. However, evaluation of this therapy in randomized multicenter trials is needed. In this article, we present the rationale and design of the SaiLuoTong in Vascular Dementia Study. METHODS This phase 2 clinical trial of SaiLuoTong among patients with mild-to-moderate VaD is a 26-week, multicenter, randomized, double-blind, placebo-controlled study with a subsequent 26-week, open-label extension. After a 4-week placebo run-in period, participants are centrally randomized (1:1:1) to 3 groups: group A receives SaiLuoTong 360 mg per day for 52 weeks; group B receives SaiLuoTong 240 mg per day for 52 weeks; group C (the control group) are further randomly assigned to 2 groups in a 1:1 ratio and receives placebo during the double-blind phase, then SaiLuoTong 360 mg per day or SaiLuoTong 240 mg per day during the extension phase. The primary outcome measures include the VaD assessment scale cognitive subscale and the Alzheimer Disease Cooperative Study-clinical global impression of change. Safety measures include body weight, vital signs, electrocardiography, laboratory tests, and records of adverse events. Assuming an attrition rate of 20%, at least 372 patients are required to obtain a statistical power of 80%. RESULTS The first patient was enrolled into the study in April 2012 and the completion of the study is expected in September 2014. CONCLUSIONS The rigorous methodology of the study will hopefully move forward the scientific evaluation of traditional Chinese medicine in treatment of VaD. The results of the present study will provide high-quality evidence on the effect of SaiLuoTong in patients with VaD and has the potential to establish a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Junhua Liang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Fang Li
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Cuibai Wei
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
116
|
Yaidikar L, Byna B, Thakur SR. Neuroprotective effect of punicalagin against cerebral ischemia reperfusion-induced oxidative brain injury in rats. J Stroke Cerebrovasc Dis 2014; 23:2869-2878. [PMID: 25282190 DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Punicalagin (PG) is a hydrolyzable polyphenol in Punica granatum. It has been previously reported that it has a protective effect against hypoxia-induced ischemia brain injury. It is a potent antioxidant. The present study is aimed to evaluate the antioxidant potential of PG against focal cerebral ischemia-reperfusion injury in rats subjected to middle cerebral artery occlusion (MCAO). METHODS Rats were randomly divided into sham, MCAO, PG-treated groups. PG (15 and 30 mg/kg) vehicle was administered orally for 7 days before MCAO. Rats were anesthetized with ketamine (100 mg/kg), xylazine (10 mg/kg), and subjected to 2 hours occlusion, and 22 hours reperfusion. Neurologic deficit, brain water content (BWC), histopathology changes, and oxidative stress markers were evaluated after 22 hours of reperfusion. In comparison with MCAO model group, treatment with PG significantly reduced the neurologic deficit scores and BWC. RESULTS PG-attenuated neuronal damage occurred by downregulating the levels of malondialdehyde, sodium-potassium adenosine triphosphatase activity, nitric oxide, protein carbonyl content, and mitochondria-generated reactive oxygen species and upregulating the superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, glutathione reductase activities. CONCLUSIONS Taken together, these results suggested that supplementation of PG treatment effectively ameliorates the cerebral ischemia/reperfusion induced oxidative damage by virtue of its antioxidant potential.
Collapse
Affiliation(s)
- Lavanya Yaidikar
- Division of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Bavya Byna
- Division of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India
| | - Santh Rani Thakur
- Division of Pharmacology, Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India.
| |
Collapse
|
117
|
Altinoz E, Oner Z, Elbe H, Cigremis Y, Turkoz Y. Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats. Hum Exp Toxicol 2014; 34:127-34. [DOI: 10.1177/0960327114538989] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The reactive oxygen species take role in pathogenesis of many diseases including hypoxia, hypercholesterolemia, atherosclerosis, nephropathy, hypertension, ischemia–reperfusion damage, and heart defects. The aim of this study was to evaluate whether crocin administration could protect kidney injury from oxidative stress in streptozotocin-induced diabetic rats. The rats were randomly divided into 3 groups each containing 10 animals as follows: group 1, control group; group 2, diabetes mellitus (DM) group; and group 3, DM + crocin group. At the end of the study, trunk blood was collected to determine the plasma levels of blood urea nitrogen (BUN) and creatinine (Cr). The kidney tissue was removed, and biochemical and histological changes were examined. Diabetes caused a significant increase in malondialdehyde (MDA) and xanthine oxidase (XO) activities and a decrease in glutathione (GSH) contents ( p < 0.01) when compared with control group in the rat kidneys. Crocin given to DM rats significantly decreased MDA ( p < 0.01) and XO ( p < 0.05) activities and elevated GSH ( p < 0.05) contents when compared with DM group. Plasma levels of BUN and Cr were significantly higher in the DM group when compared with the control group ( p < 0.01). Pretreatment of the DM animals with crocin decreased the high level of serum Cr and BUN. Control group was normal in histological appearance, but congestion, severe inflammation, tubular desquamation, tubular necrosis, and hydropic degeneration in tubular cells were observed in the DM group. Histopathological changes markedly reduced, and appearance of kidney was nearly similar to control group in DM + crocin group. Our results show that crocin could be beneficial in reducing diabetes-induced renal injury.
