101
|
Dittrich T, Tschudin-Sutter S, Widmer AF, Rüegg S, Marsch S, Sutter R. Risk factors for new-onset delirium in patients with bloodstream infections: independent and quantitative effect of catheters and drainages-a four-year cohort study. Ann Intensive Care 2016; 6:104. [PMID: 27797086 PMCID: PMC5085969 DOI: 10.1186/s13613-016-0205-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/17/2016] [Indexed: 12/01/2022] Open
Abstract
Background Bloodstream infections (BSI) and delirium are frequent in critically ill patients. During systemic inflammatory response to BSI, cytokines may interact with neurotransmitters and neuronal receptors driving acute brain dysfunction. However, prospectively collected data on incidence, prediction and impact of delirium in association with BSI are lacking. This study aimed to determine the incidence and predictors of new-onset delirium and its impact on outcome in critically ill adult patients with BSI. Methods From 2011 to 2014, all consecutive adult patients with BSI treated in the intensive care units of an academic medical care center were identified. Pertinent clinical and microbiological data including the Intensive Care Delirium Screening Checklist (ICDSC) were assessed. Multivariable analysis was performed to identify variables independently associated with ICDSC ≥4. Results Among 240 patients, 145 (60%) had an ICDSC ≥4 (i.e., delirium). In-hospital mortality was 34%. Delirious patients had a higher mortality (40 vs. 23%; p = 0.005), a lower proportion with return to functional baseline (30 vs. 46%; p = 0.012), and a higher proportion with unfavorable outcome in survivors (74 vs. 54%; p = 0.010). Multivariable analyses revealed age (OR 1.04, 95% CI 1.02–1.06), male gender (OR 2.26, 95% CI 1.17–4.36), and the number of catheters and drainages before diagnosis of BSI (OR for every additional catheter = 1.14, 95% CI 1.04–1.25) as independent predictors for delirium (adjusted for SAPS [simplified acute physiology score] II, Riker Sedation-Agitation Scale [SAS], Sequential Organ Failure Assessment [SOFA] score, dementia and/or leukoencephalopathy, and albumin levels). Conclusions The incidence of delirium in patients with BSI is high and associated with adverse outcome. The number of catheters and drainages may constitute a useful and readily available predictor of delirium in patients with BSI allowing to identify patients at high risk. Ultimately, reliable identification of patients at increased risk for delirium is key for allocation of specific prevention strategies.
Collapse
Affiliation(s)
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Andreas F Widmer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Stephan Rüegg
- Division of Clinical Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Stephan Marsch
- Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
| | - Raoul Sutter
- Division of Clinical Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland. .,Clinic for Intensive Care Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
102
|
Arroyo L, Carreras R, Valent D, Peña R, Mainau E, Velarde A, Sabrià J, Bassols A. Effect of handling on neurotransmitter profile in pig brain according to fear related behaviour. Physiol Behav 2016; 167:374-381. [PMID: 27737780 DOI: 10.1016/j.physbeh.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/26/2016] [Accepted: 10/07/2016] [Indexed: 01/02/2023]
Abstract
Chemical neurotransmitters (NT) are principal actors in all neuronal networks of animals. The central nervous system plays an important role in stress susceptibility and organizes the response to a stressful situation through the interaction of the dopaminergic and the serotonergic pathways, leading to the activation of the hypothalamus-pituitary-adrenal axis (HPA). This study was designed to investigate: a) the effects of stressful handling of pigs at the slaughterhouse on the neurotransmitter profile in four brain areas: amygdala, prefrontal cortex (PFC), hippocampus and hypothalamus, and b) whether the alterations in the brain NT profile after stressful handling were associated with fear, determined by the tonic immobility (TI) test. In the first place, the characterization of the NT profile allowed to distinguish the four brain areas in a principal component analysis. The most crucial pathway involved in the reaction of pigs to a stressful handling was the serotonergic system, and changes were observed in the amygdala with a decrease in serotonin (5-HT) and total indoleamines, and in the hippocampus, where this pathway was activated. Fearful and non-fearful pigs did not show significant differences in their NT profile in control conditions, but when subjected to a stressful handling in the slaughterhouse, fearful animals showed a significant variation in the serotonin pathway and, in a lesser extent, the dopamine (DA) pathway. In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's response toward stressful challenges, and the serotonergic system seems to play a central role in this response.
Collapse
Affiliation(s)
- Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ricard Carreras
- IRTA, Animal Welfare Subprogram, Veïnat de Sies, s/n, 17121 Monells, Spain
| | - Daniel Valent
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Raquel Peña
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Eva Mainau
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Velarde
- IRTA, Animal Welfare Subprogram, Veïnat de Sies, s/n, 17121 Monells, Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
103
|
Deviche P, Valle S, Gao S, Davies S, Bittner S, Carpentier E. The seasonal glucocorticoid response of male Rufous-winged Sparrows to acute stress correlates with changes in plasma uric acid, but neither glucose nor testosterone. Gen Comp Endocrinol 2016; 235:78-88. [PMID: 27292791 DOI: 10.1016/j.ygcen.2016.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 05/09/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
We sought to clarify functional relationships between baseline and acute stress-induced changes in plasma levels of the stress hormone corticosterone (CORT) and the reproductive hormone testosterone (T), and those of two main metabolites, uric acid (UA) and glucose (GLU). Acute stress in vertebrates generally stimulates the secretion of glucocorticoids, which in birds is primarily CORT. This stimulation is thought to promote behavioral and metabolic changes, including increased glycemia. However, limited information in free-ranging birds supports the view that acutely elevated plasma CORT stimulates glycemia. Acute stress also often decreases the secretion of reproductive hormones (e.g., T in males), but the role of CORT in this decrease and the contribution of T to the regulation of plasma GLU remain poorly understood. We measured initial (pre-stress) and acute stress-induced plasma CORT and T as well as GLU in adult male Rufous-winged Sparrows, Peucaea carpalis, sampled during the pre-breeding, breeding, post-breeding molt, and non-breeding stages. Stress increased plasma CORT and the magnitude of this increase did not differ across life history stages. The stress-induced elevation of plasma CORT was consistently associated with decreased plasma UA, suggesting a role for CORT in the regulation of plasma UA during stress. During stress plasma GLU either increased (pre-breeding), did not change (breeding), or decreased (molt and non-breeding), and plasma T either decreased (pre-breeding and breeding) or did not change (molt and non-breeding). These data provide only partial support to the hypothesis that CORT secretion during acute stress exerts a hyperglycemic action or is responsible for the observed decrease in plasma T taking place at certain life history stages. They also do not support the hypothesis that rapid changes in plasma T influence glycemia.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Scott Davies
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephanie Bittner
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Elodie Carpentier
- Universite de Poitiers, Faculte des Sciences Fondamentales et Appliquees, Poitiers F-86022, France
| |
Collapse
|
104
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
105
|
Belviranli M, Okudan N, Kabak B, Erdoğan M, Karanfilci M. The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. PHYSICIAN SPORTSMED 2016; 44:290-6. [PMID: 27254486 DOI: 10.1080/00913847.2016.1196125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of this study was to assess the cognitive performance of endurance athletes and its relation with circulating brain-derived neurotrophic factor (BDNF) and irisin levels. METHODS 26 endurance athletes (14 elite orienteers (mean ± SD: age = 26.33 ± 4.08, body weight = 70.33 ± 4.64, body height = 177.7 ± 6.1), 12 pentathletes (mean ± SD: age = 29.42 ± 5.32, body weight = 74.77 ± 6.59, body height = 180.8 ± 3.8)) and ten sedentary (mean ± SD: age = 27.30 ± 2.06, body weight = 76.65 ± 12.50, body height = 176.9 ± 5.2) men at almost same ages and educational levels participated in this study. Cognitive functions were analyzed with mini-mental-state examination (MMSE) and Isaacs' Set Test of Verbal Fluency (IST) tests. Insulin-like growth factor-1 (IGF-1), BDNF and irisin levels were measured in the blood samples. RESULTS The MSSE and IST scores of the endurance athletes were higher than that of the sedentary control group (P < 0.05). Serum IGF-1 levels were higher in the pentathletes (111.18 ± 22.26 ng mL(-1)) than the orienteers (85.89 ± 19.32 ng mL(-1)) (P < 0.05). Plasma BDNF (2.78 ± 0.81, 4.28 ± 1.03, and 3.93 ± 0.77 ng mL(-1) in the sedentary, orienteers and pentathletes, respectively) and irisin (3.25 ± 0.70, 6.16 ± 0.99, and 6.58 ± 1.09 µg mL(-1) in the sedentary, orienteers and pentathletes, respectively) concentrations of the endurance trained athletes were higher than that of the sedentary control group (P < 0.05). Positive correlation between the cognitive function test results and BDNF and irisin concentrations were observed (P < 0.05). There was also a positive correlation between the circulating irisin and BDNF concentrations (P < 0.05). CONCLUSION These results suggested that irisin and BDNF levels positively correlated with cognition in the endurance trained athletes.
