101
|
Verma R, Singh V, Koch B, Kumar M. Evaluation of methotrexate encapsulated polymeric nanocarrier for breast cancer treatment. Colloids Surf B Biointerfaces 2023; 226:113308. [PMID: 37088058 DOI: 10.1016/j.colsurfb.2023.113308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Herein, Methotrexate-loaded chitosan nanoparticles (Meth-Cs-NPs) was formulated through single-step self-assembly by incorporating the ionic-gelation method. Chitosan was cross-linked with Methotrexate via a sodium tripolyphosphate (STPP) where 49 % Methotrexate was loaded in the nanoparticles (∼143 nm) and zeta potential of 34 ± 3 mV with an entrapment efficiency of 87 %. The efficacy of nanoparticles was assessed for chemically induced breast cancer treatment in the Sprague Dawley rats model. These Meth-Cs-NPs followed the Korsmeyer-Peppas model in-vitro release kinetics. Nanoparticles were further evaluated for in-vitro efficacy on triple-negative breast cancer (MDA-MB-231) cell lines. The MTT assay studies revealed that even slight exposure to Meth-Cs-NPs (IC50 = 15 µg/mL) caused 50 % cell death in 24 h. Further, hemocompatibility studies of Meth-Cs-NPs were performed, deciphered that Meth-Cs-NPs were biocompatible (hemolysis < 2 %). Additional cellular uptake was evaluated by confocal imaging. Moreover, an in-vivo pharmacokinetic study of nanoparticles in rats displayed increased plasma concentration of the drug and retention time, whereas a decrease in cellular clearance compared to free Methotrexate. Further, anti-tumor efficacy studies revealed that nanoparticles could reduce tumor volume from 1414 mm3→385 mm3 compared to free Methotrexate (1414 mm3→855 mm3). The current study presents encouraging prospects of Meth-Cs-NPs to be used as a viable breast cancer treatment modality.
Collapse
Affiliation(s)
- Rinki Verma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India
| | - Virendra Singh
- Genotoxicology and cancer biology laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biplob Koch
- Genotoxicology and cancer biology laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar
- Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
102
|
Liu X, Zhang Y, Liu Y, Hua S, Meng F, Ma Q, Kong L, Pan S, Che Y. Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings. Int J Biol Macromol 2023; 240:124365. [PMID: 37030460 DOI: 10.1016/j.ijbiomac.2023.124365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Wound dressing with an improved structural and functional recapitulation of damaged organs, efficient self-healing and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Supramolecular hydrogels confer control over structural properties in a reversible, dynamic and biomimetic fashion. Herein, a kind of injectable, self-healing and antibacterial supramolecular hydrogel with multi-responses were fabricated by mixing phenylazo-terminated Pluronic F127, quaternized chitosan-graft-cyclodextrin and polydopamine coated tunicate cellulose nanocrystals under physiological conditions. By exploiting the photoisomerization of azobenzene under different wavelengths, a supramolecular hydrogel featuring a changing crosslink density of network was obtained. The corporation of polydopamine coated tunicate cellulose nanocrystals strengthens the hydrogel network with Schiff base bonds and hydrogen bonds, which avoids complete gel-sol transition. The inherent antibacterial property, drug release behavior, self-healing ability, hemostatic performance and biocompatibility were investigated to confirm superiority in wound healing. Moreover, the curcumin loaded hydrogel (Cur-hydrogel) showed multi-responsive release profiles (light, pH, and temperature). A full-thickness skin defect model was built to confirm that Cur-hydrogels significantly accelerated wound healing rate with better granulation tissue thickness and collagen disposition. Overall, the novel photo-responsive hydrogel with coherent antibacterial property has great potential in the healthcare of wound healing.
