101
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
102
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
103
|
Yasuda K, Mili S. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:589-603. [PMID: 27038103 PMCID: PMC5071740 DOI: 10.1002/wrna.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult‐onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA‐binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589–603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kyota Yasuda
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Stavroula Mili
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
104
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
105
|
Zhao X, Feng Z, Ling KKY, Mollin A, Sheedy J, Yeh S, Petruska J, Narasimhan J, Dakka A, Welch EM, Karp G, Chen KS, Metzger F, Ratni H, Lotti F, Tisdale S, Naryshkin NA, Pellizzoni L, Paushkin S, Ko CP, Weetall M. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy. Hum Mol Genet 2016; 25:1885-1899. [PMID: 26931466 PMCID: PMC5062580 DOI: 10.1093/hmg/ddw062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.
Collapse
Affiliation(s)
- Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Karen K Y Ling
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Shirley Yeh
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Gary Karp
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sarah Tisdale
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | | | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sergey Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA,
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA,
| |
Collapse
|
106
|
Janas AM, Sapoń K, Janas T, Stowell MHB, Janas T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1139-51. [PMID: 26874206 DOI: 10.1016/j.bbamem.2016.02.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Abstract
The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna M Janas
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Karolina Sapoń
- Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA; Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Tadeusz Janas
- Department of Biotechnology and Molecular Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
107
|
Boido M, Vercelli A. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy. Front Neuroanat 2016; 10:6. [PMID: 26869891 PMCID: PMC4737916 DOI: 10.3389/fnana.2016.00006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, representing the most common fatal pediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival. Here, we provide a description of NMJ development/maintenance/maturation in physiological conditions and in SMA, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs.
Collapse
Affiliation(s)
- Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino Torino, Italy
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino Torino, Italy
| |
Collapse
|
108
|
Gabanella F, Pisani C, Borreca A, Farioli-Vecchioli S, Ciotti MT, Ingegnere T, Onori A, Ammassari-Teule M, Corbi N, Canu N, Monaco L, Passananti C, Di Certo MG. SMN affects membrane remodelling and anchoring of the protein synthesis machinery. J Cell Sci 2016; 129:804-16. [PMID: 26743087 DOI: 10.1242/jcs.176750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Antonella Borreca
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Stefano Farioli-Vecchioli
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Maria Teresa Ciotti
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome 00143, Italy
| | - Tiziano Ingegnere
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo 01100, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Martine Ammassari-Teule
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Nadia Canu
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy Department of System Medicine, University of 'Tor Vergata', Rome 00137, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| |
Collapse
|
109
|
Powis RA, Gillingwater TH. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. J Anat 2015; 228:443-51. [PMID: 26576026 DOI: 10.1111/joa.12419] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
110
|
Ma J, Zhang Z, Wang J. Small nuclear ribonucleoprotein associated polypeptide N accelerates cell proliferation in pancreatic adenocarcinoma. Mol Med Rep 2015; 12:6060-4. [PMID: 26261020 DOI: 10.3892/mmr.2015.4208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
The spliceosome, the large RNA‑protein molecular complex, is crucial for pre‑mRNA splicing. Several antitumor drugs have been found to tightly bind to the components of the spliceosome and mutations in the spliceosome have been reported in several types of cancer. However, the involvement of the spliceosome in pancreatic adenocarcinoma remains unclear. In the present study, small nuclear ribonucleoprotein associated polypeptide N (SNRPN), a key constituent of spliceosomes, was disrupted in BxPC‑3 pancreatic adenocarcinoma cells using lentivirus‑mediated RNA interference (RNAi). It was found that knockdown of SNRPN reduced the proliferation ability of BxPC‑3 cells, as determined by an MTT assay. Furthermore, cell colony formation was impaired in SNRPN depleted adenocarcinoma cells and cell cycle analysis showed that depletion of SNRPN led to S phase cell cycle arrest and apoptosis. These results suggest that SNRPN is a key player in pancreatic adenocarcinoma cell growth, and targeted loss of SNRPN may be a potential therapeutic method for pancreatic cancer.
