101
|
Assef ANB, da Costa BB, Moreira TA, do Carmo LD, de Souza TDFG, Alencar NMN, Alves APNN, Cinelli LP, Wilke DV. Antitumor and immunostimulating sulfated polysaccharides from brown algae Dictyota caribaea. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
102
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
103
|
Optimization of the extraction of polysaccharides from the shells of Camellia oleifera and evaluation on the antioxidant potential in vitro and in vivo. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
104
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
105
|
Liu H, Cui J, Zhang L, Chang G, Wang W. Screening of anti-chronic nonbacterial prostatitis activity of different extractions of the aerial part of Glycyrrhiza uralensis, and network pharmacology research. Biomed Rep 2021; 15:99. [PMID: 34667596 PMCID: PMC8517761 DOI: 10.3892/br.2021.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In the present study, anti-chronic nonbacterial prostatitis (CNP) pharmacological experiments using water and ethanol extraction of the aerial parts of Glycyrrhiza uralensis were performed to select the best active parts by comparing their efficacy in a CNP model established by injecting carrageenin into the ventral lobe of rat prostate. The anti-CNP activities and expression of serum inflammatory factors in rats were also analyzed. A Protein-Protein Interaction network was constructed, and core targets were screened using topology and analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Water and ethanol extraction exhibited good inhibitory effect on the pathological changes of the prostate tissue, the expression of inflammatory factors and fibrosis factors in CNP rats, whereas no differences were observed compared with the positive control drug. Water extraction was more effective and significantly reduced PGE2 expression (P<0.05). Network pharmacology assays showed 15 active components in the aerial part of Glycyrrhiza uralensis, and 9 key CNP therapeutic targets of the aerial parts of Glycyrrhiza uralensis were identified. The effect of water exraction on chronic prostatitis rats was significant. The aerial part of Glycyrrhiza uralensis downregulated the levels of inflammatory factors and inhibited proinflammatory gene transcription, reduced oxidative stress response, inhibited cell survival pathways, regulated sex hormone levels, prevented immunostimulation and attenuated inflammation. This study provides a theoretical reference for the development of anti-CNP agents, and offers a novel methodology for identifying and clarifying the mechanisms underlying the efficacy of the anti-CNP components in the aerial part of Glycyrrhiza uralensis.
Collapse
Affiliation(s)
- Haifan Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China
| | - Jie Cui
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China
| | - Lin Zhang
- Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Guanhua Chang
- Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Wenquan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China.,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 100102, P.R. China
| |
Collapse
|
106
|
Yang S, Chen X, Sun J, Qu C, Chen X. Polysaccharides from traditional Asian food source and their antitumor activity. J Food Biochem 2021; 46:e13927. [PMID: 34595763 DOI: 10.1111/jfbc.13927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Polysaccharides extracted from Asian traditional food source have been demonstrated to possess different antitumor activities mostly without side effect. In this paper, we reviewed many kinds of polysaccharides from different Asian food source and their antitumor activities. Some are common food such as different mushroom with more research. Some are special e.g., Ginseng, Salvia, Astragalus, Lycium barbarum etc. with relatively fewer research. This review mainly focused on their structure, derivatives, antitumor activities and their mechanism of action in the last decades. It aimed to bridge traditional Asian ingredients with tumor and cancer curation in order to avoid side effect of traditional treatment. PRACTICAL APPLICATIONS: There are abundant resources of Asian food. And polysaccharides from these resources have been showed good antitumor activities and immunopotentiating activity. This review introduced the advance of the polysaccharides and their antitumor activities, which will promote the development antitumor medicine derived from Asian food source, or their applications as Adjuvant therapy of traditional chemotherapy and radiotherapy. Due to their multiple antitumor activities, enhancing immunity potential, and non-toxic side-effects, it might be utilized for the treatment of multiple tumors and improve the health and the life quality of patients whether as anti-tumor drugs or as adjuvant therapy method. Furthermore, traditional Asian food source is rich. In the near future, more and more efficient polysaccharides with antitumor activities of Asian food source will be discovered. There will be broad application market for the polysaccharides.
Collapse
Affiliation(s)
- Shengfeng Yang
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | | | - Jing Sun
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Chengming Qu
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaolin Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
107
|
Dwivedi R, Samanta P, Sharma P, Zhang F, Mishra SK, Kucheryavy P, Kim SB, Aderibigbe AO, Linhardt RJ, Tandon R, Doerksen RJ, Pomin VH. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. J Biol Chem 2021; 297:101207. [PMID: 34537241 PMCID: PMC8445769 DOI: 10.1016/j.jbc.2021.101207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023] Open
Abstract
Certain sulfated glycans, including those from marine sources, can show potential effects against SARS-CoV-2. Here, a new fucosylated chondroitin sulfate (FucCS) from the sea cucumber Pentacta pygmaea (PpFucCS) (MW ∼10-60 kDa) was isolated and structurally characterized by NMR. PpFucCS is composed of {→3)-β-GalNAcX-(1→4)-β-GlcA-[(3→1)Y]-(1→}, where X = 4S (80%), 6S (10%) or nonsulfated (10%), Y = α-Fuc2,4S (40%), α-Fuc2,4S-(1→4)-α-Fuc (30%), or α-Fuc4S (30%), and S = SO3-. The anti-SARS-CoV-2 activity of PpFucCS and those of the FucCS and sulfated fucan isolated from Isostichopus badionotus (IbFucCS and IbSF) were compared with that of heparin. IC50 values demonstrated the activity of the three holothurian sulfated glycans to be ∼12 times more efficient than heparin, with no cytotoxic effects. The dissociation constant (KD) values obtained by surface plasmon resonance of the wildtype SARS-CoV-2 spike (S)-protein receptor-binding domain (RBD) and N501Y mutant RBD in interactions with the heparin-immobilized sensor chip were 94 and 1.8 × 103 nM, respectively. Competitive surface plasmon resonance inhibition analysis of PpFucCS, IbFucCS, and IbSF against heparin binding to wildtype S-protein showed IC50 values (in the nanomolar range) 6, 25, and 6 times more efficient than heparin, respectively. Data from computational simulations suggest an influence of the sulfation patterns of the Fuc units on hydrogen bonding with GlcA and that conformational change of some of the oligosaccharide structures occurs upon S-protein RBD binding. Compared with heparin, negligible anticoagulant action was observed for IbSF. Our results suggest that IbSF may represent a promising molecule for future investigations against SARS-CoV-2.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Priyanka Samanta
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Pavel Kucheryavy
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - AyoOluwa O Aderibigbe
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA.