Collapse
Affiliation(s)
- E Altinoz
- Department of Medical Biochemistry, Health High School, Karabuk University, Karabuk, Turkey
| | - Z Oner
- Department of Anatomy, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Cigremis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Turkoz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
118
|
Gu Y, Chen J, Shen J. Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol 2014; 9:313-39. [PMID: 24562591 DOI: 10.1007/s11481-014-9525-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Stroke is a debilitating disease for which limited therapeutic approaches are available currently. Thus, there is an urgent need for developing novel therapies for stroke. Astrocytes, endothelial cells and pericytes constitute a neurovascular network for metabolic requirement of neurons. During ischemic stroke, these cells contribute to post-ischemic inflammation at multiple stages of ischemic cascades. Upon ischemia onset, activated resident microglia and astrocytes, and infiltrated immune cells release multiple inflammation factors including cytokines, chemokines, enzymes, free radicals and other small molecules, not only inducing brain damage but affecting brain repair. Recent progress indicates that anti-inflammation is an important therapeutic strategy for stroke. Given a long history with direct experience in the treatment of human subjects, Traditional Chinese Medicine and its related natural compounds are recognized as important sources for drug discovery. Last decade, a great progress has been made to identify active compounds from herbal medicines with the properties of modulating post-ischemic inflammation for neuroprotection. Herein, we discuss the inflammatory pathway in early stage and secondary response to injured tissues after stroke from initial artery occlusion to brain repair, and review the active ingredients from natural products with anti-inflammation and neuroprotection effects as therapeutic agents for ischemic stroke. Further studies on the post-ischemic inflammatory mechanisms and corresponding drug candidates from herbal medicine may lead to the development of novel therapeutic strategies in stroke treatment.
Collapse
Affiliation(s)
- Yong Gu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
119
|
Aras M, Altaş M, Meydan S, Nacar E, Karcıoğlu M, Ulutaş KT, Serarslan Y. Effects of ebselen on ischemia/reperfusion injury in rat brain. Int J Neurosci 2014; 124:771-6. [PMID: 24405262 DOI: 10.3109/00207454.2013.879581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. MATERIAL AND METHODS The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). RESULTS Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p < 0.001 and p < 0.01). Superoxide dismutase (SOD) activity was significantly lower in I/R group in comparison to both Sham (p < 0.001) and I/R+Ebselen (p < 0.01) groups. Similarly, SOD activity was decreased in I/R+Ebselen group when compared with Sham group (p < 0.001). Sham and I/R groups were similar in terms of nitric oxide (NO) levels. In contrast, the NO level was lower in I/R+Ebselen group when compared with Sham (p < 0.001) and I/R (p < 0.01) groups. There was no significant difference among the groups in terms of glutathione peroxidase and catalase activities. In histopathological examination, the brain tissues of rats that received Ebselen showed morphological improvement. CONCLUSION Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.
Collapse
Affiliation(s)
- M Aras
- 1Department of Neurosurgery, Tayfur Ata Sökmen Medical Faculty, Mustafa Kemal University , Hatay , Turkey
| | | | | | | | | | | | | |
Collapse
|
120
|
Georgiadou G, Grivas V, Tarantilis PA, Pitsikas N. Crocins, the active constituents of Crocus Sativus L., counteracted ketamine-induced behavioural deficits in rats. Psychopharmacology (Berl) 2014; 231:717-26. [PMID: 24096536 DOI: 10.1007/s00213-013-3293-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/07/2013] [Indexed: 01/08/2023]
Abstract
RATIONALE Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Crocins are among the active components of the plant Crocus sativus L. and were found to be effective in different models of psychiatric disorders including anxiety and depression. OBJECTIVES The present study was designed to investigate the ability of crocins to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. METHODS Crocin's ability to counteract hypermotility, stereotypies and ataxia induced by ketamine was evaluated in a motor activity cage. The ability of crocins to reverse ketamine-induced memory deficits was assessed using the novel object recognition task (NORT). The social interaction test was used in order to examine the effects of crocins on ketamine-induced social withdrawal. RESULTS Crocins (50 but not 30 mg/kg, i.p.) attenuated ketamine (25 mg/kg, i.p.)-induced hypermotility, stereotypies and ataxia. In a subsequent study, post-training administration of crocins (15 and 30 mg/kg, i.p.) reversed ketamine (3 mg/kg, i.p.)-induced performance deficits in the NORT. Finally, crocins (50 but not 30 mg/kg, i.p.) counteracted the ketamine (8 mg/kg, i.p.)-induced social isolation in the social interaction test. CONCLUSIONS Our findings show that crocins attenuated schizophrenia-like behavioural deficits induced by the non-competitive NMDA receptor antagonist ketamine in rats.