Collapse
Affiliation(s)
- Muaz Belviranli
- a Division of Sports Physiology, Department of Physiology, Faculty of Medicine , Selcuk University , Konya , Turkey
| | - Nilsel Okudan
- a Division of Sports Physiology, Department of Physiology, Faculty of Medicine , Selcuk University , Konya , Turkey
| | - Banu Kabak
- b Department of Health , Turkish Republic Ministry of Youth and Sports , Ankara , Turkey
| | - Murat Erdoğan
- c Department of Sports Medicine , Turkish Armed Forces Sports School and Training Center , Ankara , Turkey
| | - Muharrem Karanfilci
- b Department of Health , Turkish Republic Ministry of Youth and Sports , Ankara , Turkey
| |
Collapse
|
106
|
Demuyser T, Bentea E, Deneyer L, Albertini G, Massie A, Smolders I. Disruption of the HPA-axis through corticosterone-release pellets induces robust depressive-like behavior and reduced BDNF levels in mice. Neurosci Lett 2016; 626:119-25. [DOI: 10.1016/j.neulet.2016.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
|
107
|
Simons LE, Goubert L, Vervoort T, Borsook D. Circles of engagement: Childhood pain and parent brain. Neurosci Biobehav Rev 2016; 68:537-546. [PMID: 27320958 DOI: 10.1016/j.neubiorev.2016.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
Social interaction can have a profound effect on individual behavior, perhaps most salient in interactions between sick suffering children and their parents. Chronic pain is a difficult condition that can produce considerable changes in children's behaviors that can secondarily have profound effects on their parents. It may create a functionally disabling negative feedback loop. Research supports the notion of alterations in the brain of individuals who observe and empathize with loved ones in acute pain. However, neural activity in relation to empathic responses in the context of chronic pain has not been examined. Ongoing suffering with chronic pain in a child can result in child's brain circuit alterations. Moreover, prolonged suffering jointly experienced by the parent may putatively produce maladaptive changes in their neural networks and consequently in parental behaviors. Here we put forth the conceptual framework for 'Chronic pain contagion' (CPC). We review the underlying processes in CPC and discuss implications for devising and implementing treatments for children in chronic pain and their parents.
Collapse
Affiliation(s)
- Laura E Simons
- Center for Pain and the Brain, Boston Childrens Hospital (BCH), Boston, USA; Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, USA; Department of Psychiatry, Harvard Medical School, Boston, USA.
| | - Liesbet Goubert
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Tine Vervoort
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - David Borsook
- Center for Pain and the Brain, Boston Childrens Hospital (BCH), Boston, USA; Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Boston, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
108
|
Tronick E, Hunter RG. Waddington, Dynamic Systems, and Epigenetics. Front Behav Neurosci 2016; 10:107. [PMID: 27375447 PMCID: PMC4901045 DOI: 10.3389/fnbeh.2016.00107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Waddington coined the term “epigenetic” to attempt to explain the complex, dynamic interactions between the developmental environment and the genome that led to the production of phenotype. Waddington's thoughts on the importance of both adaptability and canalization of phenotypic development are worth recalling as well, as they emphasize the available range for epigenetic action and the importance of environmental feedback (or lack thereof) in the development of complex traits. We suggest that a dynamic systems view fits well with Waddington's conception of epigenetics in the developmental context, as well as shedding light on the study of the molecular epigenetic effects of the environment on brain and behavior. Further, the dynamic systems view emphasizes the importance of the multi-directional interchange between the organism, the genome and various aspects of the environment to the ultimate phenotype.
Collapse
Affiliation(s)
- Ed Tronick
- Developmental and Brain Sciences, University of Massachusetts Boston, Psychology Boston, MA, USA
| | - Richard G Hunter
- Developmental and Brain Sciences, University of Massachusetts Boston, Psychology Boston, MA, USA
| |
Collapse
|
109
|
Faramarzi G, Zendehdel M, Haghparast A. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats. Eur J Pain 2016; 20:1423-32. [PMID: 27271035 DOI: 10.1002/ejp.865] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. METHOD Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. RESULTS The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. CONCLUSION Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. WHAT DOES THIS STUDY ADD Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more prominent during the late phase.
Collapse
Affiliation(s)
- G Faramarzi
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - M Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - A Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,
| |
Collapse
|
110
|
Rao RM, Sadananda M. Influence of State and/or Trait Anxieties of Wistar Rats in an Anxiety Paradigm. Ann Neurosci 2016; 23:44-50. [PMID: 27536021 PMCID: PMC4934415 DOI: 10.1159/000443555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
Systematic individual differences between male Wistar rats can be detected in paradigms such as the elevated plus maze (EPM), which is a widely used behavioral paradigm that measures fear-motivated avoidance behavior. It has been extensively used to assess anxiety profiles with face, construct and predictive validities. During a typical EPM test, animals actively avoid the open arms in favour of the closed arms. We investigated whether individuals carry inherent trait anxiety profiles and whether perturbations of different intensities influence anxiety measures. Inherent anxiety levels and coping strategies following stress have become critical determinants in pre-disposition to other neuropsychiatric disorders and affect biomedical interventions in individuals. One group of rats was screened on EPM and in the activity box. Another set of rats were randomly divided into groups and subjected to perturbations of acute and sub-chronic isolation or restraint and tested in the EPM. Based on open-arm time in the EPM, low or high anxiety profiles were identified with significant differences in all measures. Perturbations of different intensities induced differential anxiety measures as expressed in the EPM. Anxiety levels were significantly reduced in sub-chronic restrained subjects, while isolation did not show marked difference. Anxiety profiles become evident from broad sample sizes and could constitute a critical limiting factor in personalized treatments. Stress-induced anxiety disorders could implicate comorbidity to other neuropsychiatric disorders in individuals. Coping strategies come to the fore in repeated sub-chronic perturbations indicating adaptive responses to the stressor, while acute perturbation enhances expression of anxiety behaviors.