Collapse
Affiliation(s)
- Jin Ma
- Department of Gastroenterology, The Affiliated Ruijin Hospital Lu Wan Branch of Medical College, Shanghai Jiao Tong University, Shanghai 200020, P.R. China
| | - Zhuo Zhang
- Department of General Surgery, The Affiliated Ruijin Hospital of Medical College, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jiancheng Wang
- Department of General Surgery, The Affiliated Ruijin Hospital of Medical College, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
111
|
Murray LM, Beauvais A, Gibeault S, Courtney NL, Kothary R. Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy. Acta Neuropathol Commun 2015; 3:55. [PMID: 26374403 PMCID: PMC4570693 DOI: 10.1186/s40478-015-0231-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The term motor neuron disease encompasses a spectrum of disorders in which motor neurons are the lost. Importantly, while some motor neurons are lost early in disease and others remain intact at disease end-stage. This creates a valuable experimental paradigm to investigate the factors that regulate motor neuron vulnerability. Spinal muscular atrophy is a childhood motor neuron disease caused by mutations or deletions in the SMN1 gene. Here, we have performed transcriptional analysis on differentially vulnerable motor neurons from an intermediate mouse model of Spinal muscular atrophy at a presymptomatic time point. RESULTS We have characterised two differentially vulnerable populations, differing in the level neuromuscular junction loss. Transcriptional analysis on motor neuron cell bodies revealed that reduced Smn levels correlate with a reduction of transcripts associated with the ribosome, rRNA binding, ubiquitination and oxidative phosphorylation. Furthermore, P53 pathway activation precedes neuromuscular junction loss, suggesting that denervation may be a consequence, rather than a cause of motor neuron death in Spinal muscular atrophy. Finally, increased vulnerability correlates with a decrease in the positive regulation of DNA repair. CONCLUSIONS This study identifies pathways related to the function of Smn and associated with differential motor unit vulnerability, thus presenting a number of exciting targets for future therapeutic development.
Collapse
|
112
|
Abstract
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease.
Collapse
|
113
|
Gupta K, Martin R, Sharp R, Sarachan KL, Ninan NS, Van Duyne GD. Oligomeric Properties of Survival Motor Neuron·Gemin2 Complexes. J Biol Chem 2015; 290:20185-99. [PMID: 26092730 PMCID: PMC4536428 DOI: 10.1074/jbc.m115.667279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/18/2015] [Indexed: 12/29/2022] Open
Abstract
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μM. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.
Collapse
Affiliation(s)
- Kushol Gupta
- From the Department of Biochemistry and Biophysics and
| | - Renee Martin
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Robert Sharp
- From the Department of Biochemistry and Biophysics and
| | - Kathryn L Sarachan
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nisha S Ninan
- From the Department of Biochemistry and Biophysics and the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | | |
Collapse
|
114
|
Linder B, Fischer U, Gehring NH. mRNA metabolism and neuronal disease. FEBS Lett 2015; 589:1598-606. [DOI: 10.1016/j.febslet.2015.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
|
115
|
Grice SJ, Sleigh JN, Motley WW, Liu JL, Burgess RW, Talbot K, Cader MZ. Dominant, toxic gain-of-function mutations in gars lead to non-cell autonomous neuropathology. Hum Mol Genet 2015; 24:4397-406. [PMID: 25972375 PMCID: PMC4492401 DOI: 10.1093/hmg/ddv176] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - James N Sleigh
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - William W Motley
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA and
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK,
| |
Collapse
|
116
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
117
|
Kaczmarek A, Schneider S, Wirth B, Riessland M. Investigational therapies for the treatment of spinal muscular atrophy. Expert Opin Investig Drugs 2015; 24:867-81. [DOI: 10.1517/13543784.2015.1038341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Kaczmarek
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Svenja Schneider
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Brunhilde Wirth
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Markus Riessland
- 1University of Cologne, Institute of Human Genetics, Kerpener Str. 34, Cologne 50931, Germany ;
- 2University of Cologne, Institute for Genetics, Cologne, Germany
- 3University of Cologne, Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
118
|