Collapse
Affiliation(s)
- Georgia Georgiadou
- Department of Pharmacology, School of Medicine, University of Thessaly, Biopolis, Mezourlo, 411-10, Larissa, Greece
| | | | | | | |
Collapse
|
121
|
Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology 2014; 81:166-75. [PMID: 24486383 DOI: 10.1016/j.neuropharm.2014.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxias (SCAs), caused by expanded CAG repeats encoding a long polyglutamine (polyQ) tract in the respective proteins, are characterized by the accumulation of intranuclear and cytoplasmic misfolded polyQ aggregation that leads to cell death. Suppression of aggregate formation can inhibit a wide range of downstream pathogenic events and is expected to be a therapeutic strategy for SCAs. Here we show the anti-aggregation potential of Gardenia jasminoides (G. jasminoides) and its components/metabolite geniposide, crocin, and genipin, in ATXN3/Q75-GFP 293 cells, a putative SCA3 cell model. We found the aggregation can be significantly prohibited by G. jasminoides, genipin, geniposide and crocin. Meanwhile, G. jasminoides, genipin, geniposide, and crocin up-regulated anti-oxidative markers NFE2L2, NQO1, GCLC and GSTP1, and reduced the production of reactive oxidative species (ROS) in the same cell models. All of them further inhibited the aggregation in neurally differentiated SH-SY5Y ATXN3/Q75-GFP cells. Our results demonstrate that G. jasminoides, genipin, geniposide and crocin work on polyQ-aggregation reduction by suppressing ROS. These findings indicate the therapeutic applications of G. jasminoides in treating SCAs. Furthermore, oxidative stress inhibition could be a good target for drug development of anti-polyQ aggregation.
Collapse
|
122
|
Vakili A, Einali MR, Bandegi AR. Protective Effect of Crocin against Cerebral Ischemia in a Dose-dependent Manner in a Rat Model of Ischemic Stroke. J Stroke Cerebrovasc Dis 2014. [DOI: 10.1016/j.jstrokecerebrovasdis.2012.10.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
123
|
Abstract
Saffron carotenoids, crocin and crocetin, have shown anticancer activity in various animal models of cancer and against different cancerous cell lines. The radical scavenging property and activation of antioxidant defense system are two well-known characteristics of these compounds. However, the results of the studies indicated other mechanisms could also be involved in this function. Insights into various molecular mechanisms of action for crocin and crocetin have been obtained in recent years. The results indicated that despite the structural similarity of crocin and crocetin, their anticancer effects may exert through different mechanisms. Particular interest concerns the ROS-dependent signaling pathways of crocetin. Saffron compounds are safe and may provide inexpensive therapy for treating cancer. They also have protective potential in targeting other disorders including diabetes, Alzheimer's and cardiovascular disease, cognitive deficits, ischemia-induced retinal damage, and many other diseases.
Collapse
Affiliation(s)
- S Zahra Bathaie
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran; Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
124
|
Feng J, He X, Zhou S, Peng F, Liu J, Hao L, Li H, Ao G, Yang S. Preparative separation of crocins and geniposide simultaneously from gardenia fruits using macroporous resin and reversed-phase chromatography. J Sep Sci 2013; 37:314-22. [DOI: 10.1002/jssc.201300601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/02/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jianyong Feng
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Xihui He
- School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing China
| | - Sheng Zhou
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Fang Peng
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
- School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing China
| | - Jiangyun Liu
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Lili Hao
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Heran Li
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Guizhen Ao
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| | - Shilin Yang
- College of Pharmaceutical Sciences; Soochow University; Suzhou China
| |
Collapse
|
125
|
Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 2013; 64:65-80. [PMID: 24275090 DOI: 10.1016/j.fct.2013.11.016] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
Since ancient times, saffron, the dried stigma of the plant Crocus sativus L. has been extensively used as a spice and food colorant; in folk medicine it has been reputed to be efficacious for the alleviation and treatment of ailments. In addition to the three founded major constituents including crocin, picrocrocin and safranal, presence of carotenoids, carbohydrates, proteins, anthocyanins, vitamins and minerals provide valuable insights into the health benefits and nutritional value of saffron. Of the carotenoids present in saffron, highly water-soluble crocin (mono and diglycosyl esters of a polyene dicarboxylic acid, named crocetin) is responsible for the majority of its color, and appears to possess various health-promoting properties, as an antioxidant, antitumor, memory enhancer, antidepressant, anxiolytic and aphrodisiac. It is also worth noting that the crocin principle of saffron exhibited high efficacy along with no major toxicity in experimental models. We would be remiss to not consider the great potential of saffron and crocin, which benefits the cuisine and health of human life throughout the world. The present study provides a comprehensive and updated report of empirical investigations on bioactivities and biological characteristics of crocin.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
126
|
Moallem SA, Afshar M, Etemad L, Razavi BM, Hosseinzadeh H. Evaluation of teratogenic effects of crocin and safranal, active ingredients of saffron, in mice. Toxicol Ind Health 2013; 32:285-91. [DOI: 10.1177/0748233713500818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saffron ( Crocus sativus) is a widely used food additive for its color and taste. Crocin and safranal are two main components of this plant. Numerous studies are underway to introduce saffron and its active ingredients as pharmacological agents. Safety assessments of these compounds are important parts of this endeavor. In this study, the effects of crocin and safranal administrations during embryogenesis have been investigated in mice. A total of 75 BALB/c pregnant mice were divided into six experimental and control groups. Four experimental groups received intraperitoneal injection of crocin (200 mg/kg or 600 mg/kg) daily or safranal (0.075 ml/kg or 0.225 ml/kg) on gestational days (GDs) 6 to 15. Control groups received normal saline or paraffin as solvents of crocin and safranal. Dams were dissected on GD18 and embryos were collected. Routine maternal and fetal parameters were recorded. Macroscopic observation of external malformations was also performed. Fetuses were then selected for double skeletal staining with alizarin red and alcian blue. All experimental groups caused significant decrease in length and weight of fetuses when compared with the control groups and revealed malformations such as minor skeletal malformations, mandible and calvaria malformations, and growth retardation. Minor skeletal malformations were the most commonly observed abnormality, which were statistically significant when compared with the control groups ( p < 0.05). The severities of malformations were comparable in the crocin- and safranal-treated groups. This study suggests that crocin or safranal can induce embryonic malformations when administered in pregnant mice. Due to the wide use of saffron, further elaborate studies to understand the malformation mechanisms of these ingredients are recommended.
