101
|
Traditional Chinese Medicine Containing Arsenic Treated MDS Patients Effectively through Regulating Aberrant Hypomethylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7469809. [PMID: 32215045 PMCID: PMC7085376 DOI: 10.1155/2020/7469809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 10/26/2019] [Indexed: 11/18/2022]
Abstract
Aberrant hypermethylation and hypomethylation both play important roles in myelodysplastic syndrome (MDS). Hypomethylating agents targeting hypermethylation have been employed for the MDS treatment, but the treatment effect is limited. Novel drugs for DNA hypomethylation-targeted therapy may be needed to improve clinic efficacy for the treatment of MDS. Chinese medicine (CM) herbs have been used to treat MDS for many years in our hospital. However, the long-term treatment effect and mechanism remain unclear. In this study, all 135 patients received CM treatment for at least 36 months. The response rates for CM treatment were 81.53% (106/130) for hematological improvement in 130 MDS-RCMD patients and 80% (4/5) for bone marrow CR in 5 MDS-RAEB patients, respectively. The Human Methylation 850K BeadChip showed that 115 genes (50.88%) were aberrantly hypomethylated in 5 MDS patients compared with 3 healthy individuals. GO-analysis showed that these hypomethylated genes participated in many cancer-related biological functions and pathways. Furthermore, 60 genes were hypermethylated and the protein expression level of DNMT1 was significantly increased in the 5 MDS patients after 6 months of CM treatment. Our study suggests that CM can improve aberrant hypomethylation by increasing DNMT1 expression in MDS. The data support the clinical application of CM herbs containing arsenic as an innovative hypermethylation-inducing regimen for the treatment of MDS.
Collapse
|
102
|
Revealing the epigenetic effect of temozolomide on glioblastoma cell lines in therapeutic conditions. PLoS One 2020; 15:e0229534. [PMID: 32101575 PMCID: PMC7043761 DOI: 10.1371/journal.pone.0229534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) is a drug of choice in glioblastoma treatment. Its therapeutic applications expand also beyond high grade gliomas. However, a significant number of recurrences and resistance to the drug is observed. The key factor in each chemotherapy is to achieve the therapeutic doses of a drug at the pathologic site. Nonetheless, the rate of temozolomide penetration from blood to cerebrospinal fluid is only 20–30%, and even smaller into brain intestinum. That makes a challenge for the therapeutic regimens to obtain effective drug concentrations with minimal toxicity and minor side effects. The aim of our research was to explore a novel epigenetic mechanism of temozolomide action in therapeutic conditions. We analyzed the epigenetic effects of TMZ influence on different glioblastoma cell lines in therapeutically achieved TMZ concentrations through total changes of the level of 5-methylcytosine in DNA, the main epigenetic marker. That was done with classical approach of radioactive nucleotide post-labelling and separation on thin-layer chromatography. In the range of therapeutically achieved temozolomide concentrations we observed total DNA hypomethylation. The significant hypermethylating effect was visible after reaching TMZ concentrations of 10–50 μM (depending on the cell line). Longer exposure time promoted DNA hypomethylation. The demethylated state of the glioblastoma cell lines was overcome by repeated TMZ applications, where dose-dependent increase in DNA 5-methylcytosine contents was observed. Those effects were not seen in non-cancerous cell line. The increase of DNA methylation resulting in global gene silencing and consecutive down regulation of gene expression after TMZ treatment may explain better glioblastoma patients’ survival.
Collapse
|
103
|
Boldrin E, Curtarello M, Dallan M, Alfieri R, Realdon S, Fassan M, Saggioro D. Detection of LINE-1 hypomethylation in cfDNA of Esophageal Adenocarcinoma Patients. Int J Mol Sci 2020; 21:ijms21041547. [PMID: 32102481 PMCID: PMC7073170 DOI: 10.3390/ijms21041547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
DNA methylation plays an important role in cancer development. Cancer cells exhibit two types of DNA methylation alteration: site-specific hypermethylation at promoter of oncosuppressor genes and global DNA hypomethylation. This study evaluated the methylation patterns of long interspersed nuclear element (LINE-1) sequences which, due to their relative abundance in the genome, are considered a good surrogate indicator of global DNA methylation. LINE-1 methylation status was investigated in the cell-free DNA (cfDNA) of 21 patients, 19 with esophageal adenocarcinoma (EADC) and 2 with Barrett’s esophagus (BE). The two BE patients and one EADC patient were also analyzed longitudinally. Methylation status was analyzed using restriction enzymes and DNA amplification. This methodology was chosen to avoid bisulfite conversion, which we considered inadequate for cfDNA analysis. Indeed, cfDNA is characterized by poor quality and low concentration, and bisulfite conversion might worsen these conditions. Results showed that hypomethylated LINE-1 sequences are present in EADC cfDNA. Furthermore, longitudinal studies in BE suggested a correlation between methylation status of LINE-1 sequences in cfDNA and progression to EADC. In conclusion, our study indicated the feasibility of our methodological approach to detect hypomethylation events in cfDNA from EADC patients, and suggests LINE-1 methylation analysis as a new possible molecular assay to integrate into patient monitoring.