| |
Collapse
|
108
|
Wu X, Huang J, Wang J, Xu Y, Yang X, Sun M, Shi J. Multi-Pharmaceutical Activities of Chinese Herbal Polysaccharides in the Treatment of Pulmonary Fibrosis: Concept and Future Prospects. Front Pharmacol 2021; 12:707491. [PMID: 34489700 PMCID: PMC8418122 DOI: 10.3389/fphar.2021.707491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a fatal chronic progressive respiratory disease, characterized by continuous scarring of the lung parenchyma, leading to respiratory failure and death. The incidence of PF has increased over time. There are drugs, yet, there are some limitations. Hence, it is of importance to find new therapies and new drugs to replace the treatment of pulmonary fibrosis. In recent years, there have been a great number of research reports on the treatment of traditional Chinese medicine polysaccharides in various system fields. Among them, the treatment of PF has also gained extensive attention. This review summarized the source of polysaccharides, the drug activity of traditional Chinese medicine, and the protective effects on targets of Pulmonary fibrosis. We hope it can inspire researchers to design and develop polysaccharides, serving as a reference for potential clinical therapeutic drugs.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chegdu Sport University, Chengdu, China
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
109
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
110
|
Chemical Characterization of the Lichen-Symbiont Microalga Asterochloris erici and Study of Its Cytostatic Effect on the L929 Murine Fibrosarcoma Cell Line. Processes (Basel) 2021. [DOI: 10.3390/pr9091509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New resources of food, pharmaceuticals or biotechnological products are needed. The huge biodiversity of aero-terrestrial lichen-symbiont microalgae belonging to the Chlorophyta group remains unexplored despite they present interesting features such as extreme stress tolerance and growth in water shortage. Appropriateness for human consumption demands the demonstration of the absence of toxic effects. In vitro biocompatibility of crude homogenates of axenic microalga Asterochloris erici, isolated from the lichen Cladonia cristatella, was analyzed after treatment of cultured L929 fibroblasts with different concentrations of microalgal homogenates. The microalgal protein content (37%) was similar to spirulina or soybean. Antioxidant capacity (10.6 ± 0.6 µmol TE/g WW) or phenolic content (7.5 ± 0.5 mg GAE/g DW) were high compared to Chlorella. The results show that crude homogenates of A. erici do not induce cytotoxicity but seem to have some cytostatic effect inducing slight cell cycle alterations and intracellular reactive oxygen species (ROS) increase at the highest concentration. Carotenoid analysis demonstrates high contents of lutein (1211 µg/g microalga DW), a xanthophyll with antioxidant and cytostatic properties in vivo and high commercial added value. These findings confirm that Asterochloris erici can be suitable for the development of alimentary or pharmaceutical applications and further in vivo animal testing. The cytostatic effects should be further investigated for antitumor agents.
Collapse
|
111
|
Guo T, Akan OD, Luo F, Lin Q. Dietary polysaccharides exert biological functions via epigenetic regulations: Advance and prospectives. Crit Rev Food Sci Nutr 2021; 63:114-124. [PMID: 34227906 DOI: 10.1080/10408398.2021.1944974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive substances derived from natural products are valued for effective health-related activities. As extremely important component of plants, animal cell membrane and microbes cytoderm, polysaccharides have been applied as medications, foods and cosmetics stemming from their prominent biological functions and minor side-effects. Recent studies indicate that polysaccharides exert biological effects also through epigenetic mechanism. Through the intervention of DNA methylation, histone modification, and non-coding RNA, polysaccharides participatate in regulation of immunity/inflammation, glucose and lipid metabolism, antioxidant damage and anti-tumor, which presents novel mechanism of polysaccharide exerting various functions. In this review, the latest advances in the biological functions of dietary polysaccharides via epigenetic regulations were comprehensively summarized and discussed. From the view point of epigenetic regulation, investigating the relationship between polysaccharides and biological effects will enhance our understandings of polysaccharides and also means huge breakthrough of molecular mechanism in the polysaccharide research fields. The paper will provide important reference to these investigators of polysaccharide research and expand the applications of dietary polysaccharides in the functional food developments.
Collapse
Affiliation(s)
- Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
112
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
113
|
Xu W, Zhao M, Fu X, Hou J, Wang Y, Shi F, Hu S. Molecular mechanisms underlying macrophage immunomodulatory activity of Rubus chingii Hu polysaccharides. Int J Biol Macromol 2021; 185:907-916. [PMID: 34242647 DOI: 10.1016/j.ijbiomac.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
The present study was to investigate the mechanisms involved in macrophage activation by polysaccharides from the fruits of Rubus chingii Hu (RFPs). The results showed that RFPs enhanced pinocytic and phagocytic activity, promoted the expression and secretion of inflammatory factors (ROS, PTGS2, iNOS, IL-6, IL-10 and TNF-α) and chemokines (CCL2 and CXCL10), and boosted the expression of accessory and costimulatory molecules (CD40, CD80, CD86, MHC-I and MHC-II). RNA-Seq analysis identified 2564 DEGs, 1710 GO terms and 101 KEGG pathways. TNF was identified as the core gene via analysis of pathway information integration and PPI network. The western blot analysis combined with functional verification assay confirmed that MAPK, NF-κB and Jak-STAT pathways were essential to RFPs-mediated macrophage activation. TLR2 was revealed to be the functional receptor and involved in the early recognition of RFPs. These results indicated that RFPs modulated macrophage immune response mainly through TLR2-dependent MAPK, NF-κB and Jak-STAT pathways.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Ming Zhao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Xinyu Fu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Jing Hou
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, China.
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
114
|
Preparation Optimization, Characterization, and Antioxidant and Prebiotic Activities of Carboxymethylated Polysaccharides from Jujube. J FOOD QUALITY 2021. [DOI: 10.1155/2021/3268149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, jujube polysaccharides (JP) were extracted from Jinsixiaozao, and carboxymethylated jujube polysaccharides (CMJP) were prepared. The optimum carboxymethylation conditions optimized by Response Surface Methodology (RSM) were as follows: the reaction temperature was 60°C, the concentration of sodium hydroxide (NaOH) solution was 2.8 mol/L, and the content of chloroacetic acid was 2.12% with a degree of substitution (DS) of 0.2275 ± 0.0108. Physicochemical characterizations and in vitro antioxidant and prebiotic activities of JP and CMJP were evaluated. Compared with unmodified JP, water solubility and viscosity were improved in CMJP. Chemical analysis revealed that CMJP was composed of Rha: Ara: Xyl: Glc: Gal = 0.18 : 9.09 : 0.45 : 0.36 : 0.98 with a molecular weight of 3.04 × 105 Da. The signals of carboxymethyl were observed at 1600, 1420, and 1328 cm−1 in FT-IR. In addition, CMJP showed obviously strong hydroxyl radical scavenging ability compared with JP and also exhibited stronger abilities than JP on the proliferation growth of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus rhamnosus strains. These results indicated that CMJP could be explored as a promising resource for the development of functional foods.