Collapse
Affiliation(s)
- Xiaonan Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yijie Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
103
|
Li Y, Li L, Li Y, Feng L, Wang B, Wang M, Wang H, Zhu M, Yang Y, Waldorff EI, Zhang N, Viohl I, Lin S, Bian L, Lee WYW, Li G. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field. Bioact Mater 2023; 22:312-324. [PMID: 36263100 PMCID: PMC9576572 DOI: 10.1016/j.bioactmat.2022.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-β-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-β-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment.
Collapse
Affiliation(s)
- Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Ye Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Bin Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Meiling Zhu
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Erik I. Waldorff
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Nianli Zhang
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Ingmar Viohl
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Liming Bian
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
104
|
Xu W, Zhang M, Du W, Ling G, Yuan Y, Zhang P. Engineering a naturally-derived wound dressing based on bio-ionic liquid conjugation. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
105
|
Bai Q, Gao Q, Hu F, Zheng C, Chen W, Sun N, Liu J, Zhang Y, Wu X, Lu T. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int J Biol Macromol 2023; 232:123271. [PMID: 36646352 DOI: 10.1016/j.ijbiomac.2023.123271] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The most important function of skin is to prevent biological dehydration and protect internal structures from the environment. When a wound becomes infected, the bacteria cause a sustained inflammatory response at the infected site, further delaying the healing process. Therefore, the search for better antibacterial strategies has become a topic of great concern. Therefore, the development of multifunctional hydrogels with antibacterial properties, ROS removal, and hemostasis is urgently required for promoting wound healing process. Chitosan is the only cationic natural polysaccharide with good biocompatibility, antibacterial and hemostatic ability. It is a candidate material to prepare hydrogel wound dressing. Hyaluronic acid (HA) is a natural biological macromolecule that belongs to a group of heteropolysaccharides known as non-sulfated glycosaminoglycans. It is a major component of the skin extracellular matrix (ECM) and is involved in inflammation, angiogenesis, and tissue regeneration. Here, the hydrogel was designed with the natural macromolecular of the gallic acid-grafted quaternized chitosan (GA-QCS) and oxidized hyaluronic acid (OHA) via Schiff base and/or Michael addition reaction. It was found that the GA-QCS/OHA hydrogel exhibited multifunctional capabilities with injectable, hemostasis, degradation, and release of medicines. In addiation, GA-QCS/OHA hydrogels exhibited remarkable antioxidant and migration promoting effects in vitro. And the mupirocin-loaded GA-QCS/OHA hydrogels had inhibitory effects on E. coli (Gram-negative bacterium) and S. aureus (Gram-positive bacterium) in vitro. A full-thickness skin of S. aureus infection mouse wound model was used to test the bioactive effect of the hydrogels and the accelerated wound healing was obtained due to the inhibiting the proinflammatory factor TNF-α and upregulating the vascularization factor CD31. This study proposed an effective strategy based on antioxidant, antibacterial, self-healing multifunctional hydrogel for wound healing under various infectious complications. This natural macromolecular hydrogel could act as an effective reactive oxygen species scavenger to promote the wound healing in the future.
Collapse
Affiliation(s)
- Que Bai
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenting Chen
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Na Sun
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinxi Liu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xianglong Wu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
106
|
Yamashita Y, Ohzuno Y, Saito Y, Fujiwara Y, Yoshida M, Takei T. Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels 2023; 9:gels9040280. [PMID: 37102892 PMCID: PMC10137746 DOI: 10.3390/gels9040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Moist wound healing is known to heal wounds faster than dry wound healing. Hydrogel wound dressings are suitable for moist wound healing because of their hyperhydrous structure. Chitosan, a natural polymer, promotes wound healing by stimulating inflammatory cells and releasing bioactive compounds. Therefore, chitosan hydrogel has great potential as a wound dressing. In our previous study, physically crosslinked chitosan hydrogels were successfully prepared solely by freeze-thawing of chitosan-gluconic acid conjugate (CG) aqueous solution without using any toxic additives. Furthermore, the CG hydrogels could be sterilized by autoclaving (steam sterilization). In this study, we showed that autoclaving (121 °C, 20 min) of a CG aqueous solution simultaneously achieved gelation of the solution and sterilization of the hydrogel. Hydrogelation of CG aqueous solution by autoclaving is also physically crosslinking without any toxic additives. Further, we showed that the CG hydrogels retained favorable biological properties of the CG hydrogels prepared by freeze-thawing and subsequent autoclaving. These results indicated that CG hydrogels prepared by autoclaving were promising as wound dressings.