Collapse
Affiliation(s)
- Elisa Boldrin
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (M.C.); (M.D.); (D.S.)
- Correspondence: ; Tel.: +39-04-9821-6161
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (M.C.); (M.D.); (D.S.)
| | - Marco Dallan
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (M.C.); (M.D.); (D.S.)
| | - Rita Alfieri
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, via dei Carpani 16, 31033 Castelfranco Veneto, Italy;
| | - Stefano Realdon
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology, University of Padova, via Giustiniani 2, 35128 Padova, Italy;
| | - Daniela Saggioro
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (M.C.); (M.D.); (D.S.)
| |
Collapse
|
104
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|
105
|
Donovan MG, Wren SN, Cenker M, Selmin OI, Romagnolo DF. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation. Br J Pharmacol 2020; 177:1331-1350. [PMID: 31691272 DOI: 10.1111/bph.14891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and second leading cause of cancer mortality in women worldwide. Validated biomarkers enhance efforts for early detection and treatment, which reduce the risk of mortality. Epigenetic signatures have been suggested as good biomarkers for early detection, prognosis and targeted therapy of BC. Here, we highlight studies documenting the modifying effects of dietary fatty acids and obesity on BC biomarkers associated with DNA methylation. We focus our analysis on changes elicited in writers of DNA methylation (i.e., DNA methyltransferases), global DNA methylation and gene-specific DNA methylation. To provide context, we precede this discussion with a review of the available evidence for an association between BC incidence and both dietary fat consumption and obesity. We also include a review of well-vetted BC biomarkers related to cytosine-guanine dinucleotides methylation and how they influence BC risk, prognosis, tumour characteristics and response to treatment. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Micah G Donovan
- Interdisciplinary Cancer Biology Graduate Program, University of Arizona, Tucson, Arizona
| | - Spencer N Wren
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Mikia Cenker
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona.,The University of Arizona Cancer Center, Tucson, Arizona
| |
Collapse
|
106
|
Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep 2019; 25:1066-1080.e8. [PMID: 30355485 DOI: 10.1016/j.celrep.2018.09.082] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
The discovery of cancer-associated alterations has primarily focused on genetic variants. Nonetheless, altered epigenomes contribute to deregulate transcription and promote oncogenic pathways. Here, we designed an algorithmic approach (RESET) to identify aberrant DNA methylation and associated cis-transcriptional changes across >6,000 human tumors. Tumors exhibiting mutations of chromatin remodeling factors and Wnt signaling displayed DNA methylation instability, characterized by numerous hyper- and hypo-methylated loci. Most silenced and enhanced genes coalesced in specific pathways including apoptosis, DNA repair, and cell metabolism. Cancer-germline antigens (CG) were frequently epigenomically enhanced and their expression correlated with response to anti-PD-1, but not anti-CTLA4, in skin melanoma. Finally, we demonstrated the potential of our approach to explore DNA methylation changes in pediatric tumors, which frequently lack genetic drivers and exhibit epigenomic modifications. Our results provide a pan-cancer map of aberrant DNA methylation to inform functional and therapeutic studies.
Collapse
|
107
|
Chovanec M, Taza F, Kalra M, Hahn N, Nephew KP, Spinella MJ, Albany C. Incorporating DNA Methyltransferase Inhibitors (DNMTis) in the Treatment of Genitourinary Malignancies: A Systematic Review. Target Oncol 2019; 13:49-60. [PMID: 29230671 DOI: 10.1007/s11523-017-0546-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inhibition of DNA methyltransferases (DNMTs) has emerged as a novel treatment strategy in solid tumors. Aberrant hypermethylation in promoters of critical tumor suppressor genes is the basis for the idea that treatment with hypomethylating agents may lead to the restoration of a "normal" epigenome and produce clinically meaningful therapeutic outcomes. The aim of this review article is to summarize the current state of knowledge of DNMT inhibitors in the treatment of genitourinary malignancies. The efficacy of these agents in genitourinary malignancies was reported in a number of studies and suggests a role of induced DNA hypomethylation in overcoming resistance to conventional cytotoxic treatments. The clinical significance of these findings should be further investigated.
Collapse
Affiliation(s)
- Michal Chovanec
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA.