Singh NN, Lee BM, Singh RN. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Ann N Y Acad Sci 2015; 1341:176-87. [PMID: 25727246 PMCID: PMC4651915 DOI: 10.1111/nyas.12727] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans carry two copies of the survival motor neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Our discovery of intronic splicing silencer N1 (ISS-N1) is a promising target, currently in a phase III clinical trial, for an antisense oligonucleotide-mediated splicing correction in SMA. We have recently shown that the first residue of ISS-N1 is locked in a unique RNA structure that we term ISTL1 (internal stem through long-distance interaction-1). Complementary strands of ISTL1 are separated from each other by 279 nucleotides. Using site-specific mutations and chemical structure probing, we confirmed the formation and functional significance of ISTL1. Located in the middle of intron 7, the 3' strand of ISTL1 falls within an inhibitory region that we term ISS-N2. We demonstrate that an antisense oligonucleotide-mediated sequestration of ISS-N2 fully corrects SMN2 exon 7 splicing and restores high levels of SMN in SMA patient cells. These results underscore the therapeutic potential of the regulatory information present in a secondary and high-order RNA structure of a human intron.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
119
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
120
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
121
|
Dal Mas A, Rogalska M, Bussani E, Pagani F. Improvement of SMN2 pre-mRNA processing mediated by exon-specific U1 small nuclear RNA. Am J Hum Genet 2015; 96:93-103. [PMID: 25557785 PMCID: PMC4289686 DOI: 10.1016/j.ajhg.2014.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022] Open
Abstract
Exon-specific U1 snRNAs (ExSpe U1s) are modified U1 snRNAs that interact with intronic sequences downstream of the 5′ splice site (ss) by complementarity. This process restores exon skipping caused by different types of mutation. We have investigated the molecular mechanism and activity of these molecules in spinal muscular atrophy (SMA), a genetic neuromuscular disease where a silent exonic transition on the survival motor neuron 2 (SMN2) leads to exon 7 (E7) skipping. By using different cellular models, we show that a single chromosome-integrated copy of ExSpe U1 induced a significant correction of endogenous SMN2 E7 splicing and resulted in the restoration of the corresponding SMN protein levels. Interestingly, the analysis of pre-mRNA transcript abundance and decay showed that ExSpe U1s promote E7 inclusion and stabilizes the SMN pre-mRNA intermediate. This selective effect on pre-mRNA stability resulted in higher levels of SMN mRNAs in comparison with those after treatment with an antisense oligonucleotide (AON) that targets corresponding intronic sequences. In mice harboring the SMN2 transgene, AAV-mediated delivery of ExSpe U1 increased E7 inclusion in brain, heart, liver, kidney, and skeletal muscle. The positive effect of ExSpe U1s on SMN pre-mRNA processing highlights their therapeutic potential in SMA and in other pathologies caused by exon-skipping mutations.
Collapse
|
122
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
123
|
Aghamaleky Sarvestany A, Hunter G, Tavendale A, Lamont DJ, Llavero Hurtado M, Graham LC, Wishart TM, Gillingwater TH. Label-free quantitative proteomic profiling identifies disruption of ubiquitin homeostasis as a key driver of Schwann cell defects in spinal muscular atrophy. J Proteome Res 2014; 13:4546-57. [PMID: 25151848 DOI: 10.1021/pr500492j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low levels of survival of motor neuron (SMN) protein cause the neuromuscular disease spinal muscular atrophy (SMA), characterized by degeneration of lower motor neurons and atrophy of skeletal muscle. Recent work demonstrated that low levels of SMN also trigger pathological changes in Schwann cells, leading to abnormal axon myelination and disrupted deposition of extracellular matrix proteins in peripheral nerve. However, the molecular pathways linking SMN depletion to intrinsic defects in Schwann cells remained unclear. Label-free proteomics analysis of Schwann cells isolated from SMA mouse peripheral nerve revealed widespread changes to the Schwann cell proteome, including disruption to growth/proliferation, cell death/survival, and molecular transport pathways. Functional clustering analyses revealed significant disruption to a number of proteins contributing to ubiquitination pathways, including reduced levels of ubiquitin-like modifier activating enzyme 1 (Uba1). Pharmacological suppression of Uba1 in Schwann cells was sufficient to reproduce the defective myelination phenotype seen in SMA. These findings demonstrate an important role for SMN protein and ubiquitin-dependent pathways in maintaining Schwann cell homeostasis and provide significant additional experimental evidence supporting a key role for ubiquitin pathways and, Uba1 in particular, in driving SMA pathogenesis across a broad range of cells and tissues.