Collapse
Affiliation(s)
- Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Afshar
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Etemad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
127
|
Shi GF, Wang GY, Chen XF. Screening of radical-scavenging natural neuroprotective antioxidants from Swertia chirayita. ACTA BIOLOGICA HUNGARICA 2013; 64:267-78. [PMID: 24013889 DOI: 10.1556/abiol.64.2013.3.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To detect and identify natural antioxidants in Swertia chirayita with protective effect against cerebral infarction, a screening method, using column chromatography and cerebral ischemia-reperfusion injury in rat, was developed. Seventeen compounds were purposefully separated and identified by Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, Ultraviolet Spectrum, and Mass Spectrometry. The purified compounds were further screened by radical scavenging activity and cerebral ischemia-reperfusion injury in rats. Two compounds showed apparent radical scavenging activity and neuroprotective activity. The two compounds were identified as 1-hydroxy-2,3,4,6-tetramethoxyxanthone and 1,5,8-trihydroxy-3-methoxy xanthone, and were preliminarily considered as primary natural neuroprotective antioxidants in Swertia chirayita. These two compounds (20 mg kg-1) markedly decreased infarct size to below 5%, and also caused a significant improvement of activities of superoxide dismutase (SOD) (92.90 ± 11.19 U ml-1), glutathione peroxidase (GSH-Px) (122.58 ± 12.31 μmol mg-1) and a decrease in the content of malondialdehyde (MDA) (3.98 ± 2.00 nmol ml-1) in serum. The two compounds showed strong capability for protective effects against cerebral damages induced by ischemia-reperfusion, and the protective effect may be related to the inhibition of lipid peroxidation. The use of the screening method based on tracing separation and ischemia reperfusion would provide a new way for detection of radical-scavenging and natural neuroprotective compounds from Swertia chirayita or complex matrices.
Collapse
Affiliation(s)
- Gao-Feng Shi
- Lanzhou University of Technology Department of Chemical Engineering, School of Petrochemical Engineering Lanzhou China Lanzhou University of Technology Instrumental Analysis & Research Center Lanzhou China
| | | | | |
Collapse
|
128
|
Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY. Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:270-80. [PMID: 23811213 DOI: 10.1016/j.jep.2013.06.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/18/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du-Decotion (HLJDD, Hwangryun-Hae-Dok-Decotion in Japan), an ancient antipyretic and detoxifying traditional Chinese medicine formula, was reported to have protective effect on ischemic stroke. AIM OF THE RESEARCH To investigate the therapeutic effect of HLJDD on ischemic stroke and explore its mode of action. MATERIAL AND METHODS A model of ischemic stroke in the rat was established after transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Rats were assigned randomly to groups of control, sham, transient ischemia/reperfusion (I/R), and three treatment groups by HLJDD at 2.5, 5.0, 10.0mg/kg. The neurological deficit, the cerebral infarct size, morphology abnormality, biochemical parameters were examined, and the levels of relevant proteins were determined by immunoblotting analysis to evaluate the protective effects of HLJDD on ischemic stroke and explore the underlying mechanism. RESULTS Compared with I/R group, HLJDD significantly ameliorated neurological deficit and histopathology changes, decreased infarct area, and restored the levels of biochemical indicators including nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), total superoxide dismutase (T-SOD), Cu/Zn-SOD, Mn-SOD and glutathione peroxidase (GSH-PX). HLJDD also notably elevated the levels of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, and other autophagy related genes (Atgs), promoted the activation of extracellular signal-regulated kinases (ERK), protein kinase B (Akt), 3-phosphoinositide-dependent kinase (PDK1), and inhibited the activation of mammalian target of rapamycin (mTOR), c-Jun N-terminal protein kinases (JNK), p38, phosphatase and tensin homolog (PTEN). CONCLUSION HLJDD showed neuroprotective effects on ischemic stroke, at least in part to the induced protective autophagy via the regulation of mitogen-activated protein kinase (MAPK) signals. This Akt-independent protective autophagy is favorable in the treatment of stroke, avoiding unfavorable side-effects associated with the inactivation of Akt. The efficacy of HLJDD on ischemic stroke and its safety warranted by its long-term clinical use in traditional Chinese medicine favored further study to develop HLJDD as an effective therapeutic agent to treat ischemic stroke.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Autophagy/drug effects
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/therapeutic use
- Ethnopharmacology
- Ischemic Attack, Transient/enzymology
- Ischemic Attack, Transient/pathology
- Ischemic Attack, Transient/prevention & control
- Male
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Structure
- Oxidative Stress/drug effects
- Rats
- Rats, Sprague-Dawley
- Reperfusion Injury/enzymology