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia.
| | - Fadi Taza
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Maitri Kalra
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Noah Hahn
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costantine Albany
- Division of Hematology/Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
108
|
Macfarlane FR, Chaplain M, Lorenzi T. A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against solid tumours. J Theor Biol 2019; 480:43-55. [PMID: 31374282 DOI: 10.1016/j.jtbi.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Spatial interactions between cancer and immune cells, as well as the recognition of tumour antigens by cells of the immune system, play a key role in the immune response against solid tumours. The existing mathematical models generally focus only on one of these key aspects. We present here a spatial stochastic individual-based model that explicitly captures antigen expression and recognition. In our model, each cancer cell is characterised by an antigen profile which can change over time due to either epimutations or mutations. The immune response against the cancer cells is initiated by the dendritic cells that recognise the tumour antigens and present them to the cytotoxic T cells. Consequently, T cells become activated against the tumour cells expressing such antigens. Moreover, the differences in movement between inactive and active immune cells are explicitly taken into account by the model. Computational simulations of our model clarify the conditions for the emergence of tumour clearance, dormancy or escape, and allow us to assess the impact of antigenic heterogeneity of cancer cells on the efficacy of immune action. Ultimately, our results highlight the complex interplay between spatial interactions and adaptive mechanisms that underpins the immune response against solid tumours, and suggest how this may be exploited to further develop cancer immunotherapies.
Collapse
Affiliation(s)
- F R Macfarlane
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom.
| | - Maj Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom
| | - T Lorenzi
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom
| |
Collapse
|
109
|
DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules 2019; 9:biom9070289. [PMID: 31323834 PMCID: PMC6680848 DOI: 10.3390/biom9070289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.
Collapse
|
110
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
111
|
Sharma A, Albahrani M, Zhang W, Kufel CN, James SR, Odunsi K, Klinkebiel D, Karpf AR. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 2019; 14:185-197. [PMID: 30764732 DOI: 10.1080/15592294.2019.1581590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The POTE gene family consists of 14 homologous genes localized to autosomal pericentromeres, and a sub-set of POTEs are cancer-testis antigen (CTA) genes. POTEs are over-expressed in epithelial ovarian cancer (EOC), including the high-grade serous subtype (HGSC), and expression of individual POTEs correlates with chemoresistance and reduced survival in HGSC. The mechanisms driving POTE overexpression in EOC and other cancers is unknown. Here, we investigated the role of epigenetics in regulating POTE expression, with a focus on DNA hypomethylation. Consistent with their pericentromeric localization, Pan-POTE expression in EOC correlated with expression of the pericentromeric repeat NBL2, which was not the case for non-pericentromeric CTAs. POTE genomic regions contain LINE-1 (L1) sequences, and Pan-POTE expression correlated with both global and POTE-specific L1 hypomethylation in EOC. Analysis of individual POTEs using RNA-seq and DNA methylome data from fallopian tube epithelia (FTE) and HGSC revealed that POTEs C, E, and F have increased expression in HGSC in conjunction with DNA hypomethylation at 5' promoter or enhancer regions. Moreover, POTEs C/E/F showed additional increased expression in recurrent HGSC in conjunction with 5' hypomethylation, using patient-matched samples. Experiments using decitabine treatment and DNMT knockout cell lines verified a functional contribution of DNA methylation to POTE repression, and epigenetic drug combinations targeting histone deacetylases (HDACs) and histone methyltransferases (HMTs) in combination with decitabine further increased POTE expression. In summary, several alterations of the cancer epigenome, including pericentromeric activation, global and locus-specific L1 hypomethylation, and locus-specific 5' CpG hypomethylation, converge to promote POTE expression in ovarian cancer.
Collapse
Affiliation(s)
- Ashok Sharma
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mustafa Albahrani
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Wa Zhang
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Christina N Kufel
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Smitha R James
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Kunle Odunsi
- d Department of Immunology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,e Department of Gynecologic Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,f Center for Immunotherapy , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - David Klinkebiel
- b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,g Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Adam R Karpf
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