Collapse
|
107
|
Emani S, Vangala A, Buonocore F, Yarandi N, Calabrese G. Chitosan Hydrogels Cross-Linked with Trimesic Acid for the Delivery of 5-Fluorouracil in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15041084. [PMID: 37111570 PMCID: PMC10143928 DOI: 10.3390/pharmaceutics15041084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan exhibits unique properties making it a suitable material for drug delivery. Considering the rising popularity of hydrogels in this field, this work offers a comprehensive study of hydrogels constituted by chitosan and cross-linked with 1,3,5-benzene tricarboxylic acid (BTC; also known as trimesic acid). Hydrogels were prepared by cross-linking chitosan with BTC in different concentrations. The nature of the gels was studied through oscillatory amplitude strain and frequency sweep tests within the linear viscoelastic region (LVE) limit. The flow curves of the gels revealed shear thinning behavior. High G′ values imply strong cross-linking with improved stability. The rheological tests revealed that the strength of the hydrogel network increased with the cross-linking degree. Hardness, cohesiveness, adhesiveness, compressibility, and elasticity of the gels were determined using a texture analyzer. The scanning electron microscopy (SEM) data of the cross-linked hydrogels showed distinctive pores with a pore size increasing according to increasing concentrations (pore size range between 3–18 µm). Computational analysis was performed by docking simulations between chitosan and BTC. Drug release studies employing 5-fluorouracil (5-FU) yielded a more sustained release profile with 35 to 50% release among the formulations studied in a 3 h period. Overall, this work demonstrated that the presence of BTC as cross-linker leads to satisfactory mechanical properties of the chitosan hydrogel, suggesting potential applications in the sustained release of cancer therapeutics.
Collapse
|
108
|
Wang W, Wang A, Hu G, Bian M, Chen L, Zhao Q, Sun W, Wu Y. Potential of an Aligned Porous Hydrogel Scaffold Combined with Periodontal Ligament Stem Cells or Gingival Mesenchymal Stem Cells to Promote Tissue Regeneration in Rat Periodontal Defects. ACS Biomater Sci Eng 2023; 9:1961-1975. [PMID: 36942823 DOI: 10.1021/acsbiomaterials.2c01440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Periodontal tissue regeneration is a major challenge in tissue engineering due to its regenerated environment complexity. It aims to regenerate not only the supporting alveolar bone and cementum around teeth but also the key connecting periodontal ligament. Herein, a constructed aligned porous hydrogel scaffold carrying cells based on chitosan (CHI) and oxidized chondroitin sulfate (OCS) treated with a freeze-casting technique was fabricated, which aimed to induce the arrangement of periodontal tissue regeneration. The microscopic morphology and physical and chemical properties of the hydrogel scaffold were evaluated. The biocompatibilities with periodontal ligament stem cells (PDLSCs) or gingival-derived mesenchymal stem cells (GMSCs) were verified, respectively, by Live/Dead staining and CCK8 in vitro. Furthermore, the regeneration effect of the aligned porous hydrogel scaffold combined with PDLSCs and GMSCs was evaluated in vivo. The biocompatibility experiments showed no statistical significance between the hydrogel culture group and blank control (P > 0.05). In a rat periodontal defect model, PDLSC and GMSC hydrogel experimental groups showed more pronounced bone tissue repair than the blank control (P < 0.05) in micro-CT. In addition, there was more tissue repair (P < 0.05) of PDLSC and GMSC hydrogel groups from histological staining images. Higher expressions of OPN, Runx-2, and COL-I were detected in both of the above groups via immunohistochemistry staining. More importantly, the group with the aligned porous hydrogel induced more order periodontal ligament formation than that with the ordinary hydrogel in Masson's trichrome analysis. Collectively, it is expected to promote periodontal tissue regeneration utilizing an aligned porous hydrogel scaffold combined with PDLSCs and GMSCs (CHI-OCS-PDLSC/GMSC composite), which provides an alternative possibility for clinical application.