Collapse
Affiliation(s)
- Rashmi Madhava Rao
- Brain Research Laboratory, Biotechnology Division, Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, India
| | - Monika Sadananda
- Brain Research Laboratory, Biotechnology Division, Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, India
| |
Collapse
|
111
|
Abdel-Gawad EI, Hassan AI, Awwad SA. Efficiency of calcium phosphate composite nanoparticles in targeting Ehrlich carcinoma cells transplanted in mice. J Adv Res 2016; 7:143-154. [PMID: 26843980 PMCID: PMC4703481 DOI: 10.1016/j.jare.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 01/18/2023] Open
Abstract
The present study aimed to investigate the mode of action of nano-CaPs in vivo as a therapy for solid tumor in mice. To achieve this goal, Ehrlich Ascites Carcinoma (EAC) was transplanted into 85 Swiss male albino mice. After nine days, the mice were divided into 9 groups. Groups 1 and 2 were allocated as the EAC control. Groups 3 and 4 were injected once intratumorally (IT) by nano-calcium phosphate (nano-CaP). Groups 5 and 6 received once intraperitoneal injection (IP) of nano-CaP. Groups 7, 8, and 9 received nano-CaP (IP) weekly. Blood samples and thigh skeletal muscle were collected after three weeks from groups 1, 3, 5, and 7 and after four weeks from groups 2, 4, 6, and 8. On the other hand, group 9 received nano-CaP (IP) for four weeks and lasted for three months to follow up the recurrence of tumor and to ensure the safety of muscle by histopathological analysis. Tumor growth was monitored twice a week throughout the experiment. DNA fragmentation of tumor cells was evaluated. In thigh tissue, noradrenaline, dopamine, serotonin (5HT), and gamma-aminobutyric acid (GABA) were measured. In serum, 8-Hydroxy-deoxyguanosine (8-OHDG), adenosine triphosphate (ATP), and vascular endothelial growth factor (VEGF) were analyzed. Histopathological and biochemical results showed a significant therapeutic effect of nano-CaP on implanted solid tumor and this effect was more pronounced in the animals treated IP for four weeks. This improvement was evident from the repair of fragmented DNA, the significant decrease of caspase-3, 8-OHDG, myosin, and VEGF, and the significant increase of neurotransmitters (NA, DA, 5HT, and GABA). Additionally, histopathological examination showed complete recovery of cancer cells in the thigh muscle after three months.
Collapse
Key Words
- 5HT, serotonin
- 8-OHDG, 8-hydroxy-deoxyguanosine
- ATP, adenosine triphosphate
- Calcium phosphate (CaP) nanoparticles
- DNA, deoxyribonucleic acid
- EAC transplantation
- EAC, Ehrlich Ascites Carcinoma
- FAK, focal adhesion kinase
- FTIR, Fourier transform infrared
- GABA, gamma aminobutyric acid
- IP, intraperitoneal
- IT, intratumoral
- MAPK, mitogen-activated protein kinase
- Nano-CaP, nano calcium phosphate
- Nanomedicine
- Neurotransmitters
- RIR, reference intensity ratio
- SEM, scanning electron microscopy
- Solid tumor
- TEM, transmission electron microscope
- VEGFR2, vascular endothelial growth factor receptor 2
- XRD, X-ray diffraction
Collapse
Affiliation(s)
| | - Amal I. Hassan
- Radioisotopes Department, Atomic Energy Authority, Egypt
| | | |
Collapse
|
112
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
113
|
Weber RA, Pérez Maceira JJ, Aldegunde MJ, Peleteiro JB, García Martín LO, Aldegunde M. Effects of acute handling stress on cerebral monoaminergic neurotransmitters in juvenile Senegalese sole Solea senegalensis. JOURNAL OF FISH BIOLOGY 2015; 87:1165-1175. [PMID: 26387448 DOI: 10.1111/jfb.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Juvenile Senegalese sole Solea senegalensis were subjected for short periods to two different types of handling-related stress: air exposure stress and net handling stress. The S. senegalensis were sacrificed 2 and 24 h after the stress events and the levels of serotonin (5-HT), noradrenaline (NA), dopamine (DA) and their respective major metabolites, 5-hydroxyindoleacetic acid (5-HIAA), 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylacetic acid (DOPAC), were measured in three brain regions (telencephalon, hypothalamus and optic tectum) and compared with those in control, non-stressed S. senegalensis. Neither type of stress caused any significant alteration of serotoninergic activity (5-HIAA:5-HT ratio) or NA levels. Dopaminergic activity (DOPAC:DA ratio) was lower in stressed fish in all of the brain regions studied. For both air exposure stress and net handling stress, DA levels were significantly higher (P < 0.05) than in the control S. senegalensis. In addition, the higher DA levels after net handling stress were always significantly higher (P < 0.05) than those observed after acute air exposure stress, except in the telencephalon after 24 h. The significantly lower DOPAC:DA ratio (P < 0.05) in all of the brain regions studied was only observed in response to net handling stress.
Collapse
Affiliation(s)
- R A Weber
- Departamento de Fisiología (Laboratorio de Fisiología Animal), Facultad de Biología, Campus Vida s/n, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto Federal Catarinense, Campus Araquari, 89245-000, Araquari, Brazil
| | - J J Pérez Maceira
- Departamento de Fisiología (Laboratorio de Fisiología Animal), Facultad de Biología, Campus Vida s/n, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M J Aldegunde
- Departamento de Fisiología (Laboratorio de Fisiología Animal), Facultad de Biología, Campus Vida s/n, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J B Peleteiro
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Cabo Estai, Canido, 36200, Vigo, Spain
| | - L O García Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Campus Vida s/n, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Aldegunde
- Departamento de Fisiología (Laboratorio de Fisiología Animal), Facultad de Biología, Campus Vida s/n, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
114
|
Díaz D, Murias AR, Ávila-Zarza CA, Muñoz-Castañeda R, Aijón J, Alonso JR, Weruaga E. Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization. Eur Neuropsychopharmacol 2015; 25:1683-94. [PMID: 26235957 DOI: 10.1016/j.euroneuro.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/12/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023]
Abstract
Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1.