112
|
Chen R, She Y, Fu Q, Chen X, Shi H, Lei S, Zhou S, Ou J, Liu Y. Differentially expressed coding and noncoding RNAs in CoCl2-induced cytotoxicity of C2C12 cells. Epigenomics 2019; 11:423-438. [PMID: 30785338 DOI: 10.2217/epi-2018-0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: We aimed to explore potential regulators of coding and noncoding RNAs (ncRNAs) in Co(II) ion-induced myo cytotoxicity. Materials & methods: We confirmed the toxic effects of Co(II) on mouse skeletal C2C12 myotubes by CoCl2, and performed the expression profiles of circular RNAs (circRNAs), long noncoding RNAs (lncRNAs) and mRNAs using microarray analysis. We constructed co-expression, competing endogenous RNA and cis/trans regulation networks for ncRNAs, and filtered 71 candidate circRNAs with coding potential. Results: We identify 605 differentially expressed circRNAs, 4409 long noncoding RNAs and 3965 mRNAs. We also provided several ncRNAs regulation networks and presumed functions of circRNAs with coding potential. Conclusion: Our findings may reveal novel regulatory mechanisms underlying the noxious effects of CoCl2 in skeletal muscle.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Yanling She
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Qiang Fu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, PR China
| | - Xiaodan Chen
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, PR China
| | - Huacai Shi
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Si Lei
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Shanyao Zhou
- Guangdong Traditional Medical & Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, PR China
| | - Jun Ou
- Guangzhou FitGene Biotechnology CO., LTD, Building D, 3 Ju Quan Road, Guangzhou 510663, PR China
| | - Yulin Liu
- Guangzhou FitGene Biotechnology CO., LTD, Building D, 3 Ju Quan Road, Guangzhou 510663, PR China
| |
Collapse
|
113
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
114
|
Wen XM, Zhang TJ, Ma JC, Zhou JD, Xu ZJ, Zhu XW, Yuan Q, Ji RB, Chen Q, Deng ZQ, Lin J, Qian J. Establishment and molecular characterization of decitabine-resistant K562 cells. J Cell Mol Med 2019; 23:3317-3324. [PMID: 30793488 PMCID: PMC6484323 DOI: 10.1111/jcmm.14221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
The clinical activity of decitabine (5‐aza‐2‐deoxycytidine, DAC), a hypomethylating agent, has been demonstrated in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients. However, secondary resistance to this agent often occurs during treatment and leads to treatment failure. It is important to clarify the mechanisms underlying the resistance for improving the efficacy. In this study, by gradually increasing concentration after a continuous induction of DAC, we established the DAC‐resistant K562 cell line (K562/DAC) from its parental cell line K562. The proliferation and survival rate of K562/DAC was significantly increased, whereas the apoptosis rate was remarkably decreased than that of K562 after DAC treatment. In K562/DAC, a total of 108 genes were upregulated and 118 genes were downregulated by RNA‐Seq. In addition, we also observed aberrant expression of DDX43/H19/miR‐186 axis (increased DDX43/H19 and decreased miR‐186) in K562/DAC cells. Ectopic expression of DDX43 in parental K562 cells rendered cells resistant to the DAC. Taken together, we successfully established DAC‐resistant K562 cell line which can serve as a good model for investigating DAC resistance mechanisms, and DDX43/H19/miR‐186 may be involved in DAC resistance in K562.
Collapse
Affiliation(s)
- Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Xiao-Wen Zhu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Qian Yuan
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Run-Bi Ji
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Qin Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Zhao-Qun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
115
|
Easwaran H, Baylin SB. Origin and Mechanisms of DNA Methylation Dynamics in Cancers. RNA TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14792-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
116
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
117
|
Yeon M, Byun J, Kim H, Kim M, Jung HS, Jeon D, Kim Y, Jeoung D. CAGE Binds to Beclin1, Regulates Autophagic Flux and CAGE-Derived Peptide Confers Sensitivity to Anti-cancer Drugs in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:599. [PMID: 30619741 PMCID: PMC6296237 DOI: 10.3389/fonc.2018.00599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine the role of CAGE, a cancer/testis antigen, in resistance of non-small cell lung cancers to anti-cancer drugs. Erlotinib-resistant PC-9 cells (PC-9/ER) with EGFR mutations (ex 19 del + T790M of EGFR), showed higher level of autophagic flux than parental sensitive PC-9 cells. Erlotinib and osimertinib increased autophagic flux and induced the binding of CAGE to Beclin1 in PC-9 cells. The inhibition or induction of autophagy regulated the binding of CAGE to Beclin1 and the responses to anti-cancer drugs. CAGE showed binding to HER2 while HER2 was necessary for binding of CAGE to Beclin1. CAGE was responsible for high level of autophagic flux and resistance to anti-cancer drugs in PC-9/ER cells. A peptide corresponding to the DEAD box domain of CAGE, 266AQTGTGKT273, enhanced the sensitivity of PC-9/ER cells to erlotinib and