Collapse
|
115
|
Bunyatova U, Hammouda MB, Zhang J. Novel light-driven functional AgNPs induce cancer death at extra low concentrations. Sci Rep 2021; 11:13258. [PMID: 34168242 PMCID: PMC8225844 DOI: 10.1038/s41598-021-92689-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
The current study is aimed at preparing light-driven novel functional AgNPs- bio-hydrogel and evaluating anticancer potency against human melanoma cells. With an average size of 16-18 nm, the hydrogel nano-silver particle composite (AgNPs@C_MA_O) was synthesized using a soft white LED approach and analyzed by UV-Vis, DLS, FTIR, X-ray, SEM-EDX and TEM techniques. The anticancer activity of the obtained novel functionalized AgNPs@C_MA_O was tested in-vitro in the A375 melanoma cell line. Dose-response analysis showed that AgNPs at 0.01 mg/mL and 0.005 mg/mL doses reduced the viability of A375 cells by 50% at 24 and 48-h time-points, respectively. A375 cells treated with AgNPs@C_MA_O for 24 h at IC50 displayed abnormal morphology such as detachment edges and feet, shrinkage, membrane damage, and the loss of contact with adjacent cells. Our work is the first study showing that non-ionizing radiation mediated biofunctionalized AgNPs have an anti-tumoral effect at such a low concentration of 0.01 mg/mL. Our approach of using harmless wLED increased synergy between soft biopolymer compounds and AgNPs, and enhanced anticancer efficiency of the AgNPs@C_MA_O biohydrogel. Ultimately, the AgNPs accessed through the use of the wLED approach in colloidal syntheses can open new applications and combinatorial advanced cancer treatments and diagnostics.
Collapse
Affiliation(s)
- Ulviye Bunyatova
- Biomedical Department, Engineering Facility, Baskent University, Ankara, Turkey.
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
| | - Manel Ben Hammouda
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| | - Jennifer Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
116
|
Han Y, Zhao M, Ouyang K, Chen S, Zhang Y, Liu X, An Q, Zhao Z, Wang W. Sulfated modification, structures, antioxidant activities and mechanism of Cyclocarya paliurus polysaccharides protecting dendritic cells against oxidant stress. INDUSTRIAL CROPS AND PRODUCTS 2021; 164:113353. [DOI: 10.1016/j.indcrop.2021.113353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
117
|
Huang R, He Q, Ma J, Ma C, Xu Y, Song J, Sun L, Wu Z, Huangfu X. Quantitative assessment of extraction methods for bound extracellular polymeric substances (B-EPSs) produced by Microcystis sp. and Scenedesmus sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Pawlikowska M, Jędrzejewski T, Slominski AT, Brożyna AA, Wrotek S. Pigmentation Levels Affect Melanoma Responses to Coriolus versicolor Extract and Play a Crucial Role in Melanoma-Mononuclear Cell Crosstalk. Int J Mol Sci 2021; 22:ijms22115735. [PMID: 34072104 PMCID: PMC8198516 DOI: 10.3390/ijms22115735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
- Correspondence: ; Tel.: +48-(56)-611-25-15
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Laboratory Service of the VA Medical Center, Birmingham, AL 35294, USA
| | - Anna A. Brożyna
- Department of Human Biology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| |
Collapse
|
119
|
Barzic AI. Rheology and Structural Properties of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
120
|
Raza A, Iqbal J, Munir MU, Asif A, Ahmed A. Anticancer Potential of Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
121
|
Navascuez M, Gracia R, Marradi M, Díaz N, Rodríguez J, Loinaz I, López-Gállego F, Llop J, Dupin D. Interfacial activity of modified dextran polysaccharide to produce enzyme-responsive oil-in-water nanoemulsions. Chem Commun (Camb) 2021; 57:4540-4543. [PMID: 33956004 DOI: 10.1039/d1cc00819f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the evaluation of dextran (DXT) derivatives bearing hydrophobic or hydrophilic functional groups as stabilisers of oil-in-water (O/W) emulsions. All investigated modifications conferred interfacial activity to produce stable O/W emulsions, methacrylate(MA)-functionalised DXT being the most promising stabiliser. A minimum amount of MA was required to obtain stable O/W nanoemulsions, which could be degraded in the presence of lipases.
Collapse
Affiliation(s)
- Marcos Navascuez
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain. and CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Natividad Díaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Javier Rodríguez
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Fernando López-Gállego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain and IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| |
Collapse
|
122
|
Huang Z, Zhong C, Dai J, Li S, Zheng M, He Y, Wang M, Chen B. Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
123
|
Box-Wilson Design for Optimization of in vitro Levan Production and Levan Application as Antioxidant and Antibacterial Agents. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33486911 PMCID: PMC8183386 DOI: 10.52547/ibj.25.3.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
124
|
Hertadi R, Permatasari NU, Ratnaningsih E. Box-Wilson Design for Optimization of in vitro Levan Production and Levan Application as Antioxidant and Antibacterial Agents. IRANIAN BIOMEDICAL JOURNAL 2021; 25:202-12. [PMID: 33486911 PMCID: PMC8183386 DOI: 10.29252/ibj.25.3.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023]
Abstract
Background Levan or fructan, a polysaccharide of fructose, is widely used in various commercial industries. Levan could be produced by many organisms, including plants and bacteria. The cloning of the gene from Bacillus licheniformis, which expressed levansucrase in Escherichia coli host, was carried out successfully. In the present study, we performed the in vitro production of levan and analyzed its potential application as antibacterial and antioxidant agents. Methods In vitro levan production catalyzed by heterologous-expressed levansucrase Lsbl-bk1 and Lsbl-bk2 was optimized with Box-Wilson design. The antibacterial activity of the produced levan was carried out using agar well diffusion method, while its antioxidant activity was tested by free radical scavenging assays. Results The optimum conditions for levan production were observed at 36 °C and pH 7 in 12% (w/v) sucrose for levansucrase Lsbl-bk1, while the optimum catalysis of levansucrase Lsbl-bk2 was obtained at 32 oC and pH 8 in the same sucrose concentration. The in vitro synthesized levan showed an antibacterial activity within a concentration range of 10-20% (w/v) against Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa. The same levan was also able to inhibit the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with the antioxidant strength of 75% compared to ascorbic acid inhibition. Conclusion Our study, therefore, shows that the optimized heterologous expression of levansucrases encoded by Lsbl-bk1 and Lsbl-bk2 could open the way for industrial levan production as an antibacterial and antioxidant agent.