Collapse
Affiliation(s)
- Arwin Aghamaleky Sarvestany
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Borg R, Cauchi RJ. GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci 2014; 8:325. [PMID: 25360080 PMCID: PMC4197776 DOI: 10.3389/fnins.2014.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development.
Collapse
Affiliation(s)
- Rebecca Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| |
Collapse
|
125
|
Hornburg D, Drepper C, Butter F, Meissner F, Sendtner M, Mann M. Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics. Mol Cell Proteomics 2014; 13:3410-20. [PMID: 25193168 PMCID: PMC4256493 DOI: 10.1074/mcp.m113.037291] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.
Collapse
Affiliation(s)
- Daniel Hornburg
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Carsten Drepper
- §Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, 97078 Germany; ¶Institute for Clinical Neurobiology, Wuerzburg, Germany
| | - Falk Butter
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; ‖Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Felix Meissner
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany;
| | | | - Matthias Mann
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany;
| |
Collapse
|
126
|
Hao LT, Duy PQ, Jontes JD, Beattie CE. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy. Hum Mol Genet 2014; 24:346-60. [PMID: 25180019 DOI: 10.1093/hmg/ddu447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.
Collapse
Affiliation(s)
- Le Thi Hao
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Phan Q Duy
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - James D Jontes
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Christine E Beattie
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| |
Collapse
|
127
|
Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z, Ling KKY, Karp GM, Qi H, Woll MG, Chen G, Zhang N, Gabbeta V, Vazirani P, Bhattacharyya A, Furia B, Risher N, Sheedy J, Kong R, Ma J, Turpoff A, Lee CS, Zhang X, Moon YC, Trifillis P, Welch EM, Colacino JM, Babiak J, Almstead NG, Peltz SW, Eng LA, Chen KS, Mull JL, Lynes MS, Rubin LL, Fontoura P, Santarelli L, Haehnke D, McCarthy KD, Schmucki R, Ebeling M, Sivaramakrishnan M, Ko CP, Paushkin SV, Ratni H, Gerlach I, Ghosh A, Metzger F. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014; 345:688-93. [PMID: 25104390 DOI: 10.1126/science.1250127] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.
Collapse
Affiliation(s)
| | - Marla Weetall
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Amal Dakka
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Jana Narasimhan
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Xin Zhao
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gary M Karp
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Hongyan Qi
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Matthew G Woll
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Guangming Chen
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Nanjing Zhang
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - Priya Vazirani
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - Bansri Furia
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Nicole Risher
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Josephine Sheedy
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Ronald Kong
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Jiyuan Ma
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Anthony Turpoff
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Chang-Sun Lee
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Xiaoyan Zhang
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Young-Choon Moon
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - Ellen M Welch
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Joseph M Colacino
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - John Babiak
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Neil G Almstead
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Stuart W Peltz
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA.
| | - Loren A Eng
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Jesse L Mull
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Maureen S Lynes
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Paulo Fontoura
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Luca Santarelli
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Haehnke
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | | | - Roland Schmucki
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Ebeling
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manaswini Sivaramakrishnan
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sergey V Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Hasane Ratni
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Irene Gerlach
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anirvan Ghosh
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Friedrich Metzger
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
128
|
SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 2014; 10:e1004489. [PMID: 25144193 PMCID: PMC4140637 DOI: 10.1371/journal.pgen.1004489] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN. Spinal Muscular Atrophy (SMA) is a prevalent childhood neuromuscular disease, which in its most common form causes death by the age of two. One in fifty Americans is a carrier for SMA, making this genetic disease a serious health concern. SMA is caused by loss of function mutations in the survival motor neuron 1 (SMN1) gene. SMN is an essential protein and has a well-characterized function in the assembly of small nuclear ribonucleoproteins (snRNPs), which are core components of the spliceosome. To elucidate the phenotypic consequences of disrupting specific SMN protein interactions, we have generated a series of SMA-causing point mutations, modeled in Drosophila melanogaster. Using this system, we have shown that key aspects of SMN structure and function are conserved between humans and flies. Intragenic complementation analyses reveal the potential for dominant negative interactions between wild-type and mutant SMN subunits, highlighting the essential nature of the YG box in formation of higher-order SMN multimers. These results provide a basis for future studies investigating therapy targeted at restoration of functional SMN oligomers.