osimertinib, inhibited the binding of CAGE to Beclin1 and regulated autophagic flux in PC-9/ER cells. Mutant CAGE-derived peptide 266AQTGTGAT273 or 266AQTGTGKA273 did not affect autophagic flux or the binding of CAGE to Beclin1. AQTGTGKT peptide showed binding to CAGE, but not to Beclin1. FITC-AQTGTGKT peptide showed co-localization with CAGE. AQTGTGKT peptide decreased tumorigenic potentials of PC-9/ER and H1975 cells, non-small cell lung cancer (NSCLC) cells with EGFR mutation (L885R/T790M), by inhibiting autophagic fluxand inhibiting the binding of CAGE to Beclin1. AQTGTGKT peptide also enhanced the sensitivity of H1975 cells to anti-cancer drugs. AQTGTGKT peptide showed tumor homing potential based on ex vivo homing assays of xenograft of H1975 cells. AQTGTGKT peptide restored expression levels of miR-143-3p and miR-373-5p, decreased autophagic flux and conferred sensitivity to anti-cancer drugs. These results present evidence that combination of anti-cancer drug with CAGE-derived peptide could overcome resistance of non-small cell lung cancers to anti-cancer drugs.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Jaewhan Byun
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyuna Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | | | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
118
|
Yu J, Yuan X, Sjöholm L, Liu T, Kong F, Ekström TJ, Björkholm M, Xu D. Telomerase reverse transcriptase regulates DNMT3B expression/aberrant DNA methylation phenotype and AKT activation in hepatocellular carcinoma. Cancer Lett 2018; 434:33-41. [PMID: 30017965 DOI: 10.1016/j.canlet.2018.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 02/06/2023]
Abstract
Telomerase reverse transcriptase (TERT)1 acts as a master regulator of cancer hallmarks, but underlying mechanisms remain incompletely understood. We show that TERT is required for the aberrant DNA methyltransferase 3 B (DNMT3B)2 expression and cancer-specific methylation in hepatocellular carcinoma (HCC)3, through which AKT is activated. TERT depletion inhibited, while its over-expression promoted DNMT3B expression in HCC cells, respectively. Mechanistically, TERT cooperates with the transcription factor Sp1 to stimulate DNMT3B transcription. The tumor suppressors PTEN and RASSF1A were de-repressed following DNMT3B inhibition in TERT-depleted HCC cells. The PTEN promoter analysis demonstrated significantly reduced methylation in these cells. TERT silencing also led to diminished global DNA methylation. The analysis of the Cancer Genome Atlas (TCGA)4 dataset showed that higher levels of TERT and DNMT3B expression predicted significantly shorter survival in HCC patients. Collectively, our findings establish TERT as an important contributor to cancer-specific DNA methylation and AKT hyperactivation in HCC cells. Given critical roles of both the aberrant DNA methylation and AKT activation in carcinogenesis, this TERT-regulated network or the TERT-DNMT3B-PTEN-AKT axis provides a biological explanation for multi-oncogenic activities of TERT and may be exploited in HCC treatment.
Collapse
Affiliation(s)
- Jingya Yu
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Xiaotian Yuan
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden; Reproduction Center, Shandong University, Jinan, PR China
| | - Louise Sjöholm
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tiantian Liu
- Department of Pathology, School of Medicine, Shandong University, Jinan, PR China.
| | - Feng Kong
- Central Research Laboratory, Shandong University Second Hospital, Jinan, PR China
| | - Tomas J Ekström
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Dawei Xu
- Department of Medicine, Division of Hematology and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
119
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
120
|
Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in Cancer: An Analysis from Published Genomic Studies. High Throughput 2018; 7:ht7040030. [PMID: 30275357 PMCID: PMC6306835 DOI: 10.3390/ht7040030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
CTCF (CCCTC-binding factor) is a transcription regulator with hundreds of binding sites in the human genome. It has a main function as an insulator protein, defining together with cohesins the boundaries of areas of the genome called topologically associating domains (TADs). TADs contain regulatory elements such as enhancers which function as regulators of the transcription of genes inside the boundaries of the TAD while they are restricted from regulating genes outside these boundaries. This paper will examine the most common genetic lesions of CTCF as well as its related protein CTCFL (CTCF-like also called BORIS) in cancer using publicly available data from published genomic studies. Cancer types where abnormalities in the two genes are more common will be examined for possible associations with underlying repair defects or other prevalent genetic lesions. The putative functional effects in CTCF and CTCFL lesions will also be explored.
Collapse
|
121
|
miR-1273g silences MAGEA3/6 to inhibit human colorectal cancer cell growth via activation of AMPK signaling. Cancer Lett 2018; 435:1-9. [DOI: 10.1016/j.canlet.2018.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
|
122
|
Ghosh K, Chatterjee B, Kanade SR. Lead induces the up-regulation of the protein arginine methyltransferase 5 possibly by its promoter demethylation. Biochem J 2018; 475:2653-2666. [PMID: 30054435 DOI: 10.1042/bcj20180009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