Collapse
Affiliation(s)
- Rukman Hertadi
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
| | - Nur Umriani Permatasari
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia
| | - Enny Ratnaningsih
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
| |
Collapse
|
125
|
Wang Z, Dou R, Yang R, Cai K, Li C, Li W. Changes in Phenols, Polysaccharides and Volatile Profiles of Noni ( Morinda citrifolia L.) Juice during Fermentation. Molecules 2021; 26:molecules26092604. [PMID: 33946973 PMCID: PMC8125466 DOI: 10.3390/molecules26092604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/26/2023] Open
Abstract
The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.
Collapse
Affiliation(s)
- Zhulin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Rong Dou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Kun Cai
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
| | - Wu Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.W.); (R.D.); (K.C.); (C.L.)
- Correspondence: ; Tel.: +86-898-6619-8861; Fax: +86-898-6619-3581
| |
Collapse
|
126
|
Wagner GK, Jaszek M, Staniec B, Prendecka M, Pigoń D, Belcarz A, Stefaniuk D, Matuszewska A, Pietrykowska-Tudruj E, Zagaja M. Lasius fuliginosus Nest Carton as a Source of New Promising Bioactive Extracts with Chemopreventive Potential. Int J Mol Sci 2021; 22:ijms22094392. [PMID: 33922345 PMCID: PMC8122773 DOI: 10.3390/ijms22094392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Six new water extracts (E1-E6) were obtained from nest carton produced by jet black ants Lasius fuliginosus and tested for their biochemical and bioactive properties, including antioxidative and anticancer effects. The present study demonstrated significant qualitative and quantitative differences in the content of individual biochemical constituents, as well as bioactive properties between the investigated samples. All tested extracts demonstrated antioxidant properties (determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods), and the highest antioxidative potential was recorded in extracts E1 and E2 (188.96 and 313.67 μg/mL of ascorbic acid equivalent for ABTS and 176.42 and 202.66 μg/mL for DPPH reagent). Furthermore the six extracts exhibited strong inhibitory activity towards human melanoma cells of the A-375 CRL-1619 line in a dose-dependent manner. The most interesting chemopreventive activity was exhibited by extract E2, which inhibited the proliferation of A-375 cells to the greatest extent, while having a minimal effect on Vero cells. The effect on cancer cells has been confirmed using the Electric Cell-substrate Impedance Sensing (ECIS) technique. Significant impedance changes have been detected in A-375 and Vero cells following the administration of extract E2. The obtained results are really promising and constitute the basis for further research on the nest carton of jet black ant.
Collapse
Affiliation(s)
- Grzegorz Karol Wagner
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.S.); (E.P.-T.)
- Correspondence: (G.K.W.); (M.J.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (D.S.); (A.M.)
- Correspondence: (G.K.W.); (M.J.)
| | - Bernard Staniec
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.S.); (E.P.-T.)
| | - Monika Prendecka
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (M.P.); (D.P.)
| | - Dominika Pigoń
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (M.P.); (D.P.)
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (D.S.); (A.M.)
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (D.S.); (A.M.)
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.S.); (E.P.-T.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| |
Collapse
|
127
|
Ji X, Peng B, Ding H, Cui B, Nie H, Yan Y. Purification, Structure and Biological Activity of Pumpkin Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904973] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Baixiang Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hehui Ding
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Bingbing Cui
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hui Nie
- Guangxi Talent Highland of Preservation and Deep Processing Research in Fruit and Vegetables, Hezhou University, Hezhou, P.R. China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
128
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
129
|
Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Virusdisease 2021; 32:85-97. [PMID: 33869672 PMCID: PMC8036013 DOI: 10.1007/s13337-021-00682-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/06/2021] [Indexed: 01/12/2023] Open
Abstract
Plants are repository of important constituents with proven efficacy against many human diseases including viral diseases. The antiviral activity of many plants including Azadirachta indica, Xylopia aethiopica and Allium cepa has been reported. The novel coronavirus disease is no exception among viral diseases in which plant compounds could serve as potent antagonist. Therefore, our study investigated the inhibitory potentials of Azadirachta indica and Xylopia aethiopica isolates against SARS-CoV-2 viral accessory proteins and the host serine protease. The protein data (SARS-CoV-2 Papain like protease (PLpro) (PDB: 6wx4), Chymotrypsin-like main protease (3CLpro) (PDB:6YB7), SARS-CoV nsp 12 (PDB: 6nus), Host cell protease (TMPRSS1) (PDB:5ce1) were obtained from the protein data bank (PDB), while the SDS format of each Ligands were obtained from Pubchem database. Molecular docking analysis was performed with Auto Dock Vina 1.5.6 and visualization of the interaction between the ligands and protein was done with discovery studio 2019. The ADMET prediction of pharmacokinetics and toxicity properties of the ligands was obtained using vNN Web Server. Our result showed that all the plant isolates demonstrated negative Gibb’s free energy, indicating good binding affinity for both the viral and host protein. Overall, twenty-three of the forty-seven isolates showed good binding affinity comparable with dexamethasone that was used as reference drug. Although many of the compounds have good binding affinity for the viral and host proteins, based on the ADMET prediction, only Azadironic acid, Nimbionone, Nimbionol and Nimocinol all from A. indica could serve as potential drug candidate with good pharmacokinetics and toxicity profile. This study provides an insight into potential inhibitors and novel drug candidates for SARS-CoV-2. Further studies will look forward into the wet laboratory validation of Azadironic acid, Nimbionone, Nimbionol and Nimocinol against corona virus disease.