Collapse
Affiliation(s)
- David Díaz
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Azucena Rodrigo Murias
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | | | - Rodrigo Muñoz-Castañeda
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Aijón
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain; Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Eduardo Weruaga
- Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
115
|
Determination of endogenous corticosterone in rodent’s blood, brain and hair with LC–APCI–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:267-76. [DOI: 10.1016/j.jchromb.2015.08.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 11/30/2022]
|
116
|
Bitencourt RM, Alpár A, Cinquina V, Ferreira SG, Pinheiro BS, Lemos C, Ledent C, Takahashi RN, Sialana FJ, Lubec G, Cunha RA, Harkany T, Köfalvi A. Lack of presynaptic interaction between glucocorticoid and CB1 cannabinoid receptors in GABA- and glutamatergic terminals in the frontal cortex of laboratory rodents. Neurochem Int 2015. [PMID: 26196379 DOI: 10.1016/j.neuint.2015.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticosteroid and endocannabinoid actions converge on prefrontocortical circuits associated with neuropsychiatric illnesses. Corticosteroids can also modulate forebrain synapses by using endocannabinoid effector systems. Here, we determined whether corticosteroids can modulate transmitter release directly in the frontal cortex and, in doing so, whether they affect presynaptic CB1 cannabinoid receptor- (CB1R) mediated neuromodulation. By Western blotting of purified subcellular fractions of the rat frontal cortex, we found glucocorticoid receptors (GcRs) and CB1Rs enriched in isolated frontocortical nerve terminals (synaptosomes). CB1Rs were predominantly presynaptically located while GcRs showed preference for the post-synaptic fraction. Additional confocal microscopy analysis of cortical and hippocampal regions revealed vesicular GABA transporter-positive and vesicular glutamate transporter 1-positive nerve terminals endowed with CB1R immunoreactivity, apposing GcR-positive post-synaptic compartments. In functional transmitter release assay, corticosteroids, corticosterone (0.1-10 microM) and dexamethasone (0.1-10 microM) did not significantly affect the evoked release of [(3)H]GABA and [(14)C]glutamate in superfused synaptosomes, isolated from both rats and mice. In contrast, the synthetic cannabinoid, WIN55212-2 (1 microM) diminished the release of both [(3)H]GABA and [(14)C]glutamate, evoked with various depolarization paradigms. This effect of WIN55212-2 was abolished by the CB1R neutral antagonist, O-2050 (1 microM), and was absent in the CB1R KO mice. CB2R-selective agonists did not affect the release of either neurotransmitter. The lack of robust presynaptic neuromodulation by corticosteroids was unchanged upon either CB1R activation or genetic inactivation. Altogether, corticosteroids are unlikely to exert direct non-genomic presynaptic neuromodulation in the frontal cortex, but they may do so indirectly, via the stimulation of trans-synaptic endocannabinoid signaling.
Collapse
Affiliation(s)
- Rafael M Bitencourt
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Psychopharmacology, Dept. Pharmacology, Universidade Federal de Santa Catarina, Florianopolis 88049-900, Brazil
| | - Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria; University of Insubria, Via Ravasi, 2, 21100 Varese, Italy
| | - Samira G Ferreira
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Reinaldo N Takahashi
- Laboratory of Psychopharmacology, Dept. Pharmacology, Universidade Federal de Santa Catarina, Florianopolis 88049-900, Brazil
| | - Fernando J Sialana
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, A-1090 Vienna, Austria
| | - Rodrigo A Cunha
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Attila Köfalvi
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
117
|
|
118
|
Narla C, Dunn HA, Ferguson SSG, Poulter MO. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors. Front Cell Neurosci 2015; 9:200. [PMID: 26074770 PMCID: PMC4446537 DOI: 10.3389/fncel.2015.00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/10/2015] [Indexed: 11/29/2022] Open
Abstract
The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Henry A Dunn
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Stephen S G Ferguson
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| |
Collapse
|
119
|
Lee JS, Oh J, Kim SG, Jang J. Highly Sensitive and Selective Field-Effect-Transistor NonEnzyme Dopamine Sensors Based on Pt/Conducting Polymer Hybrid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2399-2406. [PMID: 25604239 DOI: 10.1002/smll.201403263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Dopamine (DA), as one of catecholamine family of neurotransmitters, is crucially important in humans owing to various critical effects on biometric system such as brine circuitry, neuronal plasticity, organization of stress responses, and control of cardiovascular and renal organizations. Abnormal level of dopamine in the central nervous system causes several neurological diseases, e.g., schizophrenia, Parkinson's disease, and attention deficit hybperactivity disorder (ADHD)/attention deficit disorder (ADD). In this report, we suggest the fabrication of nonenzyme field effect transistor (FET) sensor composed of immobilized Pt particle decorated conducting-polymer (3-carboxylate polypyrrole) nanoparticles (Pt_CPPy) to detect dopamine. The hybrid nanoparticles (NPs) are produced by means of facile chemical reduction of pristine CPPyNP-contained Pt precursor (PtCl4 ) solution. The Pt_CPPys are then immobilized on an amine-functionalized (-NH2 ) interdigitated-array electrode substrate, through the formation of covalent bonds with amine groups (-CONH). The resulting Pt_CPPy-based FET sensors exhibit high sensitivity and selectivity toward DA at unprecedentedly low concentrations (100 × 10(-15) m) and among interfering biomolecules, respectively. Additionally, due to the covalent bonding involved in the immobilization process, a longer lifetime is expected for the FET sensor.
Collapse
Affiliation(s)
- Jun Seop Lee
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul, 151-742, South Korea
| | - Jungkyun Oh
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul, 151-742, South Korea
| | - Sung Gun Kim
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul, 151-742, South Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul, 151-742, South Korea
| |
Collapse
|
120
|
Paul S, Jeon WK, Bizon JL, Han JS. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front Aging Neurosci 2015; 7:43. [PMID: 25883567 PMCID: PMC4382969 DOI: 10.3389/fnagi.2015.00043] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/28/2022] Open
Abstract
A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA) axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine (ACh), glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, to which could help decipher disease states and propose leads for pharmacological intervention.
Collapse
Affiliation(s)
- Saswati Paul
- Department of Biological Sciences, Konkuk University Seoul, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine Daejeon, South Korea
| | - Jennifer L Bizon
- Department of Neuroscience, College of Medicine, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University Seoul, South Korea
| |
Collapse
|
121
|
Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats. Physiol Behav 2015; 139:41-9. [DOI: 10.1016/j.physbeh.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023]
|
122
|
Effects of different timing of stress on corticosterone, BDNF and memory in male rats. Physiol Behav 2015; 139:459-67. [DOI: 10.1016/j.physbeh.2014.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 02/06/2023]
|
123
|
Siwiec RM, Babaei A, Kern M, Samuel EA, Li SJ, Shaker R. Esophageal acid stimulation alters insular cortex functional connectivity in gastroesophageal reflux disease. Neurogastroenterol Motil 2015; 27:201-11. [PMID: 25367277 PMCID: PMC4308507 DOI: 10.1111/nmo.12464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The insula plays a significant role in the interoceptive processing of visceral stimuli. We have previously shown that gastroesophageal reflux disease (GERD) patients have increased insular cortex activity during esophageal stimulation, suggesting a sensitized esophago-cortical neuraxis. However, information regarding the functional connectivity (FC) of the insula during visceral stimulation is lacking. The primary aim of this study was to investigate the FC of insular subregions during esophageal acid stimulation. METHODS Functional imaging data were obtained from 12 GERD patients and 14 healthy subjects during four steady state conditions: (i) presence of transnasal esophageal catheter (pre-infusion); (ii) neutral solution; (iii) acid infusion; (iv) presence of transnasal esophageal catheter following infusions (post-infusion). The insula was parcellated into six regions of interest. FC maps between each insular ROI and interoceptive regions were created. Differences in FC between GERD patients and healthy subjects were determined across the 4 study conditions. KEY RESULTS All GERD patients experienced heartburn during and after esophageal acidification. Significant differences between GERD patients and healthy subjects were seen in: (i) insula-thalamic FC (neutral solution infusion, acid infusion, post-infusion); (ii) insula-amygdala FC (acid infusion, post-infusion); (iii) insula-hippocampus and insula-cingulate FC (post-infusion). CONCLUSIONS & INFERENCES Esophageal stimulation in GERD patients revealed significant insular cortex FC differences with regions involved in viscerosensation and interoception. The results of our study provide further evidence that the insula, located at the transition of afferent physiologic information to human feelings, is essential for both visceral homeostasis and the experience of heartburn in GERD patients.