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Peng-Ran Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
129
|
Jadhav RS, Ahmed L, Swamy PL, Sanaullah S. Neuroprotective effects of polyhydroxy pregnane glycoside isolated from Wattakaka volubilis (L.f.) Stapf. after middle cerebral artery occlusion and reperfusion in rats. Brain Res 2013; 1515:78-87. [DOI: 10.1016/j.brainres.2013.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
130
|
Naghizadeh B, Mansouri MT, Ghorbanzadeh B, Farbood Y, Sarkaki A. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:537-542. [PMID: 23351962 DOI: 10.1016/j.phymed.2012.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/02/2012] [Accepted: 12/25/2012] [Indexed: 05/27/2023]
Abstract
Intracerebroventricular (ICV) streptozotocin (STZ) has been shown to cause cognitive impairment, associated with free radical generation. In this study, we evaluated the effects of crocin on cognitive performance in ICV STZ-lesioned rats (3 mg/kg bilaterally, on day 1 and 3). Crocin (100 mg/kg, p.o.) was administered for 21 consecutive days, starting 1h prior to the first dose of STZ. Cognitive performance was assessed using Morris water maze task while the parameters of oxidative stress assessed, were malondialdehyde (MDA) and total thiol levels besides glutathione peroxidase (GPx) activity. STZ-lesioned rats showed a severe deficit in memory associated with elevated MDA levels, reduced GPx activity and total thiol content. Crocin treatment improved cognitive performance and resulted in a significant reduction in MDA levels and elevation in total thiol content and GPx activity. This study demonstrates that crocin may have beneficial effects in the treatment of neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- B Naghizadeh
- Department of Pharmacology, School of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | | | | |
Collapse
|
131
|
Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res Treat 2013; 2013:425281. [PMID: 23589781 PMCID: PMC3621372 DOI: 10.1155/2013/425281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 01/27/2023] Open
Abstract
Subarachnoid hemorrhage and transient global cerebral ischemia result in similar pathophysiological changes in the cerebral microcirculation. These changes include microvascular constriction, increased leukocyte-endothelial interactions, blood brain barrier disruption, and microthrombus formation. This paper will look at various animal and preclinical studies that investigate these various microvascular changes, perhaps providing insight in how these microvessels can be a therapeutic target in both subarachnoid hemorrhage and transient global cerebral ischemia.
Collapse
|
132
|
Zhan H, Sun SJ, Cai J, Li YQ, Hu CL, Lee DHS, So KF, Li X. The Effect of an NgR1 Antagonist on the Neuroprotection of Cortical Axons After Cortical Infarction in Rats. Neurochem Res 2013; 38:1333-40. [DOI: 10.1007/s11064-013-1026-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/17/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
|
133
|
Zhan L, Yan H, Zhou H, Sun W, Hou Q, Xu E. Hypoxic Preconditioning Attenuates Neuronal Cell Death by Preventing MEK/ERK Signaling Pathway Activation after Transient Global Cerebral Ischemia in Adult Rats. Mol Neurobiol 2013; 48:109-19. [DOI: 10.1007/s12035-013-8436-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/27/2013] [Indexed: 12/27/2022]
|
134
|
Rezaee R, Mahmoudi M, Abnous K, Zamani Taghizadeh Rabe S, Tabasi N, Hashemzaei M, Karimi G. Cytotoxic effects of crocin on MOLT-4 human leukemia cells. ACTA ACUST UNITED AC 2013; 10:/j/jcim.2013.10.issue-1/jcim-2013-0011/jcim-2013-0011.xml. [DOI: 10.1515/jcim-2013-0011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
|
135
|
Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol Cell Biochem 2012; 373:73-83. [PMID: 23065381 DOI: 10.1007/s11010-012-1476-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Platelets are the key players in the development of cardiovascular diseases as the microparticles generated by apoptotic platelets and platelet aggregation contribute actively towards the disease propagation. Thus, the aim of this study was to demonstrate the effect of a phytochemical which can prevent these two processes and thereby project it as a cardio-protective compound. Crocin, a natural carotenoid exhibits a wide spectrum of therapeutic potentials through its antioxidant property. The study demonstrated its effects on cytoplasmic apoptotic events of mitochondrial pathway in platelets. Collagen/calcium ionophore-A23187 stimulated platelets were treated with crocin and endogenous generation of reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) were measured. H(2)O(2)-induced changes in crocin-pretreated platelets such as intracellular calcium, mitochondrial membrane potential (ΔΨm), caspase activity, phosphatidylserine exposure and cytochrome c translocation were determined. Crocin dose-dependently ameliorated collagen- and A23187-induced endogenous generation of ROS and H(2)O(2). It also abolished the H(2)O(2)-induced events of intrinsic pathway of apoptosis. Further, it hindered collagen-induced platelet aggregation and adhesion. The current piece of work clearly suggests its anti-apoptotic effect as well as inhibitory effects on platelet aggregation. Thus, crocin can be deemed as a prospective candidate in the treatment regime of platelet-associated diseases.