Collapse
|
129
|
Kye MJ, Niederst ED, Wertz MH, Gonçalves IDCG, Akten B, Dover KZ, Peters M, Riessland M, Neveu P, Wirth B, Kosik KS, Sardi SP, Monani UR, Passini MA, Sahin M. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23:6318-31. [PMID: 25055867 DOI: 10.1093/hmg/ddu350] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.
Collapse
Affiliation(s)
- Min Jeong Kye
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA, Institute of Human Genetics, Institute for Genetics and
| | - Emily D Niederst
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary H Wertz
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bikem Akten
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katarzyna Z Dover
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology and
| | - Miriam Peters
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Markus Riessland
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Pierre Neveu
- Kavli Institute for Theoretical Physics and, Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany and
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - S Pablo Sardi
- Genzyme, a Sanofi Company, Framingham, MA 01701, USA
| | - Umrao R Monani
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology and, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Mustafa Sahin
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA,
| |
Collapse
|
130
|
Investigations of curcumin and resveratrol on neurite outgrowth: perspectives on spinal muscular atrophy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:709108. [PMID: 25105137 PMCID: PMC4101952 DOI: 10.1155/2014/709108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022]
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease with progressive muscle weakness and atrophy. SMA is caused by low levels of the Survival of Motor Neuron (SMN) protein, which also leads to neurite outgrowth defects in neuronal cells. Rescue of the outgrowth defect is thought to be a strategy for SMA treatment. Polyphenolic histone deacetylase (HDAC) inhibitors might be good candidates due to their neuritogenic properties. In the present study, it was investigated whether neurite outgrowth defects could be rescued by curcumin and resveratrol, which are SMN-inducing polyphenols, having HDAC inhibition activity. According to our results, although curcumin and resveratrol failed to restore the neurite outgrowth defects, the SMN protein was found to be necessary for the neurite-promoting activity of curcumin in neuron-like PC12 cells.
Collapse
|
131
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
132
|
Wiley DJ, Juan I, Le H, Cai X, Baumbach L, Beattie C, D'Urso G. Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases. F1000Res 2014; 3:121. [PMID: 25075304 PMCID: PMC4097366 DOI: 10.12688/f1000research.4188.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our
Yeast
Augmented
Network
Analysis (YANA) approach and test it with the X-linked spinal muscular atrophy (SMA) disease gene
UBA1. First, we express
UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of
UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct
UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish) SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.
Collapse
Affiliation(s)
- David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ilona Juan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hao Le
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - Xiaodong Cai
- Department of Engineering, University of Miami, Miami, FL, 33124, USA
| | - Lisa Baumbach
- Integrated Functional Cancer Genomics, TGEN, Phoenix, AZ, 85004, USA
| | - Christine Beattie
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - Gennaro D'Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
133
|
Li DK, Tisdale S, Lotti F, Pellizzoni L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 2014; 32:22-9. [PMID: 24769255 DOI: 10.1016/j.semcdb.2014.04.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
Abstract
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease.
Collapse
Affiliation(s)
- Darrick K Li
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
134
|
Robbins KL, Glascock JJ, Osman EY, Miller MR, Lorson CL. Defining the therapeutic window in a severe animal model of spinal muscular atrophy. Hum Mol Genet 2014; 23:4559-68. [PMID: 24722206 DOI: 10.1093/hmg/ddu169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of a single gene, Survival Motor Neuron-1 (SMN1). Administration of a self-complementary Adeno-Associated Virus vector expressing full-length SMN cDNA (scAAV-SMN) has proven an effective means to rescue the SMA phenotype in SMA mice, either by intravenous (IV) or intracerebroventricular (ICV) administration at very early time points. We have recently shown that ICV delivery of scAAV9-SMN is more effective than a similar dose of vector administered via an IV injection, thereby providing an important mechanism to examine a timeline for rescuing the disease and determining the therapeutic window in a severe model of SMA. In this report, we utilized a relatively severe mouse model of SMA, SMNΔ7. Animals were injected with scAAV9-SMN vector via ICV injection on a single day, from P2 through P8. At each delivery point from P2 through P8, scAAV9-SMN decreased disease severity. A near complete rescue was obtained following P2 injection while a P8 injection produced a ∼ 40% extension in survival. Analysis of the underlying neuromuscular junction (NMJ) pathology revealed that late-stage delivery of the vector failed to provide protection from NMJ defects despite robust SMN expression in the central nervous system. While our study demonstrates that a maximal benefit is obtained when treatment is delivered during pre-symptomatic stages, significant therapeutic benefit can still be achieved after the onset of disease symptoms.