Collapse
Affiliation(s)
- Robert M. Siwiec
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Arash Babaei
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Mark Kern
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Erica A. Samuel
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI
| | - Reza Shaker
- Department of Medicine, Gastroenterology & Hepatology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
124
|
Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 2014; 94:1816-25. [PMID: 25035267 PMCID: PMC4263906 DOI: 10.2522/ptj.20130597] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non-pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non-pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non-pain-related stressors, physical therapists should consider screening for non-pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life.
Collapse
|
125
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
126
|
Yum MS, Lee M, Ko TS, Velíšek L. A potential effect of ganaxolone in an animal model of infantile spasms. Epilepsy Res 2014; 108:1492-500. [DOI: 10.1016/j.eplepsyres.2014.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
127
|
Johnson AC, Greenwood-Van Meerveld B. Stress-induced pain: a target for the development of novel therapeutics. J Pharmacol Exp Ther 2014; 351:327-35. [PMID: 25194019 PMCID: PMC4201269 DOI: 10.1124/jpet.114.218065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Although current therapeutics provide relief from acute pain, drugs used for treatment of chronic pain are typically less efficacious and limited by adverse side effects, including tolerance, addiction, and gastrointestinal upset. Thus, there is a significant need for novel therapies for the treatment of chronic pain. In concert with chronic pain, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic pain disorders. Stress exacerbation of chronic pain suggests that centrally acting drugs targeting the pain- and stress-responsive brain regions represent a valid target for the development of novel therapeutics. This review provides an overview of how stress modulates spinal and central pain pathways, identifies key neurotransmitters and receptors within these pathways, and highlights their potential as novel targets for therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Anthony C Johnson
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center (B.G.-V.M.), Department of Physiology (B.G.-V.M.), and Oklahoma Center for Neuroscience (A.C.J., B.G.-V.M.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
128
|
Romain G, Opacka-Juffry J. Cerebral ageing-the role of insulin and insulin-like growth factor signalling: A review. World J Neurol 2014; 4:12-22. [DOI: 10.5316/wjn.v4.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Cerebral ageing is a complex biological process associated with progressing cerebrovascular disease and neuronal death. It does not always, however, associate with a functional decline, as the ageing mammalian brain retains considerable functional plasticity which supports successful cerebral ageing where age-related cognitive decline is modest. On the contrary, pathological cerebral ageing results in memory impairment and cognitive deterioration, with Alzheimer’s disease (AD) being a florid example. Trophic/growth factors promote brain plasticity; among them are peptides which belong to the insulin family. Preclinical research suggests that the evolutionarily conserved brain insulin/insulin-like growth factor-1 (IGF-1) signalling system controls lifespan and protects against some features of AD such as neurodegeneration-related accumulation of toxic proteins and cognitive deficiencies, as observed in animal models. Insulin and IGF-1 activate cell signalling mechanisms which play protective and regenerative roles; abnormalities in the insulin/IGF-1 system may trigger a cascade of neurodegeneration in AD. AD patients show cerebral resistance to insulin which associates with IGF-I resistance and dysregulation of insulin/IGF-1 receptors as well as cognitive deterioration. This review is focused on the roles of the insulin/IGF-1 signalling system in cerebral ageing and its potential involvement in neurodegeneration in the human brain as seen against the background of preclinical evidence.
Collapse
|
129
|
Kim TH, Choi J, Kim HG, Kim HR. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:506870. [PMID: 25258696 PMCID: PMC4166658 DOI: 10.1155/2014/506870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Bioresources Regional Innovation Center, Soon Chun Hyang University, Asan 336-745, Republic of Korea
| | - Juhee Choi
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Translational Research Center, Institute of Bio-Science Technology, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
130
|
Allendorfer JB, Heyse H, Mendoza L, Nelson EB, Eliassen JC, Storrs JM, Szaflarski JP. Physiologic and cortical response to acute psychosocial stress in left temporal lobe epilepsy - a pilot cross-sectional fMRI study. Epilepsy Behav 2014; 36:115-23. [PMID: 24907497 DOI: 10.1016/j.yebeh.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022]
Abstract
Stress is commonly reported as a seizure precipitant in individuals with poorly controlled seizures including temporal lobe epilepsy. The aim of the study was to assess the neural and physiologic correlates of psychosocial stress response during functional magnetic resonance imaging (fMRI) and their relationship with seizure occurrence in patients with left temporal lobe epilepsy (LTLE). We enrolled 23 patients with LTLE and 23 age- and sex-matched healthy controls (HCs); all underwent fMRI with control math task (CMT) and stress math task (SMT) and pre-/post-fMRI salivary cortisol analysis (acute stress reactivity calculated as % reduction from post-stress to recovery baseline; dCORT). The Beck Depression Inventory-II (BDI-II) and Perceived Stress Scale (PSS-10) were administered. T-tests of performance and cortisol variables were performed. Processing and single-subject modeling of fMRI response to CMT positive feedback and SMT negative feedback, group comparisons, and whole-brain correlation of seizure occurrence and fMRI response in patients with poorly controlled LTLE were performed. Patients with LTLE and healthy controls were similar in demographics, math performance, heart rate, and PSS-10 scores (all p>0.05). Patients with LTLE exhibited greater dCORT (p=0.048) and lower BDI-II scores (p=0.016) compared with HCs. Patients with poorly controlled LTLE showed a positive association between seizure frequency and dCORT (r=0.73, p=0.016). Functional MRI activation to feedback was similar between groups, including midfrontal, temporal, parietal, and occipital regions. Regression analyses revealed no group differences to positive feedback, but, compared with HCs, patients with LTLE showed decreased activation to negative feedback in the left cerebellum/middle occipital/fusiform gyri, left hippocampus/parahippocampus, bilateral medial frontal/cingulate/superior frontal gyri, right postcentral gyrus/inferior parietal lobule, and right insula/postcentral gyrus (p<0.05, corrected). Patients with poorly controlled LTLE showed negative association between seizure frequency and activation in the bilateral subgenual anterior cingulate (p<0.05, corrected). This study is the first to characterize the cortical and physiologic responses to acute psychosocial stress and to show a significant relationship between seizure control in LTLE and both the hypothalamic-pituitary-adrenal axis and fMRI signal reactivity to acute psychosocial stress. These findings extend our understanding of the complex interplay between stress, physiologic stress markers, and seizures/epilepsy.
