101
|
Linares-Pastén JA, Aronsson A, Karlsson EN. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Curr Protein Pept Sci 2018; 19:48-67. [PMID: 27670134 PMCID: PMC5738707 DOI: 10.2174/1389203717666160923155209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022]
Abstract
Xylooligosaccharides (XOS) have gained increased interest as prebiotics during the last years. XOS and arabinoxylooligosaccharides (AXOS) can be produced from major fractions of biomass including agricultural by-products and other low cost raw materials. Endo-xylanases are key enzymes for the production of (A)XOS from xylan. As the xylan structure is broadly diverse due to different substitutions, diverse endo-xylanases have evolved for its degradation. In this review structural and functional aspects are discussed, focusing on the potential applications of endo-xylanases in the production of differently substituted (A)XOS as emerging prebiotics, as well as their implication in the processing of the raw materials. Endo-xylanases are found in at least eight different glycoside hydrolase families (GH), and can either have a retaining or an inverting catalytic mechanism. To date, it is mainly retaining endo-xylanases that are used in applications to produce (A)XOS. Enzymes from these GH-families (mainly GH10 and GH11, and the more recently investigated GH30) are taken as prototypes to discuss substrate preferences and main products obtained. Finally, the need of new and accessory enzymes (new specificities from new families or sources) to increase the yield of different types of (A)XOS is discussed, along with in vitro tests of produced oligosaccharides and production of enzymes in GRAS organisms to facilitate use in functional food manufacturing.
Collapse
Affiliation(s)
| | - Anna Aronsson
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
102
|
Pham T, Teoh KT, Savary BJ, Chen MH, McClung A, Lee SO. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Nutrients 2017; 9:nu9111237. [PMID: 29137150 PMCID: PMC5707709 DOI: 10.3390/nu9111237] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults (n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides, Prevotella, and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium, specifically F. prausnitzii. Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia, suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function.
Collapse
Affiliation(s)
- Tung Pham
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Keat Thomas Teoh
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Brett J Savary
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA.
- College of Agriculture and Technology, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Ming-Hsuan Chen
- USDA Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Anna McClung
- USDA Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
103
|
Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J, Sun B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res Int 2017; 103:84-102. [PMID: 29389647 DOI: 10.1016/j.foodres.2017.10.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
The intakes of whole cereal grains (WCGs) have long been linked to decreased risks of metabolic syndromes (MetS) and several chronic diseases. Owing to the complex range of components of cereals, which may show synergistic activities to mediate these protective effects, the mechanisms by which the benefits of whole cereals arise are not fully understood. The gut microbiota has recently become a new focus of research at the intersection of diet and metabolic health. Moreover, cereals contain various ingredients known as microbiota-accessible substrates that resist digestion in the upper gastrointestinal tract, including resistant starch and non-starch polysaccharides such as β-glucan and arabinoxylans, making them an important fuel for the microbiota. Thus, WCGs may manipulate the ecophysiology of gut microbiota. In this review, the scientific evidence supporting the hypothesis that WCGs prevent MetS by modulating gut microbiota composition and functions are discussed, with focuses on cereal intake-related mechanisms by which gut microbiota contributes to human health and scientific evidences for the effects of WCGs on modulating gut microbiota. Once strong support for the association among WCGs, gut microbiota and host metabolic health can be demonstrated, particular cereals, their processing technologies, or cereal-based foods might be better utilized to prevent and possibly even treat metabolic disease.
Collapse
Affiliation(s)
- Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wenyan Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hailin Chi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
104
|
Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker BR. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence. mBio 2017; 8:e01068-17. [PMID: 29018117 PMCID: PMC5635687 DOI: 10.1128/mbio.01068-17] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome.IMPORTANCE The microorganisms that reside in the human colon fulfill their energy requirements mainly from diet- and host-derived complex carbohydrates. Members of this ecosystem possess poorly understood strategies to prioritize and compete for these nutrients. Based on direct carbohydrate measurements and corresponding transcriptional analyses, our findings showed that individual bacterial species exhibit different preferences for the same set of glycans and that this prioritization is maintained in a competitive environment, which may promote stable coexistence. Such understanding of gut bacterial glycan utilization will be essential to eliciting predictable changes in the gut microbiota to improve health through the diet.
Collapse
Affiliation(s)
- Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| | - Yao Xiao
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley L Reuhs
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
105
|
Qiu S, Yadav MP, Yin L. Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass. Food Chem 2017; 230:225-233. [DOI: 10.1016/j.foodchem.2017.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
106
|
Chen T, Kim CY, Kaur A, Lamothe L, Shaikh M, Keshavarzian A, Hamaker BR. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct 2017; 8:1166-1173. [PMID: 28174773 DOI: 10.1039/c6fo01532h] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.
Collapse
Affiliation(s)
- Tingting Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Choon Young Kim
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA. and Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Amandeep Kaur
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Lisa Lamothe
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
107
|
Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 2017; 7:2594. [PMID: 28572676 PMCID: PMC5453967 DOI: 10.1038/s41598-017-02995-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota of individuals are dominated by different fiber-utilizing bacteria, which ferment dietary fiber into short chain fatty acids (SCFAs) known to be important for human health. Here, we show that the dominance of Prevotella versus Bacteroides in fecal innocula, identified into two different enterotypes, differentially impacts in vitro fermentation profiles of SCFAs from fibers with different chemical structures. In a microbiome of the Prevotella enterotype, fructooligosaccharides, and sorghum and corn arabinoxylans significantly promoted one single Prevotella OTU with equally high production of total SCFAs with propionate as the major product. Conversely, in the Bacteroides-dominated microbiota, the three fibers enriched different OTUs leading to different levels and ratios of SCFAs. This is the first report showing how individual differences in two enterotypes cause distinctly different responses to dietary fiber. Microbiota dominated by different fiber-utilizing bacteria may impact host health by way of producing different amounts and profiles of SCFAs from the same carbohydrate substrates.