Collapse
|
130
|
Do TTH, Lai TNB, Stephenson SL, Tran HTM. Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia. BMC Biotechnol 2021; 21:28. [PMID: 33773573 PMCID: PMC8005236 DOI: 10.1186/s12896-021-00688-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Microbial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. There has been a limited understanding of the polysaccharides produced by microplasmodia of slime molds, including P. polycephalum. Thus, the primary objectives of this research were first to chemically characterize the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) of P. polycephalum microplasmodia and then to evaluate their cytotoxicity against several cancer cell lines. RESULTS The yields of the crude EPS (4.43 ± 0.44 g/l) and partially purified (deproteinated) EPS (2.95 ± 0.85 g/l) were comparable (p > 0.05) with the respective crude IPS (3.46 ± 0.36 g/l) and partially purified IPS (2.45 ± 0.36 g/l). The average molecular weight of the EPS and IPS were 14,762 kDa and 1788 kDa. The major monomer of the EPS was galactose (80.22%), while that of the IPS was glucose (84.46%). Both crude and purified IPS samples showed significantly higher cytotoxicity toward Hela cells, especially the purified sample and none of the IPSs inhibited normal cells. Only 38.42 ± 2.84% Hela cells remained viable when treated with the partially purified IPS (1 mg/ml). However, although only 34.76 ± 6.58% MCF-7 cells were viable when exposed to the crude IPS, but the partially purified IPS displayed non-toxicity to MCF-7 cells. This suggested that the cytotoxicity toward MCF-7 would come from some component associated with the crude IPS sample (e.g. proteins, peptides or ion metals) and the purification process would have either completely removed or reduced amount of that component. Cell cycle analysis by flow cytometry suggested that the mechanism of the toxicity of the crude IPS toward MCF-7 and the partially purified IPS toward Hela cells was due to apoptosis. CONCLUSIONS The EPS and IPS of P. polycephalum microplasmodia had different chemical properties including carbohydrate, protein and total sulfate group contents, monosaccharide composition and molecular weights, which led to different cytotoxicity activities. The crude and partially purified IPSs would be potential materials for further study relating to cancer treatment.
Collapse
Affiliation(s)
- Tuyen T H Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biotechnology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Tran N B Lai
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Hanh T M Tran
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
131
|
Zhang X, Bi C, Chen Q, Xu H, Shi H, Li X. Structure elucidation of arabinogalactoglucan isolated from Sedum sarmentosum Bunge and its inhibition on hepatocellular carcinoma cells in vitro. Int J Biol Macromol 2021; 180:152-160. [PMID: 33741368 DOI: 10.1016/j.ijbiomac.2021.03.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Sedum sarmentosum Bunge (SS) is clinically used as Chinese medicine for hepatitis related diseases treatment. The purpose of this study was to explore the chemical structures of polysaccharides from this plant. A neutral polysaccharide (SSWP) was isolated and purified by ion-exchange chromatography and Superdex-75 column. The obtained SSWP was a homogenous one with a molecular weight of 21.5 kDa according to the high-performance gel permeation chromatography. The major monosaccharide composition of SSWP was arabinose, glucose and galactose in a molar ratio of 2.4:1:1.8. The methylation analysis showed that SSWP consists mainly of Araf-(1→, →5)-Araf-(1→, →3,5)-Araf-(1→, →4)-Galp-(1→, →4)-Glcp-(1→. The NMR result and enzymatic digestion data comprehensively indicated that SSWP was a novel arabinogalactoglucan-type structure. The anticancer assay in vitro exhibited that SSWP could effectively inhibit 48.9% of Huh-7 cells growth at 50 μg/mL and arrest cells at S-phase, and induce tumor cells apoptosis. Together, polysaccharide from S. sarmentosum Bunge could be a potential natural antitumor agent.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Qi Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hairong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaojun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
132
|
Exopolysaccharides isolated from Rhizopus nigricans induced colon cancer cell apoptosis in vitro and in vivo via activating the AMPK pathway. Biosci Rep 2021; 40:221749. [PMID: 31894839 PMCID: PMC6960068 DOI: 10.1042/bsr20192774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related human deaths. The exopolysaccharide (EPS1-1), isolated from Rhizopus nigricans, has been described as exhibiting anti-tumor and pro-apoptotic activity against CRC, although the underlying mechanism is poorly understood. Herein, we investigate how EPS1-1 induces apoptosis of CRC cells in vitro and in vivo. Our results show that, in vitro, EPS1-1 suppressed cell growth and facilitated apoptosis in a dose- and time-dependent manner by activating the AMP-activated protein kinase (AMPK) pathway in mouse colon cancer CT26 cells. However, treatment with small interfering RNAs (siRNAs) targeting AMPKα or with compound C, an AMPK inhibitor, interfered with the pro-apoptosis effects of EPS1-1. We also show that EPS1-1 initiated the release of reactive oxygen species (ROS) and liver kinase B1 (LKB1), both of which are necessary signals for AMPK activation. Furthermore, EPS1-1-mediated apoptosis is regulated by inactivation of mammalian target of rapamycin complex 1 (mTORC1) and activation of the jun-NH2 kinase (JNK)-p53 signaling axis dependent on AMPK activation. In vivo, azoxymethane/dextran sulfate sodium (AOM/DSS)-treated CRC mice, when administered EPS1-1, exhibited activation of the AMPK pathway, inhibition of mTORC1, and accumulation of p53 in tumor tissues. Collectively, these findings suggest that EPS1-1-induced apoptosis relies on the activation of the AMPK pathway. The present study provides evidence suggesting that EPS1-1 may be an effective target for development of novel CRC therapeutic agents.
Collapse
|
133
|
Liaqat S, Islam M, Saeed H, Iqtedar M, Mehmood A. Investigation of Olea ferruginea Roylebark extracts for potential in vitroantidiabetic and anticancer effects. Turk J Chem 2021; 45:92-103. [PMID: 33679156 PMCID: PMC7925318 DOI: 10.3906/kim-2006-51] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022] Open
Abstract
This study was conducted to investigate the physicochemical, phytochemical, in vitro antidiabetic and anticancer potential of
Olea ferruginea
R bark. After extraction using Soxhlet, in vitro antidiabetic and cytotoxic activity on human hepatocellular carcinoma (HepG2) cells was assessed by nonenzymatic glycosylation of hemoglobin assay, alpha-amylase inhibition assay, glucose uptake by yeast cells, and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, respectively, and gene expression via real-time polymerase chain reaction. Primary and secondary metabolites were present in the extractants; polyphenols (35.61 ± 0.03) and flavonoids (64.33 ± 0.35
)
in the chloroform; and polysaccharides in the ethanol (268.75 ± 0.34), and glycosaponins (78.01 ± 0.07) in the methanol. The chloroform extract exhibited maximum antidiabetic potential, showing inhibition of nonenzymatic glycosylation of hemoglobin (65%), and alpha-amylase inhibition (32%) with maximum percent glucose uptake by the ethanol extract (78%). Only the ethanol extract had dose-dependent cytotoxic potential against the HepG2 cells. After 24-h exposure to the ethanol-extract, the expression of protein kinase B (Akt) remained unchanged, while the expression of B-cell lymphoma 2 (BCL2) and BCL2 associated X (BAX) changed significantly. After 48-h exposure, the expression of Akt decreased significantly, while that of BCL2 and BAX increased significantly.
Olea ferruginea
R bark possessed in vitro antidiabetic potential and anticancer/cytotoxic effects, attributable to the decline in the prosurvival signals of the Akt signaling pathway.