Collapse
Affiliation(s)
- Kate L Robbins
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center
| | - Jacqueline J Glascock
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| | - Erkan Y Osman
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| | - Madeline R Miller
- Genetics Area Program, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| |
Collapse
|
135
|
Lenzken SC, Achsel T, Carrì MT, Barabino SML. Neuronal RNA-binding proteins in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:565-76. [PMID: 24687864 DOI: 10.1002/wrna.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/12/2022]
Abstract
In mammalian cells in general and in neurons in particular, mRNA maturation, translation, and degradation are highly complex and dynamic processes. RNA-binding proteins (RBPs) play crucial roles in all these events. First, they participate in the choice of pre-mRNA splice sites and in the selection of the polyadenylation sites, determining which of the possible isoforms is produced from a given precursor mRNA. Then, once in the cytoplasm, the protein composition of the RNP particles determines whether the mature mRNA is transported along the dendrites or the axon of a neuron to the synapses, how efficiently it is translated, and how stable it is. In agreement with their importance for neuronal function, mutations in genes that code for RBPs are associated with various neurological diseases. In this review, we illustrate how individual RBPs determine the fate of an mRNA, and we discuss how mutations in RBPs or perturbations of the mRNA metabolism can cause neurodegenerative disorders.
Collapse
|
136
|
Cauchi RJ. Gem depletion: amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 2014; 20:574-81. [PMID: 24645792 DOI: 10.1111/cns.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| |
Collapse
|
137
|
Cho S, Moon H, Loh TJ, Oh HK, Williams DR, Liao DJ, Zhou J, Green MR, Zheng X, Shen H. PSF contacts exon 7 of SMN2 pre-mRNA to promote exon 7 inclusion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:517-25. [PMID: 24632473 DOI: 10.1016/j.bbagrm.2014.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease and a leading cause of infant mortality. Deletions or mutations of SMN1 cause SMA, a gene that encodes a SMN protein. SMN is important for the assembly of Sm proteins onto UsnRNA to UsnRNP. SMN has also been suggested to direct axonal transport of β-actin mRNA in neurons. Humans contain a second SMN gene called SMN2 thus SMA patients produce some SMN but not with sufficient levels. The majority of SMN2 mRNA does not include exon 7. Here we show that increased expression of PSF promotes inclusion of exon 7 in the SMN2 whereas reduced expression of PSF promotes exon 7 skipping. In addition, we present evidence showing that PSF interacts with the GAAGGA enhancer in exon 7. We also demonstrate that a mutation in this enhancer abolishes the effects of PSF on exon 7 splicing. Furthermore we show that the RNA target sequences of PSF and tra2β in exon 7 are partially overlapped. These results lead us to conclude that PSF interacts with an enhancer in exon 7 to promote exon 7 splicing of SMN2 pre-mRNA.
Collapse
Affiliation(s)
- Sunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyun Kyung Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Darren Reese Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - D Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | | | - Michael R Green
- Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
138
|
The Gemin associates of survival motor neuron are required for motor function in Drosophila. PLoS One 2013; 8:e83878. [PMID: 24391840 PMCID: PMC3877121 DOI: 10.1371/journal.pone.0083878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/09/2013] [Indexed: 12/13/2022] Open
Abstract
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.
Collapse
|
139
|
Abstract
The elaborate morphology of neurons together with the information processing that occurs in remote dendritic and axonal compartments makes the use of decentralized cell biological machines necessary. Recent years have witnessed a revolution in our understanding of signaling in neuronal compartments and the manifold functions of a variety of RNA molecules that regulate protein translation and other cellular functions. Here we discuss the view that mRNA localization and RNA-regulated and localized translation underlie many fundamental neuronal processes and highlight key issues for future experiments.