Abstract
The studies on lead (Pb) exposure linking to epigenetic modulations are caused by its differential actions on global DNA methylation and histone modifications. These epigenetic changes may result in increased accessibility of the transcription factors to promoter DNA-binding elements leading to activation and expression of the gene. The protein arginine methyltransferase 5 (PRMT5) and its partner methylosome protein 50 (MEP50) together catalyze the mono- and symmetric dimethylation of arginine residues in many histone and non-histone protein substrates. Moreover, it is overexpressed in many forms of cancer. In the present study, the effects of Pb on the PRMT5 and MEP50 expression and formation of the symmetrically dimethylated arginine (SDMA), the catalytic product of the PRMT5-MEP50 complex were analyzed in vitro after exposing the A549 and MCF-7 cells. The results show that exposure to 0.1 and 1 µM of Pb strongly enhanced the expression of both PRMT5 and MEP50 transcript and protein leading to increased SDMA levels globally with H4R3 being increasingly symmetrically dimethylated in a dose-dependent manner after 48 h of Pb exposure in both cell types. The methylation-specific PCR also revealed that the CpG island present on the PRMT5 promoter proximal region was increasingly demethylated as the dose of Pb increased in a 48-h exposure window in both cells, with MCF-7 being more responsive to Pb-mediated PRMT5 promoter demethylation. The bisulfite sequencing confirmed this effect. The findings therefore indicate that Pb exposure increasing the PRMT5 expression might be one of the contributing epigenetic factors in the lead-mediated disease processes as PRMT5 has a versatile role in cellular functions and oncogenesis.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| |
Collapse
|
123
|
Bisht S, Chawla B, Dada R. Oxidative Stress and Polymorphism in MTHFR SNPs (677 and 1298) in Paternal Sperm DNA is Associated with an Increased Risk of Retinoblastoma in Their Children: A Case-Control Study. J Pediatr Genet 2018; 7:103-113. [PMID: 30105117 DOI: 10.1055/s-0038-1667037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
Abstract
Sperm DNA is considered as the most vulnerable to oxidative stress-induced damage that also impairs global sperm DNA methylation leading to sperm-associated pathologies. C677T and A1298C polymorphisms of the methylene tetrahydrofolate reductase (MTHFR) gene affect MTHFR enzyme activity. This study was planned as a case-control study to determine the MTHFR gene polymorphisms in the fathers of children affected with sporadic nonfamilial heritable retinoblastoma in an Indian population. MTHFR polymorphisms for single nucleotide polymorphisms 677 and 1298 were also determined in sporadic nonfamilial heritable retinoblastoma patients to estimate the risk for retinoblastoma development and to evaluate the role of MTHFR in retinoblastoma pathogenesis.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bhavna Chawla
- Ocular Oncology and Pediatric Ophthalmology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
124
|
Maupetit-Mehouas S, Court F, Bourgne C, Guerci-Bresler A, Cony-Makhoul P, Johnson H, Etienne G, Rousselot P, Guyotat D, Janel A, Hermet E, Saugues S, Berger J, Arnaud P, Berger MG. DNA methylation profiling reveals a pathological signature that contributes to transcriptional defects of CD34 + CD15 - cells in early chronic-phase chronic myeloid leukemia. Mol Oncol 2018; 12:814-829. [PMID: 29575763 PMCID: PMC5983208 DOI: 10.1002/1878-0261.12191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Despite the high efficiency of tyrosine kinase inhibitors (TKI), some patients with chronic myeloid leukemia (CML) will display residual disease that can become resistant to treatment, indicating intraclonal heterogeneity in chronic‐phase CML (CP‐CML). To determine the basis of this heterogeneity, we conducted the first exhaustive characterization of the DNA methylation pattern of sorted CP‐CML CD34+CD15− (immature) and CD34−CD15+ (mature) cells at diagnosis (prior to any treatment) and compared it to that of CD34+CD15− and CD34−CD15+ cells isolated from healthy donors (HD). In both cell types, we identified several hundreds of differentially methylated regions (DMRs) showing DNA methylation changes between CP‐CML and HD samples, with only a subset of them in common between CD34+CD15− and CD34−CD15+ cells. This suggested DNA methylation variability within the same CML clone. We also identified 70 genes that could be aberrantly repressed upon hypermethylation and 171 genes that could be aberrantly expressed upon hypomethylation of some of these DMRs in CP‐CML cells, among which 18 and 81, respectively, were in CP‐CML CD34+CD15− cells only. We then validated the DNA methylation and expression defects of selected candidate genes. Specifically, we identified GAS2, a candidate oncogene, as a new example of gene the hypomethylation of which is associated with robust overexpression in CP‐CML cells. Altogether, we demonstrated that DNA methylation abnormalities exist at early stages of CML and can affect the transcriptional landscape of malignant cells. These observations could lead to the development of combination treatments with epigenetic drugs and TKI for CP‐CML.