Collapse
Affiliation(s)
- Samra Liaqat
- University College of Pharmacy, University of the Punjab, Lahore Pakistan
| | - Muhammad Islam
- University College of Pharmacy, University of the Punjab, Lahore Pakistan
| | - Hamid Saeed
- University College of Pharmacy, University of the Punjab, Lahore Pakistan
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore Pakistan
| | - Azra Mehmood
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
134
|
Liu E, Ji Y, Zhang F, Liu B, Meng X. Review on Auricularia auricula-judae as a Functional Food: Growth, Chemical Composition, and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1739-1750. [PMID: 33543932 DOI: 10.1021/acs.jafc.0c05934] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the application of Auricularia auricula-judae (AAJ) for health purposes has a long tradition in Asia, there is a lack of research on the functional nutrition of AAJ; the current research focused on polysaccharides has been too unitary compared to other mushrooms in recent years. Identification, extraction, and large-scale production of biologically active substances have emerged as critical determinants that determine AAJ becoming a functional food. AAJ is being treated in a restrained manner, despite having significant potential as a drug or a source of pure bioactive substances. Functional ingredients of mushrooms and AAJ have emerged as a new impetus for researchers interested in developing functional foods. This review presents an overview of current studies relevant to nutrition and the application of AAJ. The physiological conditions of AAJ and the corresponding functional ingredients beneficial to human health are reviewed to better understand the function and mechanisms of different nutrient contents. Relevant methods for evaluating the efficiency of extraction are also summarized. Finally, current limitations and the future scope for functional ingredients of AAJ are identified and discussed.
Collapse
Affiliation(s)
- Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yuan Ji
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
135
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
136
|
Cai Z, Yan Y, Zhou J, Yang Y, Zhang Y, Chen J. Multifunctionalized Brush-Like Glycopolymers with High Affinity to P-Selectin and Antitumor Metastasis Activity. Biomacromolecules 2021; 22:1177-1185. [PMID: 33586430 DOI: 10.1021/acs.biomac.0c01689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycopolymers that can mimic natural glycosaminoglycan, such as heparin, have shown great potentials in inhibition of cancer metastasis. In the current work, a novel series of brush-like glycopolymers (BGPs) with simultaneous functionalization of various monosaccharide or disaccharide compositions have been synthesized through a new grafting-polymerization strategy, in order to mimic the activities of both heparin and P-selectin ligand PSGL-1. In the subsequent in vitro assays of antiadhesion, platelets activation, heparanase inhibition, and so on, BGP-SFH, as one of the BGPs with the composition of the combined three sugar units, sialic acids, fucoses, and heparin disaccharides, showed the highest antimetastasis ability, similar to its prototype heparin. Moreover, in a mouse metastatic melanoma model, the BGP-SFH also inhibited B16 cell metastasis effectively. Thus, the current work not only demonstrated a type of promising antimetastasis glycopolymer BGPs, but also illustrated an easy synthetic approach to multifunctionalized glycopolymers, leading to potential applications for broader biomedical research.
Collapse
Affiliation(s)
- Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yishu Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
137
|
Zhong R, Li JQ, Wu SW, He XM, Xuan JC, Long H, Liu HQ. Transcriptome analysis reveals possible antitumor mechanism of Chlorella exopolysaccharide. Gene 2021; 779:145494. [PMID: 33588036 DOI: 10.1016/j.gene.2021.145494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Microalgae, one of the most important classes of biomass producers, can produce exopolysaccharides similar to bacteria. The exopolysaccharide from Chlorella (CEPS) displays remarkable anticancer activity the mechanism of which remains to be elucidated. In this study, we analyzed the inhibitory effect of CEPS on the growth of HeLa cells. The results showed that CEPS inhibited the proliferation, decreased the viability, and changed the morphology of HeLa cells. Transcriptome analysis showed that 1894 genes were differentially expressed in the CEPS-treated group compared with the control group, including 1076 genes that were upregulated and 818 genes that were downregulated. The results of gene function enrichment analysis showed that the differentially expressed genes (DEGs) were significantly enriched in apoptosis and tumor-related biological processes and participated in several cancer and apoptosisrelated signaling pathways, including the MAPK signaling pathway, TNF signaling pathway, and the PI3K-Akt signaling pathway. The protein-protein interaction network identified 13 DEGs including PTPN11, RSAD2, ISG15, IFIT1, MX2, IFIT2, OASL, OAS1, JUN, OAS2, XAF1, ISG20, and IRF9 as hub genes. Our results suggest that CEPS is a promising therapeutic drug for the follow-up interventional therapy of cancer.
Collapse
Affiliation(s)
- Run Zhong
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Jie-Qiong Li
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Si-Wei Wu
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Xiu-Miao He
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Jin-Cai Xuan
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Han Long
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China
| | - Hong-Quan Liu
- Guangxi University for Nationalities, School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Their Modification, Nanning 530007, China.