Collapse
|
140
|
Small nuclear RNAs and mRNAs: linking RNA processing and transport to spinal muscular atrophy. Biochem Soc Trans 2013; 41:871-5. [PMID: 23863147 DOI: 10.1042/bst20120016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The splicing of pre-mRNA by the spliceosome is a characteristic feature of eukaryotic cells, dependent on a group of snRNPs (small nuclear ribonucleoproteins). These splicing snRNPs have a complex assembly pathway involving multiple steps that take place in different regions of the cell, which is reflected in their complex subcellular distribution. Vital to the assembly of splicing snRNPs is the protein SMN (survival of motor neurons). In multicellular organisms, SMN acts in the cytoplasm, together with its associated protein complex to assemble a heptameric ring of proteins called the Sm proteins as an early stage in splicing snRNP assembly. A deficiency of the SMN protein results in the inherited neurodegenerative condition SMA (spinal muscular atrophy), a leading cause of infant mortality specifically affecting spinal motor neurons. It has long been a puzzle how lowered levels of a protein required for a process as fundamental as splicing snRNP assembly can result in a condition with such a definite cell-type-specificity. The present review highlights recent research that points to wider roles in RNA metabolism for both SMN itself and the Sm proteins with which it is linked.
Collapse
|
141
|
Rage F, Boulisfane N, Rihan K, Neel H, Gostan T, Bertrand E, Bordonné R, Soret J. Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA (NEW YORK, N.Y.) 2013; 19:1755-1766. [PMID: 24152552 PMCID: PMC3884661 DOI: 10.1261/rna.040204.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Spinal muscular atrophy is a neuromuscular disease resulting from mutations in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. SMN is part of a large complex that is essential for the biogenesis of spliceosomal small nuclear RNPs. SMN also colocalizes with mRNAs in granules that are actively transported in neuronal processes, supporting the hypothesis that SMN is involved in axonal trafficking of mRNPs. Here, we have performed a genome-wide analysis of RNAs present in complexes containing the SMN protein and identified more than 200 mRNAs associated with SMN in differentiated NSC-34 motor neuron-like cells. Remarkably, ~30% are described to localize in axons of different neuron types. In situ hybridization and immuno-fluorescence experiments performed on several candidates indicate that these mRNAs colocalize with the SMN protein in neurites and axons of differentiated NSC-34 cells. Moreover, they localize in cell processes in an SMN-dependent manner. Thus, low SMN levels might result in localization deficiencies of mRNAs required for axonogenesis.
Collapse
Affiliation(s)
- Florence Rage
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Nawal Boulisfane
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Khalil Rihan
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Henry Neel
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Johann Soret
- Institut de Génétique Moléculaire de Montpellier UMR 5535, 34293 Montpellier Cedex 5, France
- Université Montpellier 2, 34095 Montpellier Cedex 5, France
- Université Montpellier 1, 34967 Montpellier Cedex 2, France
| |
Collapse
|
142
|
Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ. Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol 2013; 74:319-332. [PMID: 23897586 DOI: 10.1002/dneu.22111] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.
Collapse
Affiliation(s)
- Claudia Fallini
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, UMASS Medical School, Worcester, MA 01605, USA
| | - Jeremy P Rouanet
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Guo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Honglai Zhang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
143
|
Tiziano FD, Melki J, Simard LR. Solving the puzzle of spinal muscular atrophy: what are the missing pieces? Am J Med Genet A 2013; 161A:2836-45. [PMID: 24124019 DOI: 10.1002/ajmg.a.36251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, lower motor neuron disease. Clinical heterogeneity is pervasive: three infantile (type I-III) and one adult-onset (type IV) forms are recognized. Type I SMA is the most common genetic cause of death in infancy and accounts for about 50% of all patients with SMA. Most forms of SMA are caused by mutations of the survival motor neuron (SMN1) gene. A second gene that is 99% identical to SMN1 (SMN2) is located in the same region. The only functionally relevant difference between the two genes identified to date is a C → T transition in exon 7 of SMN2, which determines an alternative spliced isoform that predominantly excludes exon 7. Thus, SMN2 genes do not produce sufficient full length SMN protein to prevent the onset of the disease. Since the identification of the causative mutation, biomedical research of SMA has progressed by leaps and bounds: from clues on the function of SMN protein, to the development of different models of the disease, to the identification of potential treatments, some of which are currently in human trials. The aim of this review is to elucidate the current state of knowledge, emphasizing how close we are to the solution of the puzzle that is SMA, and, more importantly, to highlight the missing pieces of this puzzle. Filling in these gaps in our knowledge will likely accelerate the development and delivery of efficient treatments for SMA patients and be a prerequisite towards achieving our final goal, the cure of SMA.