Collapse
Affiliation(s)
- Stéphanie Maupetit-Mehouas
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France.,Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Franck Court
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Céline Bourgne
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Agnès Guerci-Bresler
- Hématologie Clinique, CHRU Nancy, Hôpitaux de Brabois, Vandoeuvre-lès-Nancy, France
| | | | - Hyacinthe Johnson
- Institut d'Hématologie de Basse Normandie, CHU de Caen, Caen Cedex 9, France
| | - Gabriel Etienne
- Hématologie Clinique, Institut Bergonié, Bordeaux Cedex, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, service d'Hématologie et d'Oncologie, Le Chesney, France
| | - Denis Guyotat
- Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Alexandre Janel
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Eric Hermet
- Hématologie Clinique Adulte, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Sandrine Saugues
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Juliette Berger
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Philippe Arnaud
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Marc G Berger
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| |
Collapse
|
125
|
Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci 2018; 19:ijms19041166. [PMID: 29649096 PMCID: PMC5979276 DOI: 10.3390/ijms19041166] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG) islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
126
|
Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018; 5:85. [PMID: 29682505 PMCID: PMC5897590 DOI: 10.3389/fmed.2018.00085] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Collapse
Affiliation(s)
- Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
127
|
Seelan RS, Mukhopadhyay P, Pisano MM, Greene RM. Effects of 5-Aza-2'-deoxycytidine (decitabine) on gene expression. Drug Metab Rev 2018; 50:193-207. [PMID: 29455551 DOI: 10.1080/03602532.2018.1437446] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
5-Aza-2'-deoxycytidine (AzaD), also known as Decitabine, is a deoxycytidine analog that is typically used to activate methylated and silenced genes by promoter demethylation. However, a survey of the scientific literature indicates that promoter demethylation may not be the only (or, indeed, the major) mechanism by which AzaD affects gene expression. Regulation of gene expression by AzaD can occur in several ways, including some that are independent of DNA demethylation. Results from several studies indicate that the effect of AzaD on gene expression is highly context-dependent and can differ for the same gene under different environmental settings. This may, in part, be due to the nature of the silencing mechanism(s) involved - DNA methylation, repressive histone modifications, or a combination of both. The varied effects of AzaD on such context-dependent regulation of gene expression may underlie some of the diverse responses exhibited by patients undergoing AzaD therapy. In this review, we describe the salient properties of AzaD with particular emphasis on its diverse effects on gene expression, aspects that have barely been discussed in most reviews of this interesting drug.
Collapse
Affiliation(s)
- Ratnam S Seelan
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - Partha Mukhopadhyay
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - M Michele Pisano
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| | - Robert M Greene
- a Department of Surgical and Hospital Dentistry, Division of Craniofacial Development and Anomalies , ULSD, University of Louisville , Louisville , KY , USA
| |
Collapse
|
128
|
Deng H, Zeng J, Zhang T, Gong L, Zhang H, Cheung E, Jones C, Li G. Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Mol Cancer Res 2018; 16:623-633. [DOI: 10.1158/1541-7786.mcr-17-0460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
|
129
|
Pan SJ, Ren J, Jiang H, Liu W, Hu LY, Pan YX, Sun B, Sun QF, Bian LG. MAGEA6 promotes human glioma cell survival via targeting AMPKα1. Cancer Lett 2018; 412:21-29. [DOI: 10.1016/j.canlet.2017.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022]
|
130
|
Nilendu P, Sharma NK. Epigenomic Hard Drive Imprinting: A Hidden Code Beyond the Biological Death of Cancer Patients. J Cancer Prev 2017; 22:211-218. [PMID: 29302578 PMCID: PMC5751838 DOI: 10.15430/jcp.2017.22.4.211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022] Open
Abstract
Several genetic and epigenetic theories have been suggested to explain the intricacies of life and death. However, several questions remain unsettled regarding cellular death events, particularly of living tissue in the case of cancer patients, such as the fate and adaptation of cancer cells after biological death. It is possible that cancer cells can display the intent to communicate with the external environment after biological death by means of molecular, genetic, and epigenetic pathways. Whether these cancer cells contain special information in the form of coding that may help them survive beyond the biological death of cancer patients is unknown. To understand these queries in the cancer field, we hypothesize the epigenomic hard drive (EHD) as a cellular component to record and store global epigenetic events in cancerous and non-cancerous tissues of cancer patients. This mini-review presents the novel concept of EHD that is reinforced with the existing knowledge of genetic and epigenetic events in cancer. Further, we summarize the EHD understanding that may impart much potential and interest for basic and clinical scientists to unravel mechanisms of carcinogenesis, therapeutic markers, and differential drug responses.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Maharashtra, India
| |
Collapse
|
131
|