| |
Collapse
|
138
|
Gupta J, Ahuja A, Gupta R. Green Approaches for Cancer Management: an Effective Tool for Health Care. Anticancer Agents Med Chem 2021; 22:101-114. [PMID: 33463475 DOI: 10.2174/1871520621666210119091826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of an increasing number of death incidences in modern society. As the population increases, there is increased thrust for screening newer anticancer (phytoconstituents) agents to manage cancers. Around 35000 herbal phytoconstituents are obtained from plants, animals and marine sources to create awareness of green therapy in managing, reducing, minimizing side effects of modern chemotherapeutics and radiation therapy. The herbal plants are the richest sources of natural remedies and bioactive compounds that promote medicines' alternative systems as a green approach for managing various cancers. The terpenoids, saponins, volatile oils, and flavonoid phytoconstituents are most efficiently used to manage cancer with minimal side effects. OBJECTIVE The objectives of the present study are to investigate the efficacious, potent and safe use of herbal phytoconstituents extracts in the management of cancers and study their mechanism of action through alteration of transcription proteins, blocking G-2/M phase, distortion of tubulin structure, generation of reactive oxygen species, lipid peroxidation, cell cycle arrest, anti-proliferation induced cell apoptosis for target specific cancer treatment. The information was collected from databases such as ScienceDirect, PubMed, Google Scholar, Academia, MedLine, and WoS. METHODS The Literature was surveyed and screened keywords like cancer therapeutics, metastasis, proliferation, cell apoptosis, cell lines, phytoconstituents for cancer management, and related disorders. RESULTS The findings suggested that the crude extracts act as an antioxidant, free radical scavenger, or anti-aging agent exploited in the management of cancers along with treatment of other infectious diseases like ulcers, gout, liver diseases, respiratory tract infection, renal disorders, blood disorders, CVD, anti-inflammatory and several wound infections. CONCLUSION The phytoactive moieties having herbal extracts help improve the compromised immunity status of affected patients and provide measures for scientific studies of newer anticancer agents in herbal industries.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| | - Ashima Ahuja
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh. India
| |
Collapse
|
139
|
Feng S, Ding H, Liu L, Peng C, Huang Y, Zhong F, Li W, Meng T, Li J, Wang X, Li Y, Wu J. Astragalus polysaccharide enhances the immune function of RAW264.7 macrophages via the NF-κB p65/MAPK signaling pathway. Exp Ther Med 2021; 21:20. [PMID: 33235629 PMCID: PMC7678613 DOI: 10.3892/etm.2020.9452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the immunoregulatory effects of Astragalus polysaccharide (APS) on RAW264.7 cells. The production of cytokines by RAW264.7 cells was analyzed using ELISA, while cell viability and optimal concentration of APS were assessed using the Cell Counting Kit-8 assay. In addition, the mRNA levels of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α were determined by reverse transcription-quantitative PCR analysis. The levels of co-stimulatory molecules and cell cycle distribution were assessed by flow cytometry. Electrophoretic mobility shift assay was used to determine the effects of APS on p65 expression. Compared with controls, APS enhanced the production of NO, the gene expression of TNF-α, IL-6 and iNOS and the protein levels of phosphorylated p65, p38, Jun N-terminal kinase and extracellular signal regulated kinase in RAW264.7 cells, whereas these effects of APS were alleviated by pyrrolidine dithiocarbamate. The results of the present study indicated that the immunoregulatory effects of APS are mediated, at least in part, via the activation of the NF-κB p65/MAPK signaling pathway.
Collapse
Affiliation(s)
- Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Leihong Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Chenglu Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yingying Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Fuchao Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Wei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Tingting Meng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
140
|
Mohammed ASA, Naveed M, Jost N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2359-2371. [PMID: 33526994 PMCID: PMC7838237 DOI: 10.1007/s10924-021-02052-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Polysaccharides are essential macromolecules which almost exist in all living forms, and have important biological functions, they are getting more attention because they exhibit a wide range of biological and pharmacological activities, such as anti-tumour, immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and hypoglycemia activities, making them one of the most promising candidates in biomedical and pharmaceutical fields. Polysaccharides can be obtained from many different sources, such as plants, microorganisms, algae, and animals. Due to their physicochemical properties, they are susceptible to physical and chemical modifications leading to enhanced properties, which is the basic concept for their diverse applications in biomedical and pharmaceutical fields. In this review, we will give insight into the most recent updated applications of polysaccharides and their potentialities as alternatives for traditional and conventional therapies. Challenges and limitations for polysaccharides in pharmaceutical utilities are discussed as well.
Collapse
Affiliation(s)
- Aiman Saleh A. Mohammed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, 6720 Hungary
| |
Collapse
|
141
|
Jen CI, Su CH, Lai MN, Ng LT. Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University
| | - Chun-Han Su
- Department of Agricultural Chemistry, National Taiwan University
| | | | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University
| |
Collapse
|
142
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
143
|
Kaur M, Wadhwa A, Kumar V. Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2579-2588. [DOI: 10.14233/ajchem.2021.23382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials of biological origin are very useful for drug delivery applications. The stability,
biodegradability and biocompatibility of pectin nanomaterials in the human body make them an effective
drug carrier. This review focus on different aspect of synthesis, drug encapsulation, drug release and
safety of pectin-based nanomaterials. The nanomaterials can be used for the delivery of different
hydrophilic and hydrophobic drugs to various organs. The release kinetics of drug loaded pectin-based
nanoparticles can be studied in vitro as well as in vivo. The pectin-based nanomaterials have good
pharmaco-kinetics and can ensure controlled drug delivery. However, the toxicity of pectin-based
nanomaterials to human body needs to be evaluated carefully before industrial scale application.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Aditya Wadhwa
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| |
Collapse
|
144
|
Tang W, Chen X, Liu D, Xie J. Bioactive Components of Mesona Blume and Their Potential Health Benefits. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1849271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wei Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Dan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
145
|
Abstract
Cancer is one of the leading causes of death and one of the most important public health problems in the world. And every year, millions of new cancers and hundreds of thousands of cancer-related deaths are reported worldwide. In recent decades, a number of biologically active polysaccharides and polysaccharide-protein complexes have been isolated from plants, lichen, algae, yeast, fungi and mushroom, and due to their antitumor and immunomodulatory properties, these compounds have received considerable attention. Overall, the two key mechanisms by which polysaccharides act on tumor cells are direct action (inhibition of cancer cell growth and induction of programmed cell death/apoptosis) and indirect action (stimulation of immunity). Immunosuppressive effects are recognizable in both cancer patients and tumor bearing animals, suggesting that the immune system plays an important role in the immune surveillance of cancer cells. Thus, enhancement of the host immune response has been evaluated as a possible way of inhibiting tumor growth without damaging the host. In addition to their therapeutic and prophylactic properties, the polysaccharides are effective and less toxic than chemotherapy. The anticancer activity and immunomodulatory effects of most polysaccharides have shown the promising and real potential for the benefits of human health.
Collapse
Affiliation(s)
- Anley Teferra Kiddane
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea.,Research Institute for Basic Sciences, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
146
|
Anwar M, Birch EJ, Ding Y, Bekhit AED. Water-soluble non-starch polysaccharides of root and tuber crops: extraction, characteristics, properties, bioactivities, and applications. Crit Rev Food Sci Nutr 2020; 62:2309-2341. [DOI: 10.1080/10408398.2020.1852388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mylene Anwar
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Food Science, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Edward John Birch
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, PR China
| | | |
Collapse
|
147
|
Umar M, Ullah A, Nawaz H, Areeb T, Hashmi M, Kharaghani D, Kim KO, Kim IS. Wet-spun bi-component alginate based hydrogel fibers: Development and in-vitro evaluation as a potential moist wound care dressing. Int J Biol Macromol 2020; 168:601-610. [PMID: 33338524 DOI: 10.1016/j.ijbiomac.2020.12.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
In this study, bi-component alginate-hyaluronic acid (AHA) fibers were developed by using two different routes. In the first method, sodium alginate dope solution was extruded into a coagulation bath containing CaCl2 and subsequently dip-coated with hyaluronic acid (HA) whereas, in the second method, hyaluronic acid-containing sodium alginate dope solution was directly extruded into CaCl2 bath. The resulting AHA fibers were then dehydrated in 25-100% v/v acetone solutions and dried in air. The fibers were characterized by surface morphology, physicochemical analysis, mechanical performance, swelling percentage, and total liquid absorption (g/g), cell viability, and release behavior. The results showed that AHA fibers produced by the second method have better mechanical performance, high liquid absorption, and swelling percentage with a more controlled release of hyaluronic acid. The AHA fibers showed high biocompatibility toward nHDF cell line in in-vitro testing, and the MVTR values (650-800 g/m2/day) are in a suitable range for maintaining a moist wound surface proving to be appropriate for promoting wound healing.