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310000, People's Republic of China
| | - Ao Wang
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310000, People's Republic of China
| | - Gaofu Hu
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Mengyao Bian
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Lili Chen
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310000, People's Republic of China
| | - Weilian Sun
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Yanmin Wu
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| |
Collapse
|
109
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
110
|
Bayir E. Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Polyelectrolyte complexes (PECs) consist of a spontaneous assembly of oppositely charged polysaccharides. PECs can be used to obtain a hydrogel tissue scaffold in tissue culture. In this study, it is aimed to use PEC as a blood-brain barrier (BBB) model scaffold. By mixing polycationic chitosan and polyanionic alginate solutions at a certain ratio it was obtained a 3D hydrogel scaffold and mimicked in vivo environment of the tissue. The PEC hydrogel scaffold’s chemical, physical, and mechanical characterizations were performed with FTIR, DSC, DMA, and Micro-CT analyses. In order to develop an in vitro BBB model, the human neuroblastoma cell line (SH-SY5Y) and mouse astrocyte cell line (C8-D1A) were mixed into a hydrogel, which is the abluminal side of the BBB. Human microvascular endothelial cells (HBEC-5i) were seeded on the hydrogel, and it was aimed to mimic the luminal side of the BBB. The characterization of the BBB model was determined by measuring the TEER, observation of the cell morphology with SEM, performing the permeability of Lucifer Yellow, and observation of tight junction proteins with immunofluorescence staining. As a result, HBEC-5i cells expressed tight junction proteins (ZO-1 and Claudin-5), showed TEER of 340 ± 22 Ω.cm2, and the Lucifer Yellow permeability of 7.4 × 10−7 ± 2.7 × 10−7 cm/s, which was suitable for use as an in vitro BBB model. Using a hydrogel PEC composed of chitosan and alginate as an extracellular matrix increased the direct interaction of endothelial cells, astrocytes, and neurons with each other and thus obtained a much less permeable model compared to other standard transwell models. Graphical abstract [Formula: see text]
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| |
Collapse
|
111
|
Knight BM, Edgar KJ, De Yoreo JJ, Dove PM. Chitosan as a Canvas for Studies of Macromolecular Controls on CaCO 3 Biological Crystallization. Biomacromolecules 2023; 24:1078-1102. [PMID: 36853173 DOI: 10.1021/acs.biomac.2c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Collapse
Affiliation(s)
- Brenna M Knight
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
112
|
S A Bento C, Gaspar MC, Coimbra P, de Sousa HC, E M Braga M. A review of conventional and emerging technologies for hydrogels sterilization. Int J Pharm 2023; 634:122671. [PMID: 36736965 DOI: 10.1016/j.ijpharm.2023.122671] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels' polymeric materials, types of networks, and main biomedical applications are summarily described.