Collapse
Affiliation(s)
- Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Heidi Heyse
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Lucy Mendoza
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Erik B Nelson
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - James C Eliassen
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Judd M Storrs
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA; Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
131
|
Dal-Pizzol F, Tomasi CD, Ritter C. Septic encephalopathy: does inflammation drive the brain crazy? REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:251-8. [DOI: 10.1590/1516-4446-2013-1233] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022]
|
132
|
Schoenberg PL. The error processing system in major depressive disorder: Cortical phenotypal marker hypothesis. Biol Psychol 2014; 99:100-14. [DOI: 10.1016/j.biopsycho.2014.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 01/20/2014] [Accepted: 03/19/2014] [Indexed: 12/26/2022]
|
133
|
Buse J, Kirschbaum C, Leckman JF, Münchau A, Roessner V. The Modulating Role of Stress in the Onset and Course of Tourette's Syndrome: A Review. Behav Modif 2014; 38:184-216. [PMID: 24516255 DOI: 10.1177/0145445514522056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Accumulating data indicate a common occurrence of tic exacerbations and periods of psychosocial stress. Patients with Tourette's syndrome (TS) also exhibit aberrant markers of hypothalamic-pituitary-adrenal (HPA) axis activation. Based on these findings, a functional relationship between stress and tic disorders has been suggested, but the underlying mechanism of how stress may affect tic pathology remains to be elucidated. We suggest that dopaminergic and noradrenergic neurotransmission as well as immunology play a crucial role in mediating this relationship. Two possibilities of causal direction might be assumed: (a) psychosocial stress might lead to an exacerbation of tics via activation of HPA axis and subsequent changes in neurotransmission or immunology and (b) TS-related abnormalities in neurotransmission or immunology result in a higher vulnerability of affected patients to respond to psychosocial stress with a strong activation of the HPA axis. It may also be the case that both assumptions hold true and interact with each other.
Collapse
Affiliation(s)
- Judith Buse
- Department of Child and Adolescent Psychiatry, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Clemens Kirschbaum
- Institute of Biopsychology, Department of Psychology, Technische Universität Dresden
| | - James F Leckman
- Child Study Center and Departments of Paediatrics, Psychiatry, and Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
134
|
Alghasham A, Rasheed N. Stress-mediated modulations in dopaminergic system and their subsequent impact on behavioral and oxidative alterations: an update. PHARMACEUTICAL BIOLOGY 2014; 52:368-377. [PMID: 24147890 DOI: 10.3109/13880209.2013.837492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Stress-induced changes in the dopaminergic system and subsequent enhancement of oxidative load and behavior are associated with a wide range of central and peripheral nervous disorders. Dopamine acts as a key neurotransmitter in the brain plays an important role in the regulation of motor and limbic functions. OBJECTIVE This article reviews the effect of stress on central dopaminergic system and its subsequent impact on the alterations in behavior and oxidative stress. METHODS A literature survey in PubMed (Bethesda, MD), Scopus (Philadelphia, PA), SciFinder (Columbus, OH) and Google Scholar (PMV, CA) was performed to gather information regarding the role of stress on central dopaminergic system and its associated behavioral and oxidative alterations. RESULTS Our collective data on behavioral studies and oxidative distress in stressful conditions show the functional reduction in dopaminergic neuronal system that could be one of the factors for the development of stress-induced motor suppression. Collectively, stress caused significant behavioral and oxidative alterations via suppression of neuronal functions of the central dopaminergic system. CONCLUSIONS This study provides an insight into the overall pathophysiological alterations in neuronal functions of the central dopaminergic system caused by acute and chronic unpredictable stress that, in our opinion, represent optimal utility as future therapeutic targets for neurodegenerative disorders.
Collapse
|
135
|
Bergamini MR, Bernardi MM, Sufredini IB, Ciaramicoli MT, Kodama RM, Kabadayan F, Saraceni CHC. Dentin hypersensitivity induces anxiety and increases corticosterone serum levels in rats. Life Sci 2014; 98:96-102. [PMID: 24456713 DOI: 10.1016/j.lfs.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/29/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023]
Abstract
AIMS Investigate the relationships between experimentally induced dentin hypersensitivity (DH) with behavioral, endocrine and dentin erosion data. METHODS Male Wistar rats divided into four groups, two controls and two experimental, received tap water or isotonic solution (Gatorade®, lemon, pH2.7) for 30 or 45 days. The DH test was performed by a cold water stimulus on molars. A score (0-3) was given to the rats' pain response. Anxiety was evaluated by the elevated plus maze model and by serum corticosterone levels. The dentin erosion was observed by scanning electron microscopy (SEM). Anatomopathological studies were performed on the stomach, adrenal, kidney, and liver. RESULTS Relative to control groups, experimental rats showed: 1) increased hypersensitivity scores (control group, 0; experimental groups, 2 (limits 0.5-3) on the 30th day and 2 (limits 1-3) on the 45th day); 2) reduced percentage of time and entries in the open arms and in serum corticosterone levels; 3) totally exposed dentinal tubules on the 30th day in SEM analysis of the teeth; and 4) no alterations in the anatomopathological and histological evaluations. CONCLUSIONS The treatment with isotonic solution for 30 days was able to induce DH after erosive challenge and severe DH was observed after isotonic solution treatment for 45 days. The pain induced by cold stimuli was consistent with the grade of DH. The close relationships between dental erosion, response to pain, serum levels of corticosterone and the EPM behavior responses reveal the effects of DH at several levels.
Collapse
Affiliation(s)
- Marcelo R Bergamini
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| | - Maria M Bernardi
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil.
| | - Ivana B Sufredini
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| | - Marcia T Ciaramicoli
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| | - Ricardo M Kodama
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| | - Fernanda Kabadayan
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| | - Cintia H C Saraceni
- Graduate Program in Dentistry, Paulista University - UNIP, São Paulo, SP, Brazil
| |
Collapse
|
136
|
Ewers K. An integrative medicine approach to the treatment of HSDD: introducing the HURT Model™. SEXUAL AND RELATIONSHIP THERAPY 2014. [DOI: 10.1080/14681994.2013.861897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
137
|
Liu CY, Xu L, Zang YL. Effectiveness of audiovisual interventions on stress responses in adolescents with ENT surgery in hospital: randomized controlled trial protocol. J Adv Nurs 2013; 70:1414-24. [PMID: 24206233 DOI: 10.1111/jan.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2013] [Indexed: 11/30/2022]
Abstract
AIM To investigate the circadian pattern of cortisol secretion and other stress indictors in association with audiovisual stimuli in adolescents having otorhinolaryngological surgery in hospital. BACKGROUND Hospitalization for surgery is a major stressful life event for adolescents causing negative consequences, including anxiety. Recent studies suggest that entertaining and educational interventions might be effective at reducing such adversities, but little is known about the pattern of these responses and effects. DESIGN Randomized controlled trial. METHODS Adolescents with otorhinolaryngological surgery in hospital without any contraindictions for salivary cortisol enzyme immunoassays will be recruited and randomly allocated to experimental, placebo and control. Stress indicators will be collected regularly for 5 days. Standard audiovisual interventions will be displayed for experimental and placebo groups including a simultaneous video-recording of facial and behavioural changes on the second afternoon postadmission and stress indicators will be collected pre- and three times with 20-minute interval postintervention. Follow-up will be conducted to evaluate the longer term effects at 2 weeks, 1-month and 3 months postadmission, respectively. Descriptive and comparative analyses of stress indicators will be performed to examine group differences. Competitive funding was obtained from the Independent Innovation Foundation of Shandong University for interdisciplinary research in 2012. DISCUSSION This study will help identify timeslots for interventions for integrating strength-building into stress response reduction in adolescents hospitalized for surgery.
Collapse
Affiliation(s)
- Cai Yun Liu
- School of Nursing, Shandong University, Jinan, China; ENT Unit, Shandong Provincial Hospital (West Branch), Jinan, China
| | | | | |
Collapse
|
138
|
Mora F. Successful brain aging: plasticity, environmental enrichment, and lifestyle. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576888 PMCID: PMC3622468 DOI: 10.31887/dcns.2013.15.1/fmora] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a considerable functional plasticity, and that this plasticity is positively promoted by genes activated by different lifestyle factors. In this article some of these lifestyle factors and their mechanisms of action are reviewed, including environmental enrichment and the importance of food intake and some nutrients. Aerobic physical exercise and reduction of chronic stress are also briefly reviewed. It is proposed that lifestyle factors are powerful instruments to promote healthy and successful aging of the brain and delay the appearance of age-related cognitive deficits in elderly people.