Collapse
|
136
|
Bajbouj K, Schulze-Luehrmann J, Diermeier S, Amin A, Schneider-Stock R. The anticancer effect of saffron in two p53 isogenic colorectal cancer cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:69. [PMID: 22640402 PMCID: PMC3488489 DOI: 10.1186/1472-6882-12-69] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Saffron extract, a natural product, has been shown to induce apoptosis in several tumor cell lines. Nevertheless, the p53-dependency of saffron's mechanism of action in colon cancer remains unexplored. MATERIAL AND METHODS In order to examine saffron's anti-proliferative and pro-apoptotic effects in colorectal cancer cells, we treated two p53 isogenic HCT116 cell lines (HCT wildtype and HCT p53-/-) with different doses of the drug and analyzed cell proliferation and apoptosis in a time-dependent manner. MTT viability and crystal violet assays were performed in order to determine the effective dose of saffron on both cell lines. The cell cycle progress was examined by Flow cytometric analysis. Apoptosis was assessed using Annexin-PI-staining and Western Blotting for caspase 3 and PARP cleavage. Autophagy was determined by Western Blotting of the light chain 3 (LC3)-II and Beclin 1 proteins. The protein content of phospho-H2AX (γH2AX), a sensor of DNA double strand breaks, was also analyzed by Western Blotting. RESULTS Saffron extract induced a p53-dependent pattern of cell cycle distribution with a full G2/M stop in HCT116 p53 wildtype cells. However, it induced a remarkable delay in S/G2 phase transit with entry into mitosis in HCT116 p53 -/- cells. The apoptotic Pre-G1 cell fraction as well as Annexin V staining and caspase 3 cleavage showed a more pronounced apoptosis induction in HCT116 p53 wildtype cells. Obviously, the significantly higher DNA-damage, reflected by ɣH2AX protein levels in cells lacking p53, was coped by up-regulation of autophagy. The saffron-induced LC3-II protein level was a remarkable indication of the accumulation of autophagosomes, a response to the cellular stress condition of drug treatment. CONCLUSIONS This is the first study showing the effect of saffron in HCT116 colorectal cancer cells with different p53 status. Saffron induced DNA-damage and apoptosis in both cell lines. However, autophagy has delayed the induction of apoptosis in HCT116 p53 -/- cells. Considering the fact that most tumors show a functional p53 inactivation, further research is needed to elucidate the long-term effects of saffron in p53 -/- tumors.
Collapse
|
137
|
Song L, Mei A, Hu Y, Zhang J, Chai X. Response surface optimized extraction of carbohydrate compound from Folium Ginkgo and its bioactivity. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
138
|
Awad AS. Effect of Combined Treatment With Curcumin and Candesartan on Ischemic Brain Damage in Mice. J Stroke Cerebrovasc Dis 2011; 20:541-8. [DOI: 10.1016/j.jstrokecerebrovasdis.2010.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/08/2009] [Accepted: 03/30/2010] [Indexed: 01/24/2023] Open
|
139
|
Masaki M, Aritake K, Tanaka H, Shoyama Y, Huang ZL, Urade Y. Crocin promotes non-rapid eye movement sleep in mice. Mol Nutr Food Res 2011; 56:304-8. [PMID: 22038919 DOI: 10.1002/mnfr.201100181] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 11/09/2022]
Abstract
Crocus sativus L. (saffron) has been traditionally used for the treatment of insomnia and other diseases of the nervous systems. Two carotenoid pigments, crocin and crocetin, are the major components responsible for the various pharmacological activities of C. sativus L. In this study, we examined the sleep-promoting activity of crocin and crocetin by monitoring the locomotor activity and electroencephalogram after administration of these components to mice. Crocin (30 and 100 mg/kg) increased the total time of non-rapid eye movement (non-REM) sleep by 60 and 170%, respectively, during a 4-h period from 20:00 to 24:00 after its intraperitoneal administration at a lights-off time of 20:00. Crocetin (100 mg/kg) also increased the total time of non-REM sleep by 50% after the administration. These compounds did not change the amount of REM sleep or show any adverse effects, such as rebound insomnia, after the induction of sleep.