Collapse
Affiliation(s)
- Cristiana S A Bento
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marisa C Gaspar
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal; Center for Innovative Care and Health Technology (ciTechCare), Polytechnic of Leiria, 2410-541 Leiria, Portugal
| | - Patrícia Coimbra
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Hermínio C de Sousa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Mara E M Braga
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
113
|
Xu J, Li Y, Yang J, Zhou S, Situ W. Plasma etching effect on the molecular structure of chitosan-based hydrogels and its biological properties. Int J Biol Macromol 2023; 230:123257. [PMID: 36646344 DOI: 10.1016/j.ijbiomac.2023.123257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
To reasonably use hydrogels in healthcare field, this study four kinds of chitosan (CTS)-based hydrogels with different molecular structures. With plasma etching, the morphology, chemical groups' proportion, and hydrophilicity of the hydrogel surface were changed. At 40 min of modification, the ratios of CO and NH2 on the CTS40-based hydrogel surface increased and reached their maximum values of 40.31 % and 89.17 %, respectively. Combined with the changes in hydrophilic chemical groups and the hydrogel's network structure, the hydrogel surface's wettability changed after plasma etching. From the results, CTS40-based hydrogel showed the lowest contact angle (77.40 ± 3.89°) with 80 min modification due to its dense network structure of CTS and appropriate ratio of hydrophilic groups on the surface. With these molecular structural changes, the antibacterial properties of CTS-based hydrogels against Staphylococcus aureus were improved. Moreover, the functional components delivery system coating with these CTS-based hydrogels showed colon-site controlled-release property. The hydrogels also facilitated the growth of Caco2 and Hic cells, which had 72.74 %-453.27 % cell viability of Caco2 cells on the surface. Therefore, the antibacterial property and biocompatibility of plasma modified CTS-based hydrogels have been demonstrated. The mechanism between molecular structure changes of CTS with plasma etching and its properties was discussed, which would provide a promising carrier material for utilizing healthcare field.
Collapse
Affiliation(s)
- Juncong Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyuan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Subin Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbei Situ
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
114
|
Hassani MS, Salehi M, Ehterami A, Mahami S, Bitaraf FS, Rahmati M. Evaluation of collagen type I and III, TGF-β1, and VEGF gene expression in rat skin wound healing treated by Alginate/Chitosan hydrogel containing Crocetin. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
115
|
Tian M, Zhou L, Fan C, Wang L, Lin X, Wen Y, Su L, Dong H. Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater 2023; 158:252-265. [PMID: 36584802 DOI: 10.1016/j.actbio.2022.12.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Antibiotic resistance of bacteria and persistent inflammation are critical challenges in treating bacteria infected wounds. Thus, it is urgent to develop versatile wound dressings that possess high-efficiency antibacterial performance and inflammation regulation. Herein, we have successfully constructed a hydrogel wound dressing consisting of the bimetallic metal-organic framework (MOF) loaded with glucose oxidase (GOx), termed as MOF(Fe-Cu)/GOx-polyacrylamide (PAM) gel. Hydrogel dressings can provide an efficient cascade-catalyzed system to accelerate wound healing via synergistic antibacterial and inflammatory modulation. Importantly, the catalytic property of the bimetallic MOF(Fe-Cu) is about five times that of the monometallic MOF(Fe). Based on such a cascade-catalyzed system, the abundant gluconic acid and H2O2 can be continuously produced by decomposing glucose via GOx. Such gluconic acid can notably improve the peroxidase performance of MOF(Fe-Cu), which can further efficiently decompose H2O2 to achieve the antibacterial. Meanwhile, MOF (Fe Cu)/GOx PAM gel can induce macrophages to change into an M2 phenotype, which can accelerate the transformation of the wound microenvironment to a remodeling state and then accelerate angiogenesis and neurogenesis. This work provides multifunctional bioactive materials for accelerating wound healing and will have great potential in clinical applications. STATEMENT OF SIGNIFICANCE: Antibiotic resistance and persistent inflammation are still the critical reasons for the slow healing of bacteria infected wounds. Herein, we prepared a hydrogel wound dressing composed of bimetallic metal organic framework (MOF) loaded with glucose oxidase (GOx). The catalytic activity of the bimetallic MOF(Fe-Cu) is significantly enhanced due to doping of copper, which makes it possess outstanding antibacterial ability based on cascade catalysis. Such dressing can promote the remodeling of inflammatory immunity by regulating macrophage polarization to suppress over-reactive inflammation, further accelerating the healing of bacteria-infected wounds. This study provides an innovative and effective way to accelerate the healing of bacteria infected wound by combining bacteria killing and inflammation modulation.