Collapse
Affiliation(s)
- Muhammad Umar
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, Japan; Department of Materials, University of Manchester, Manchester, United Kingdom
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, Japan
| | - Hifza Nawaz
- Department of Materials, University of Manchester, Manchester, United Kingdom
| | - Tanzeel Areeb
- Department of Bioengineering, Oakland University, Rochester Hill, USA
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, Japan
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | - Kyu Oh Kim
- Department of Fiber-System Engineering, Dankook University 152, Jookjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, Japan.
| |
Collapse
|
148
|
Choudhuri I, Khanra K, Maity P, Patra A, Maity GN, Pati BR, Nag A, Mondal S, Bhattacharyya N. Structure and biological properties of exopolysaccharide isolated from Citrobacter freundii. Int J Biol Macromol 2020; 168:537-549. [PMID: 33316341 DOI: 10.1016/j.ijbiomac.2020.12.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the molecular characterization, antioxidant activity in vitro, cytotoxicity study of an exopolysaccharide isolated from Citrobacter freundii. Firstly, the culture conditions were standardized by the Design of experiments (DoE) based approach, and the final yield of thecrude exopolysaccharide was optimized at 2568 ± 169 mg L-1. One large fraction of exopolysaccharide was obtained from the culture filtrate by size exclusion chromatography and molecular characteristics were studied. A new mannose rich exopolysaccharide (Fraction-I) with average molecular weight ~ 1.34 × 105 Da was isolated. The sugar analysis showed the presence of mannose and glucose in a molar ratio of nearly 7:2 respectively. The structure of the repeating unit in the exopolysaccharide was determined through chemical and 1D/2D- NMR experiments as: Finally, the antioxidant activity, and the cytotoxicity of the exopolysaccharide were investigated and the relationship with molecular properties was discussed as well.
Collapse
Affiliation(s)
- Indranil Choudhuri
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Kalyani Khanra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Prasenjit Maity
- Department of Chemistry, Sabang Sajanikanta Mahavidyalaya, Sabang, Paschim Midnapore, West Bengal PIN-721166, India
| | - Anutosh Patra
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Gajendra Nath Maity
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India
| | - Bikas Ranjan Pati
- Dept. of Microbiology, Vidyasagar University, Medinipur, West Bengal PIN-721102, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru PIN-560029, India
| | - Soumitra Mondal
- Department of Chemistry, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, P.O. - Panskura R.S., Purba Medinipur, West Bengal PIN-721152, India.
| |
Collapse
|
149
|
Wang Q, Niu LL, Liu HP, Wu YR, Li MY, Jia Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int J Biol Macromol 2020; 168:251-260. [PMID: 33309662 DOI: 10.1016/j.ijbiomac.2020.12.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
In this research, a novel polysaccharide (PCP) was extracted from Pleurotus citrinopileatus and purified by Sephadex G-150 gel column, and its antitumor activity was investigated using the model H22 tumor-bearing mice. PCP was found to be composed of arabinose, galactose, glucose, xylose, mannose and glucuronic acid in a proportion of 0.66: 14.59: 10.77: 1: 0.69: 0.23 with average molecular weight of 7.30 × 105 Da. Further analysis suggested that PCP was a pyranose with α-type and β-type glycosidic residues. The antitumor assays in vivo indicated that PCP could effectively suppress H22 solid tumor growth, protect immune organs and improve inflammation and anemia. Besides, Annexin V-FITC/PI double staining and JC-1 staining demonstrated that PCP could induce apoptosis of H22 hepatoma cells. The PI staining assay revealed that PCP induced H22 hepatoma cells apoptosis by arresting cell cycle in S phase. These results suggest that the polysaccharide from Pleurotus citrinopileatus possesses potential value in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Lu-Lu Niu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Ya-Ru Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Meng-Yu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Qi Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
150
|
Wang XJ, Ding LM, Wei HY, Jiang CX, Yan Q, Hu CS, Jia GX, Zhou YQ, Henkin Z, Degen AA. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep. Animal 2020; 15:100061. [PMID: 33516026 DOI: 10.1016/j.animal.2020.100061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
The use of antibiotics as supplements in animal feed is restricted due to possible health hazards associated with them. Consequently, there is increasing interest in exploiting natural products to improve health and production of livestock with no detrimental side effects. In this study, we examined the effect of Astragalus membranaceus root (AMT) supplementation on DM intake, growth performance, rumen fermentation and immunity of Tibetan sheep. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9 months old) were assigned randomly to one of four dietary treatments with different levels of AMT: 0, 20, 50 and 80 g/kg DM (A0, A2, A5 and A8, respectively) in addition to their basal diets. A0 acted as a control group, and measurements were recorded over a 56-d feeding period. Sheep fed with AMT had a higher average daily gain and a lower feed:gain ratio than controls (P < 0.001). Rumen concentrations of NH3-N (P < 0.001), total volatile fatty acids (P = 0.028), acetate (P = 0.017) and propionate (P = 0.031) in A5 and A8 were higher than those in A0. The addition of AMT in the feed significantly increased serum antioxidant and immunity factors of the sheep and increased the concentrations of serum interleukin, immunoglobulin and tumour necrosis factor-α (P = 0.010). We concluded that AMT can be used as a feed additive to improve growth performance and rumen fermentation and enhance the immunity of Tibetan sheep. Some responses exhibited a dose-dependent response, whereas other did not exhibit a pattern, with an increase in AMT. The addition of 50 and 80 g/kg AMT of total DM intake showed the most promising results.
Collapse
Affiliation(s)
- X J Wang
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - L M Ding
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, Qinghai 810016, China.
| | - H Y Wei
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - C X Jiang
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Q Yan
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - C S Hu
- State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - G X Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Y Q Zhou
- Haibei Comprehensive Experimental Station of National Beef Cattle & Yak Industrial Technology System, Haibei 810299, China
| | - Z Henkin
- Beef Cattle Section, Department of Natural Resources, Agricultural Research Organization, Newe-Ya'ar Research Center, POB 1021, Ramat Yishay, 30095, Israel
| | - A A Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|