Collapse
Affiliation(s)
- Mika Masaki
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. PHARMACEUTICAL BIOLOGY 2011; 49:1039-1045. [PMID: 21936628 DOI: 10.3109/13880209.2011.563315] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Saffron Crocus sativus L. (Iridaceae) is known for anticancer properties. However, limited effort has been made to correlate these effects to the active ingredients of saffron. In the present study, cytotoxic effects of crocin, the major coloring compound in saffron, and its nanoliposomal form for better cellular delivery are investigated. METHODS HeLa and MCF-7 cells were cultured and exposed to crocin (1, 2, and 4 mM) and liposomal crocin (0.5 and 1 mM). The 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to assess cytotoxicity. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry. RESULTS MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of crocin on HeLa and MCF-7 cells in comparison with non-malignant cell line (L929). Crocin liposomal forms (IC(50) values after 48 h: 0.61, 0.64, and 1.2 mM) showed enhanced cytotoxic effect compared with the crocin (IC(50) after 48 h: 1.603 mM) in HeLa cells. Crocin and its liposomal form induced a sub-G1 peak in flow cytometry histogram of treated cells indicating apoptosis is involved in this toxicity. Liposomal encapsulation enhances apoptogenic effects of crocin on cancerous cells. CONCLUSION It might be concluded that crocin and its liposomes could cause cell death in HeLa and MCF-7 cells, in which liposomal encapsulation improved cytotoxic effects. They could be also considered as a promising chemotherapeutic agent in cancer treatment in future.
Collapse
Affiliation(s)
- Seyed Hadi Mousavi
- Pharmacological Research Centre of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
141
|
Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. THE JOURNAL OF IMMUNOLOGY 2011; 187:4788-99. [PMID: 21964030 DOI: 10.4049/jimmunol.1004111] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress is a homeostatic mechanism, which is used by cells to adapt to intercellular and intracellular changes. Moreover, ER stress is closely linked to inflammatory pathways. We hypothesized that ER stress is an integral component of neuroinflammation and contributes to the development of neurological diseases. In autopsied brain specimens from multiple sclerosis (MS) and non-MS patients, XBP-1 spliced variant (XBP-1/s) was increased in MS brains (p < 0.05) and was correlated with the expression of the human endogenous retrovirus-W envelope transcript, which encodes the glycoprotein, Syncytin-1 (p < 0.05). In primary human fetal astrocytes transfected with a Syncytin-1-expressing plasmid, XBP-1/s, BiP, and NOS2 were induced, which was suppressed by crocin treatment (p < 0.05). Crocin also protected oligodendrocytes exposed to cytotoxic supernatants derived from Syncytin-1-expressing astrocytes (p < 0.05) and NO-mediated oligodendrocytotoxicity (p < 0.05). During experimental autoimmune encephalomyelitis (EAE), the transcript levels of the ER stress genes XBP-1/s, BiP, PERK, and CHOP were increased in diseased spinal cords compared with healthy littermates (p < 0.05), although CHOP expression was not involved in the EAE disease phenotype. Daily treatment with crocin starting on day 7 post-EAE induction suppressed ER stress and inflammatory gene expression in spinal cords (p < 0.05), which was accompanied by preserved myelination and axonal density, together with reduced T cell infiltration and macrophage activation. EAE-associated neurobehavioral deficits were also ameliorated by crocin treatment (p < 0.05). These findings underscored the convergent roles of pathogenic ER stress and immune pathways in neuroinflammatory disease and point to potential therapeutic applications for crocin.
Collapse
Affiliation(s)
- André M Deslauriers
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, Haghighi S, Sameni HR, Pahlvan S. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 2011; 667:222-9. [DOI: 10.1016/j.ejphar.2011.05.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 04/21/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022]
|
143
|
Howes MJR, Perry E. The Role of Phytochemicals in the Treatment and Prevention of Dementia. Drugs Aging 2011; 28:439-68. [DOI: 10.2165/11591310-000000000-00000] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
144
|
Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 2011; 219:197-204. [DOI: 10.1016/j.bbr.2011.01.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
|
145
|
Ma S, Yin H, Chen L, Liu H, Zhao M, Zhang X. Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats. J Nat Med 2011; 66:25-31. [PMID: 21611909 DOI: 10.1007/s11418-011-0545-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/08/2011] [Indexed: 12/22/2022]
Abstract
Ginkgolide K, a natural platelet-activating factor receptor antagonist, was isolated from the leaves of Ginkgo biloba. However, little is known about its neuroprotective effect in ischemia-reperfusion (I/R)-induced cerebral injury. Hence, the present study was carried out to investigate the effect of ginkgolide K on neuroprotection and the potential mechanisms in the rat I/R model induced by middle cerebral artery occlusion (MCAO). The rats were pretreated with ginkgolide K 2, 4 and 8 mg/kg (i.v.) once a day for 5 days before MCAO. Neurological deficit score (NDS), brain water content, 2,3,5-triphenyltetrazolium chloride (TTC) staining and pathology of brain tissue, as well as indexes of oxidative stress [superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and nitric oxide synthase (NOS)] were measured at 24 h after ischemia. The results indicated that pretreatment with ginkgolide K significantly diminished the volume of infarction and brain water content, and improved NDS. Moreover, ginkgolide K markedly reversed the level of MDA, NO, NOS and SOD to their normal state in serum or cerebral ischemic section. In addition, hematoxylin and eosin staining showed the neuronal injury was significantly improved after being pretreated with ginkgolide K. These findings demonstrate that ginkgolide K exhibits neuroprotective properties through its antioxidative action in MCAO rats.