Collapse
Affiliation(s)
- Francisco Mora
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
139
|
Azhar ZM, Zubaidah JO, Norjan KON, Zhuang CYJ, Tsang F. A pilot placebo-controlled, double-blind, and randomized study on the cognition-enhancing benefits of a proprietary chicken meat ingredient in healthy subjects. Nutr J 2013; 12:121. [PMID: 23945213 PMCID: PMC3765905 DOI: 10.1186/1475-2891-12-121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/12/2013] [Indexed: 11/12/2022] Open
Abstract
Background It has long been postulated that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that could be responsible for the action of diet on brain health and cognitive function. Here, through a double-blind, randomized, placebo-controlled trial, we asked if the newly discovered chicken meat ingredient-168 (CMI-168) could be beneficial to the cognitive function in healthy adults. Methods Normal, healthy subjects were supplemented with either placebo or CMI-168 for 6 weeks. The subjects were given a series of cognitive tests to examine their levels of cognitive functioning at the beginning and end of supplementation, as well as two weeks after termination of supplementation. The combination of these tests, namely Digit Span Backwards, Letter-Number Sequencing, and the Rey Auditory Verbal Learning Test (RAVLT), was used to assess the subjects’ attention and working memory. For all comparisons, the probability level of p < 0.05 was taken as statistically significant using repeated measure 2-way ANOVA followed by Bonferroni post-hoc test. Results Overall, subjects supplemented with CMI-168 showed significantly (p < 0.01) better performance in all cognitive tests after 6 weeks’ supplementation compared to control and such superior performance was maintained even 2 weeks after termination of supplementation. Conclusions The present study reveals the cognition-enhancing properties of a recently developed chicken meat ingredient, likely arising from the promotion of attention and prefrontal cortex functions.
Collapse
Affiliation(s)
- Zain M Azhar
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400UPM, Malaysia.
| | | | | | | | | |
Collapse
|
140
|
van Wijngaarden P, Franklin RJM. Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development 2013; 140:2562-75. [PMID: 23715549 DOI: 10.1242/dev.092262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The growing burden of the rapidly ageing global population has reinvigorated interest in the science of ageing and rejuvenation. Among organ systems, rejuvenation of the central nervous system (CNS) is arguably the most complex and challenging of tasks owing, among other things, to its startling structural and functional complexity and its restricted capacity for repair. Thus, the prospect of meaningful rejuvenation of the CNS has seemed an impossible goal; however, advances in stem cell science are beginning to challenge this assumption. This Review outlines these advances with a focus on ageing and rejuvenation of key endogenous stem and progenitor cell compartments in the CNS. Insights gleaned from studies of model organisms, chiefly rodents, will be considered in parallel with human studies.
Collapse
Affiliation(s)
- Peter van Wijngaarden
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | |
Collapse
|
141
|
Buse J, Schoenefeld K, Münchau A, Roessner V. Neuromodulation in Tourette syndrome: Dopamine and beyond. Neurosci Biobehav Rev 2013; 37:1069-84. [DOI: 10.1016/j.neubiorev.2012.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 01/11/2023]
|
142
|
Attarzadeh-Yazdi G, Karimi S, Azizi P, Yazdi-Ravandi S, Hesam S, Haghparast A. Inhibitory effects of forced swim stress and corticosterone on the acquisition but not expression of morphine-induced conditioned place preference: involvement of glucocorticoid receptor in the basolateral amygdala. Behav Brain Res 2013; 252:339-46. [PMID: 23800381 DOI: 10.1016/j.bbr.2013.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 01/11/2023]
Abstract
Addiction is a common chronic psychiatric disease which represents a global problem and stress has an important role to increase drug addiction and relapse. In the present study, we investigated the effects of physical stress and exogenous corticosterone on the acquisition and expression of morphine-induced conditioned place preference (CPP). Also, we tried to find out the role of glucocorticoid receptors (GRs) of basolateral amygdala (BLA) in this regard. In the CPP paradigm, conditioning score and locomotion activity were recorded by Ethovision software. Male adult rats received forced swim stress (FSS) as a physical stress or corticosterone (10 mg/kg; ip) as a dominant stress hormone in rodents, 10min before morphine injection (5 mg/kg; sc) during three conditioning days (acquisition) or just prior to CPP test in the post-conditioning day (expression). In FSS procedure, animals were forced to swim for 6 min in cylinder filled with water (24-27 °C). To evaluate the role of glucocorticoid receptors in the BLA, different doses of mifepristone (RU38486) as a GR antagonist were injected into the BLA (0.3, 3 and 30 ng/side) during 3-day conditioning phase before FSS or injection of corticosterone in morphine-CPP paradigm. The results showed that FSS and corticosterone reduce the acquisition but not expression of morphine-induced CPP. Moreover, blockade of GRs in the BLA could diminish the inhibitory effects of FSS or corticosterone on the acquisition of morphine-induced CPP. It seems that stress exerts its effect on reward pathway via glucocorticoid receptors in the BLA.
Collapse
Affiliation(s)
- Ghassem Attarzadeh-Yazdi
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | | | | |
Collapse
|
143
|
Aller MA, Arias JI, Prieto I, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model 2013; 10:6. [PMID: 23374964 PMCID: PMC3577641 DOI: 10.1186/1742-4682-10-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient's injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose-Ignacio Arias
- General and Digestive Surgery Unit, Monte Naranco Hospital, Oviedo, Asturias, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz Hospital, Autonomous University, Madrid, Spain
| | - Carlos Gilsanz
- General and Digestive Surgery Unit, Sudeste University Hospital, Arganda del Rey, Madrid, Spain
| | - Ana Arias
- Department of Medicine, Puerta de Hierro Hospital, Autonomous University, Madrid, Spain
| | - Heping Yang
- Division of Gastroenterology and Liver Disease, USC Research Centre for Liver Diseases, Los Angeles, CA, USA
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
144
|
Felizola SJ, Nakamura Y, Hui XG, Satoh F, Morimoto R, Midorikawa S, Suzuki S, Rainey WE, Sasano H. Estrogen-related receptor α in normal adrenal cortex and adrenocortical tumors: involvement in development and oncogenesis. Mol Cell Endocrinol 2013; 365:207-11. [PMID: 23123734 PMCID: PMC4097865 DOI: 10.1016/j.mce.2012.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
AIMS The nuclear hormone receptor estrogen-related receptor α (ERRα) regulates the activation of mitochondrial genes in various human tissues, but its role in the adrenal gland and its disorders has not been defined. Therefore, we examined ERRα expression in both normal adrenal cortex (NAC) and adrenocortical tumor (ACT) in order to study the possible correlation of ERRα with adrenal development and tumor development. METHODS Human adrenal specimens (non-pathological fetal n=7; non-pathological post-birth n=40; aldosterone producing adenoma (APA) n=11; cortisol producing adenoma (CPA) n=11; adrenocortical carcinoma (ACC) n=8) were immunohistochemically examined in this study. NAC (n=13) and ACT (n=28) frozen tissue specimens were also available for studying ERRα mRNA levels. KEY FINDINGS In fetal NAC tissues, ERRα labeling index (LI) in fetal zone (FZ) was significantly higher that that in neocortex (NC), and the differences among age groups for overall mean LI was statistically significant when analyzed according to individual cortical layers. ERRα LI was also significantly higher in ACC than in other types of ACT. ERRα mRNA was detected in NAC and all types of ACT. SIGNIFICANCE Results of our present study suggest a possible role of ERRα in adrenal development and ACC.