Collapse
|
108
|
Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr 2017; 57:3543-3564. [DOI: 10.1080/10408398.2016.1180501] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
109
|
Tuncil YE, Nakatsu CH, Kazem AE, Arioglu-Tuncil S, Reuhs B, Martens EC, Hamaker BR. Delayed utilization of some fast-fermenting soluble dietary fibers by human gut microbiota when presented in a mixture. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
110
|
Brahma S, Martínez I, Walter J, Clarke J, Gonzalez T, Menon R, Rose DJ. Impact of dietary pattern of the fecal donor on in vitro fermentation properties of whole grains and brans. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
111
|
Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, Sietiö OM, Tsang A, de Vries RP, Mäkelä MR. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Environ Microbiol 2017; 19:1237-1250. [PMID: 28028889 DOI: 10.1111/1462-2920.13652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi, (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study, we evaluated how well the enzymatic machinery of the white-rot fungus Dichomitus squalens is tailored to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analyzed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good a match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant biomass types not present in its natural habitat.
Collapse
Affiliation(s)
- Johanna Rytioja
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marcos Di Falco
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Outi-Maaria Sietiö
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ronald P de Vries
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, 3584, CT, The Netherlands
| | - Miia R Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
112
|
Ayala-Soto FE, Serna-Saldívar SO, Welti-Chanes J. Effect of arabinoxylans and laccase on batter rheology and quality of yeast-leavened gluten-free breads. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
113
|
Aguirre M, Venema K. Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Benef Microbes 2016; 8:31-53. [PMID: 27903093 DOI: 10.3920/bm2016.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.
Collapse
Affiliation(s)
- M Aguirre
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,3 The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, the Netherlands
| | - K Venema
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,4 Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, the Netherlands
| |
Collapse
|
114
|
Changes in the structure and gelling properties of maize fiber arabinoxylans after their pilot scale extraction and spray-drying. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
115
|
Malunga LN, Beta T. Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat. Heliyon 2016; 2:e00106. [PMID: 27441278 PMCID: PMC4946213 DOI: 10.1016/j.heliyon.2016.e00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 10/28/2022] Open
Abstract
Feruloylated arabinoxylan mono- and oligosaccharides (F-AXOS) are a subject of interest because of their prebiotic and antioxidant properties. We aimed at isolating and identifying F-AXOS from maize, wheat, wheat bran and wheat aleurone using HPLC and LC-MS/MS. Prior to extraction of F-AXOS, samples were subjected to either simulated gastric fluid with enzymes (gastric) or without enzymes (pH) or water (aqueous) at 37 °C. F-AXOS present in all samples were identified as 5-O-feruloyl-α-L- arabinofuranose and possibly 5-O-feruloyl-α-L-arabinofuranosyl-(1 → 3)-O-β-D-xylopyranose. Their mean content, measured as esterified ferulic acid (FA), was 2.5 times higher in maize (10.33 ± 2.40 μg/g) compared to wheat. Digestion under gastric or pH conditions resulted in a two-fold increase in F-AXOS in all samples. The level of F-AXOS produced during gastric or pH condition was positively correlated to the insoluble bound FA content of the sample (R(2) = 0.98). 5-O-Feruloyl-α-L- arabinofuranose was the only identifiable F-AXOS released during gastric digestion. Our results suggest feruloyl arabinose is the most abundant form of F-AXOS in maize and wheat.
Collapse
Affiliation(s)
| | - Trust Beta
- University of Manitoba, Department of Food Science, Winnipeg, Manitoba R3T 2N2, Canada; University of Manitoba, Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
116
|
Rumpagaporn P, Reuhs BL, Cantu-Jungles TM, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR. Elevated propionate and butyrate in fecal ferments of hydrolysates generated by oxalic acid treatment of corn bran arabinoxylan. Food Funct 2016; 7:4935-4943. [PMID: 27841429 DOI: 10.1039/c6fo00975a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxalic acid-debranched corn arabinoxylan increased butyrate while maintaining high proprionate in human fecalin vitrofermentations.
Collapse
Affiliation(s)
- Pinthip Rumpagaporn
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Brad L. Reuhs
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Thaisa M. Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | - Amandeep Kaur
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| | | | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition
- Rush University
- Chicago
- USA
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
117
|
Mendis M, Leclerc E, Simsek S. Arabinoxylans, gut microbiota and immunity. Carbohydr Polym 2015; 139:159-66. [PMID: 26794959 DOI: 10.1016/j.carbpol.2015.11.068] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 01/12/2023]
Abstract
Arabinoxylan (AX) is a non-starch polysaccharide found in many cereal grains and is considered as a dietary fiber. Despite their general structure, there is structural heterogeneity among AX originating from different botanical sources. Furthermore, the extraction procedure and hydrolysis by xylolytic enzymes can further render differences to theses AX. The aim of this review was to address the effects of AX on the gut bacteria and their immunomodulatory properties. Given the complex structure of AX, we also aimed to discuss how the structural heterogeneity of AX affects its role in bacterial growth and immunomodulation. The existing literature indicates the role of fine structural details of AX on its potential as polysaccharides that can impact the gut associated microbial growth and immune system.
Collapse
Affiliation(s)
- Mihiri Mendis
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, USA
| | - Estelle Leclerc
- North Dakota State University, Department of Pharmaceutical Sciences, College of Health Professions, Fargo, ND, USA
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, USA.
| |
Collapse
|