Collapse
Affiliation(s)
- Shuwei Ma
- Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
146
|
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14:2013-54. [PMID: 20649473 PMCID: PMC3078504 DOI: 10.1089/ars.2010.3208] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
147
|
Yoshioka H, Niizuma K, Katsu M, Sakata H, Okami N, Chan PH. Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia. J Neurotrauma 2011; 28:649-60. [PMID: 21309724 DOI: 10.1089/neu.2010.1662] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A reproducible transient global cerebral ischemia (tGCI) mouse model has not been fully established. Although striatal neurons and white matter are recognized to be vulnerable to ischemia, their injury after tGCI in mice has not been elucidated. The purpose of this study was to evaluate injuries to striatal neurons and white matter after tGCI in C57BL/6 mice, and to develop a reproducible tGCI model. Male C57BL/6 mice were subjected to tGCI by bilateral common carotid artery occlusion (BCCAO). Mice whose cortical cerebral blood flow after BCCAO decreased to less than 13% of the pre-ischemic value were used. Histological analysis showed that at 3 days after 22 min of BCCAO, striatal neurons were injured more consistently than those in other brain regions. Quantitative analysis of cytochrome c release into the cytosol and DNA fragmentation in the striatum showed consistent injury to the striatum. Immunohistochemistry and Western blot analysis revealed that DARPP-32-positive medium spiny neurons, the majority of striatal neurons, were the most vulnerable among the striatal neuronal subpopulations. The striatum (especially medium spiny neurons) was susceptible to oxidative stress after tGCI, which is probably one of the mechanisms of vulnerability. SMI-32 immunostaining showed that white matter in the striatum was also consistently injured 3 days after 22 min of BCCAO. We thus suggest that this is a tGCI model using C57BL/6 mice that consistently produces neuronal and white matter injury in the striatum by a simple technique. This model can be highly applicable for elucidating molecular mechanisms in the brain after global ischemia.
Collapse
Affiliation(s)
- Hideyuki Yoshioka
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | |
Collapse
|
148
|
Meng F, Liu R, Gao M, Wang Y, Yu X, Xuan Z, Sun J, Yang F, Wu C, Du G. Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats. Brain Res 2011; 1391:93-101. [PMID: 21435338 DOI: 10.1016/j.brainres.2011.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Blood-brain barrier (BBB) disruption is a major consequence of cerebral ischemia/reperfusion. Several studies have reported the neuroprotection of pinocembrin on cerebral ischemia in vivo and in vitro, but the effects of pinocembrin on BBB and its underlying mechanisms are not clear. In this study, we investigated the effects of pinocembrin on BBB functions in the global cerebral ischemia/reperfusion (GCI/R) model in rats. Neurological scores and brain edema were evaluated. BBB permeability was assessed by detecting the concentrations of Evan's blue (EB) and fluorescein sodium (NaF) in brain tissue. The pathological changes of BBB ultrastructure were observed by transmission electron microscopy. Cerebral blood flow (CBF) was measured by laser Doppler flowmetry. The effects of pinocembrin on primary cultured rat cerebral microvascular endothelial cells (RCMECs) against oxygen-glucose deprivation/reoxygenation (OGD/R) were also investigated. The results showed pinocembrin decreased neurological score and lessened brain edema induced by GCI/R. Pinocembrin also reduced the concentrations of EB and NaF in brain tissue of the GCI/R rats. And pinocembrin alleviated the ultrastructural changes of cerebral microvessels, astrocyte end-feet and neurons, and improved CBF in the GCI/R rats. In addition, pinocembrin increased the viability and mitochondrial membrane potential of cultured RCMECs induced by OGD/R. In conclusion, these data demonstrate that pinocembrin alleviates blood-brain barrier injury induced by GCI/R in rats.
Collapse
Affiliation(s)
- Fanrui Meng
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011; 180:238-47. [PMID: 21352900 DOI: 10.1016/j.neuroscience.2011.02.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
Saffron, the dried stigmata of Crocus sativus L., is used in traditional medicine for a wide range of indications including cramps, asthma, and depression. To investigate the influence of hydro-ethanolic saffron extract (CSE) and trans-crocetin on synaptic transmission, postsynaptic potentials (PSPs) were elicited by focal electrical stimulation and recorded using intracellular placed microelectrodes in pyramidal cells from rat cingulate cortex. CSE (10-200 μg/ml) inhibited evoked PSPs as well as the isolated NMDA and non-NMDA component of PSPs. Glutamate (500 μM) added into the organ bath induced membrane depolarization. CSE decreased glutamate-induced membrane depolarization. Additionally, CSE at 100 μg/ml decreased NMDA (20 μM) and kainate (1 μM)-induced depolarization, whereas AMPA (1 μM)-induced depolarization was not affected. Trans-crocetin (1-50 μM) showed inhibition of evoked PSPs and glutamate-induced membrane depolarization comparable to CSE. Trans-crocetin at 10 μM decreased NMDA (20 μM)-induced membrane depolarization, but did not inhibit the isolated non-NMDA component of PSPs. We conclude that trans-crocetin is involved in the antagonistic effect of CSE on NMDA but not on kainate receptors.
Collapse
|
150
|
Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C, Serrano JMG, Shaffer MD, Varghese M. An Evidence-Based Systematic Review of Saffron (Crocus sativus) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:58-114. [DOI: 10.3109/19390211.2011.547666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|