Collapse
Affiliation(s)
- Saulo J.A. Felizola
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Yasuhiro Nakamura
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Xiao-Gang Hui
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Fumitoshi Satoh
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Ryo Morimoto
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Sanae Midorikawa
- Fukushima Medical University, Department of Radiation Health Management, Fukushima, Japan
| | - Shinichi Suzuki
- Fukushima Medical University, Department of Organ Regulatory Surgery, Fukushima, Japan
| | - William E. Rainey
- University of Michigan, Department of Physiology and Medicine, Ann Arbor, Michigan, USA
| | - Hironobu Sasano
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| |
Collapse
|
145
|
Chronic adrenocorticotrophic hormone treatment alters tricyclic antidepressant efficacy and prefrontal monoamine tissue levels. Behav Brain Res 2012; 242:76-83. [PMID: 23276607 DOI: 10.1016/j.bbr.2012.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 11/23/2022]
Abstract
Several animal models are currently utilised in the investigation of major depressive disorder; however, each is validated by its response to antidepressant pharmacotherapy. Few animal models consider the notion of antidepressant treatment resistance. Chronic daily administration of adrenocorticotropic hormone (ACTH) or corticosterone can alter behavioural responses to antidepressants, effectively blocking antidepressant efficacy. Herein, we demonstrate that ACTH-(1-24) (100μg/day; 14 days) blocks the immobility-reducing 'antidepressant' effects of a single dose of imipramine (10mg/kg) in the forced swim test. This finding was accompanied by altered monoamine tissue levels in the prefrontal cortex (PFC) 1h after exposure to the acute stress of the forced swim test. PFC tissue from ACTH pre-treated animals contained significantly higher serotonin, noradrenaline and adrenaline concentrations relative to saline pre-treated controls. Conversely, dopamine levels were significantly decreased. Altered plasma corticosterone responses to ACTH injections were observed over the treatment course. Measures were taken on treatment days 1, 4, 8, 11, 14 and 15. ACTH administration initially enhanced plasma corticosterone levels, however, these normalised to levels consistent with control animals by day 14. No differences in corticosterone levels were observed across the treatment time course in saline-treated animals. Taken together these results indicate that pre-treatment with ACTH (100μg/day; 14 days) blocks the antidepressant effects of imipramine (10mg/kg), significantly alters key PFC monoamine responses to stress and downregulates glucocorticoid responses. These results suggest that chronic ACTH treatment is a promising paradigm for elucidation of mechanisms mediating antidepressant treatment resistance.
Collapse
|
146
|
Garrido P, De Blas M, Ronzoni G, Cordero I, Antón M, Giné E, Santos A, Del Arco A, Segovia G, Mora F. Differential effects of environmental enrichment and isolation housing on the hormonal and neurochemical responses to stress in the prefrontal cortex of the adult rat: relationship to working and emotional memories. J Neural Transm (Vienna) 2012; 120:829-43. [DOI: 10.1007/s00702-012-0935-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/29/2012] [Indexed: 12/17/2022]
|
147
|
Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 2012; 405:3753-71. [PMID: 23241816 PMCID: PMC3608872 DOI: 10.1007/s00216-012-6578-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.
Collapse
|
148
|
Fuxe K, Agnati LF, Mora F. Brain integration: from networks to the cellular-molecular level. Brain Res 2012; 1476:1-2. [PMID: 23021761 DOI: 10.1016/j.brainres.2012.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
|
149
|
Abstract
Hematopoiesis is well-conserved between Drosophila and vertebrates. Similar as in vertebrates, the sites of hematopoiesis shift during Drosophila development. Blood cells (hemocytes) originate de novo during hematopoietic waves in the embryo and in the Drosophila lymph gland. In contrast, the hematopoietic wave in the larva is based on the colonization of resident hematopoietic sites by differentiated hemocytes that arise in the embryo, much like in vertebrates the colonization of peripheral tissues by primitive macrophages of the yolk sac, or the seeding of fetal liver, spleen and bone marrow by hematopoietic stem and progenitor cells. At the transition to the larval stage, Drosophila embryonic hemocytes retreat to hematopoietic "niches," i.e., segmentally repeated hematopoietic pockets of the larval body wall that are jointly shared with sensory neurons and other cells of the peripheral nervous system (PNS). Hemocytes rely on the PNS for their localization and survival, and are induced to proliferate in these microenvironments, expanding to form the larval hematopoietic system. In this process, differentiated hemocytes from the embryo resume proliferation and self-renew, omitting the need for an undifferentiated prohemocyte progenitor. Larval hematopoiesis is the first Drosophila model for blood cell colonization and niche support by the PNS. It suggests an interface where innocuous or noxious sensory inputs regulate blood cell homeostasis or immune responses. The system adds to the growing concept of nervous system dependence of hematopoietic microenvironments and organ stem cell niches, which is being uncovered across phyla.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA USA
- Department of Cell and Tissue Biology; University of California, San Francisco; San Francisco, CA USA
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; University of California, San Francisco; San Francisco, CA USA
- Department of Cell and Tissue Biology; University of California, San Francisco; San Francisco, CA USA
- Department of Anatomy; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
150
|
Abdel-Sater KA, Abdel-Daiem WM, Sayyed Bakheet M. The gender difference of selective serotonin reuptake inhibitor, fluoxetine in adult rats with stress-induced gastric ulcer. Eur J Pharmacol 2012; 688:42-8. [PMID: 22546225 DOI: 10.1016/j.ejphar.2012.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/16/2022]
Abstract
We investigated the gender difference of selective serotonin reuptake inhibitor, fluoxetine in adult rats with stress-induced gastric ulcer. The rats were randomly divided into six groups: Group I, control males and group II, control females; group III, acute cold restraint stressed males and group IV, acute cold restraint stressed females; group V, fluoxetine-treated stressed males and group VI, fluoxetine-treated stressed females. Acute cold restraint stress was established by fixing the four limbs of the rat and placing it in a refrigerator at 4°C for 3h. Fluoxetine was given intraperitoneal in a single dose of 10mg/kg/day. After 2 weeks, stomach and brain tissues were collected for the assay of gastric malonaldehyde (MDA), catalase, nitric oxide (NO) and cortical gamma aminobutyric acid (GABA). Stressed animals exhibited increased total acidity in association with decreased gastric secretion volume. Gastric MDA was increased while gastric catalase, NO, and cortical GABA were decreased in stressed male rats when compared to stressed females. However, fluoxetine administration attenuated these stress-induced changes especially in stressed male animals. Stressed male rats were more responsive to the antiulcer effect of fluoxetine more than stressed females. However, fluoxetine might be considered to be the first-choice drug in depressive patients with gastric ulcers in the future.
Collapse
Affiliation(s)
- Khaled A Abdel-Sater
- Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Al-Azher Faculty of Medicine, Assiut, Egypt.
| | | | | |
Collapse
|