Zhang X, Ning Y, Xiao Y, Duan H, Qu G, Liu X, Du Y, Jiang D, Zhou J. MAEL contributes to gastric cancer progression by promoting ILKAP degradation. Oncotarget 2017; 8:113331-113344. [PMID: 29371914 PMCID: PMC5768331 DOI: 10.18632/oncotarget.22970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer-testis gene MAEL is involved in the development and progression of bladder, liver and colorectal cancers. However, its role in other cancers is unclear. By systematically analyzing transcriptomics and genomics data from various cancer databases, we identified that the MAEL gene is aberrantly elevated in gastric cancer (GC) tissues and that its expression is strongly negatively correlated with DNA methylation (Pearson's correlation coefficient = −0.675). Survival analysis revealed that MAEL expression may serve as a prognostic marker for GC patients (overall survival: hazard ratio [HR] = 1.54, p = 1.2E-4; first progression: HR = 1.51, p = 8.7E-4). In vitro and in vivo experiments demonstrated that silencing MAEL expression in the GC cell lines HGC-27 and AGS inhibits proliferation, colony formation, migration, invasion and growth of xenograft tumors, whereas MAEL overexpression exerts the opposite effects in the normal gastric cell line GES-1. Mechanistically, MAEL promotes the lysosome-dependent degradation of the protein phosphatase ILKAP, leading to increased phosphorylation of its substrates (p38, CHK1 and RSK2). Moreover, adenovirus-mediated ILKAP overexpression reversed the oncogenic effects of MAEL in vitro and in vivo. Taken together, these results indicate that MAEL exerts its oncogenic function by promoting ILKAP degradation in the GC.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yichong Ning
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yuzhong Xiao
- College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Huaxin Duan
- The First Affiliated Hospital, Hunan Normal University, Changsha 410005, Hunan, China
| | - Guifang Qu
- The First Affiliated Hospital, Hunan Normal University, Changsha 410005, Hunan, China
| | - Xin Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yan Du
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, Hunan, China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of The Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
132
|
NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci Rep 2017; 7:17064. [PMID: 29213088 PMCID: PMC5719078 DOI: 10.1038/s41598-017-17298-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
Chromatin modifying enzymes are frequently mutated in cancer, resulting in widespread epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma (HNSC) that features pronounced DNA hypomethylation. Here, we describe a similar hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both inactivating mutations and deletions in NSD1. The ‘NSD1 subtypes’ of HNSC and LUSC are highly correlated at the DNA methylation and gene expression levels, featuring ectopic expression of developmental transcription factors and genes that are also hypomethylated in Sotos syndrome, a congenital disorder caused by germline NSD1 mutations. Further, the NSD1 subtype of HNSC displays an ‘immune cold’ phenotype characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and CD8+ T cells, as well as low expression of genes encoding the immunotherapy target PD-1 immune checkpoint receptor and its ligands. Using an in vivo model, we demonstrate that NSD1 inactivation results in reduced T cell infiltration into the tumor microenvironment, implicating NSD1 as a tumor cell-intrinsic driver of an immune cold phenotype. NSD1 inactivation therefore causes epigenetic deregulation across cancer sites, and has implications for immunotherapy.
Collapse
|
133
|
Chen X, Xiao Y, Wei L, Wu Y, Lu J, Guo W, Huang S, Zhou M, Mo M, Li Z, Cen L, Li S, Yang C, Wu Z, Hu S, Pei Z, Yang X, Qu S, Xu P. Association of DNMT3b gene variants with sporadic Parkinson's disease in a Chinese Han population. J Gene Med 2017; 19:360-365. [PMID: 28990350 DOI: 10.1002/jgm.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/11/2017] [Accepted: 09/27/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Epigenetic modifications, specifically DNA methylation, have been implicated in the development of this disease. Genetic variants of DNA methyltransferase 3b (DNMT3b), one of the most important DNA methyltransferases, were shown to be associated with PD in a Brazilian population. However, it is unclear whether genetic variants of DNMT3b increase the risk of PD in the Chinese Han people. The present study aimed to investigate the association of the DNMT3b variants rs2424913, rs998382 and rs2424932 with PD in a Chinese Han population. METHODS We studied 487 Chinese Han patients with sporadic PD and 485 healthy age-, sex- and ethnicity-matched controls. DNA was extracted from peripheral blood leukocytes and the individual genotypes were determined using the SNaPshot method. RESULTS We found that the rs2424932 and rs998382 variants were significantly associated with an increased risk of PD compared to the controls [rs2424932: odds ratio (OR) = 1.632, 95% confidence interval (CI) = 1.108-2.406, p = 0.013; rs998382: OR = 1.612, 95% CI = 1.103-2.382, p = 0.014]. Subgroup analysis suggested that female patients carrying the rs2424932 or rs998382 variants were more likely to develop PD than female controls (rs2424932: OR = 3.863, 95% CI = 2.004-7.445, p < 0.001; rs998382: OR = 3.679, 95% CI = 1.943-6.964, p < 0.001). Haplotype analysis indicated that the three variants comprised one block and that the Trs2424913 -Crs998382 -A rs2424932 haplotype was correlated with an increased risk of PD (p = 0.0046), especially for Chinese Han females (p < 0.0001). CONCLUSIONS The results of the present study strongly suggest that DNMT3b variants are associated with PD in the Chinese Han people, especially females.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yousheng Xiao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease of the First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jianjun Lu
- Department of Neurology, Guangdong 999 Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhe Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Luan Cen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Shaomin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chaohao Yang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sophie Hu
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - XinLing Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaogang Qu
- Clinical Medicine Research Centre, ShunDe Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease of the First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
134
|
McLoughlin KC, Kaufman AS, Schrump DS. Targeting the epigenome in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:350-365. [PMID: 28713680 DOI: 10.21037/tlcr.2017.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesotheliomas (MPM) are notoriously refractory to conventional treatment modalities. Recent insights regarding epigenetic alterations in MPM provide the preclinical rationale for the evaluation of novel combinatorial regimens targeting the epigenome in these neoplasms.
Collapse
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|