Collapse
|
144
|
Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 2013; 23:855-69. [PMID: 24067532 DOI: 10.1093/hmg/ddt477] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Seo J, Howell MD, Singh NN, Singh RN. Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2180-90. [PMID: 23994186 DOI: 10.1016/j.bbadis.2013.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/27/2013] [Accepted: 08/14/2013] [Indexed: 12/24/2022]
Abstract
Humans have two nearly identical copies of survival motor neuron gene: SMN1 and SMN2. Deletion or mutation of SMN1 combined with the inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA affects 1 in ~6000 live births, a frequency much higher than in several genetic diseases. The major known defect of SMN2 is the predominant exon 7 skipping that leads to production of a truncated protein (SMNΔ7), which is unstable. Therefore, SMA has emerged as a model genetic disorder in which almost the entire disease population could be linked to the aberrant splicing of a single exon (i.e. SMN2 exon 7). Diverse treatment strategies aimed at improving the function of SMN2 have been envisioned. These strategies include, but are not limited to, manipulation of transcription, correction of aberrant splicing and stabilization of mRNA, SMN and SMNΔ7. This review summarizes up to date progress and promise of various in vivo studies reported for the treatment of SMA.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
146
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
147
|
Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, Low PS, Saito K, Nishio H. Spinal muscular atrophy: from gene discovery to clinical trials. Ann Hum Genet 2013; 77:435-63. [PMID: 23879295 DOI: 10.1111/ahg.12031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Collapse
Affiliation(s)
- Dian K Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Molecular evolution of the moonlighting protein SMN in metazoans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:220-30. [PMID: 23831553 DOI: 10.1016/j.cbd.2013.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 11/20/2022]
Abstract
The spinal muscular atrophy (SMA) associated protein survival of motor neuron (SMN) is known to be a moonlighting protein: having one primary, ancestral function (presumed to be involvement in U snRNP assembly) along with one or more secondary functions. One hypothesis for the evolution of moonlighting proteins is that regions of a structure under relatively weak negative selection could gain new functions without interfering with the primary function. To test this hypothesis, we investigated sequence conservation and dN/dS, which reflects the selection acting on a coding sequence, in SMN and a related protein, splicing factor 30 (SPF30), which is not currently known to be multifunctional. We found very different patterns of evolution in the two genes, with SPF30 characterized by strong sequence conservation and negative selection in most animal taxa investigated, and SMN with much lower sequence conservation, and much weaker negative selection at many sites. Evidence was found of positive selection acting on some sites in primate genes for SMN. SMN was also found to have been duplicated in a number of species, and with patterns that indicate reduced negative selection following some of these duplications. There were also several animal species lacking an SMN gene.
Collapse
|
149
|
Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hübers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt JH. A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging 2013; 34:1708.e1-6. [PMID: 23141414 PMCID: PMC6591725 DOI: 10.1016/j.neurobiolaging.2012.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/05/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
Abstract
Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the "classic" ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.
Collapse
Affiliation(s)
- Caroline Ingre
- Institute of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Neurology, The Karolinske University Hospital Huddinge, Stockholm, Sweden
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Naji Rizik
- Department of Neurology Ulm University Ulm, Germany
| | | | - Chizuru Akimoto
- Institute of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anna Birve
- Institute of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | - Pamela J. Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katarzyna Piotrowska
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rayomand Press
- Department of Neurology, The Karolinske University Hospital Huddinge, Stockholm, Sweden
| | - Peter Munch Andersen
- Institute of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Neurology Ulm University Ulm, Germany
| | | | | |
Collapse
|
150
|
Custer SK, Todd AG, Singh NN, Androphy EJ. Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy. Hum Mol Genet 2013; 22:4043-52. [PMID: 23727837 DOI: 10.1093/hmg/ddt254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA.
Collapse
|