Collapse
Affiliation(s)
- Meng Tian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Chuan Fan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Lirong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China
| | - Lei Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, PR China.
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, PR China; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518071, PR China.
| |
Collapse
|
116
|
Jie X, Shiu BC, Zhang Y, Wu H, Ye Y, Fang R. Chitosan-Urushiol nanofiber membrane with enhanced acid resistance and broad-spectrum antibacterial activity. Carbohydr Polym 2023; 312:120792. [PMID: 37059532 DOI: 10.1016/j.carbpol.2023.120792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Due to the large specific surface area and rich pore structure, chitosan nanofiber membrane has many advantages over conventional gel-like or film-like products. However, the poor stability in acidic solutions and relatively weak antibacterial activity against Gram-negative bacteria severely restrict its use in many industries. Here, we present a chitosan-urushiol composite nanofiber membrane prepared by electrospinning. Chemical and morphology characterization revealed that the formation of chitosan-urushiol composite involved the Schiff base reaction between catechol and amine groups and the self-polymerization of urushiol. The unique crosslinked structure and multiple antibacterial mechanisms endowed the chitosan-urushiol membrane with outstanding acid resistance and antibacterial performance. After immersion in HCl solution at pH 1, the membrane maintained its intact appearance and satisfactory mechanical strength. In addition to its good antibacterial performance against Gram-positive Staphylococcus aureus (S. aureus), the chitosan-urushiol membrane exhibited synergistic antibacterial activity against Gram-negative Escherichia coli (E. coli) that far exceeded that of neat chitosan membrane and urushiol. Moreover, cytotoxicity and hemolysis assays revealed that the composite membrane had good biocompatibility similar to that of neat chitosan. In short, this work provides a convenient, safe, and environmentally friendly method to simultaneously enhance the acid resistance and broad-spectrum antibacterial activity of chitosan nanofiber membranes.
Collapse
Affiliation(s)
- Xiaoyu Jie
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; College of Environment and Safety Engineering, Fuzhou university, Fuzhou 350108, China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Yuchi Zhang
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China
| | - Huazhong Wu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yuansong Ye
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China.
| | - Run Fang
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; College of Environment and Safety Engineering, Fuzhou university, Fuzhou 350108, China; Fujian Engineering Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China.
| |
Collapse
|
117
|
Xu Y, Deng Z, Chen Y, Wu FF, Huang C, Hu Y. Preparation and characterization of mussel-inspired hydrogels based on methacrylated catechol-chitosan and dopamine methacrylamide. Int J Biol Macromol 2023; 229:443-451. [PMID: 36599382 DOI: 10.1016/j.ijbiomac.2022.12.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
A novel mussel-inspired adhesive hydrogel with enhanced adhesion based on methacrylated catechol-chitosan (MCCS) and dopamine methacrylate (DMA) was prepared via photopolymerization. The structure and morphology of the MCCS/DMA adhesive hydrogel were investigated by using FTIR, NMR, XRD, TG, and SEM. The rheological and texture properties, swelling and degradation characteristics, as well as the adhesion mechanism of the hydrogels were also examined. These results revealed that the MCCS/DMA hydrogels have a dense double cross-linking network structure with porous internal microstructures, and exhibited controllable swelling and degradation properties, good thermostability, and stable rheological characteristics. Furthermore, the adhesive mechanism of MCCS/DMA hydrogel has been confirmed by the FTIR and 2D correlation FTIR spectroscopy. Additionally, the results of in vitro cytotoxicity assessment indicated that the resulting hydrogels have good cytocompatibility. Overall, the MCCS/DMA adhesive hydrogel may have potential applications in medical bioadhesives.
Collapse
Affiliation(s)
- Yuan Xu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Zhicheng Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Fang Fang Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, PR China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528458, PR China.
| |
Collapse
|
118
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
119
|
Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
120
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
121
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
122
|
Muñana-González S, Veloso-Fernández A, Ruiz-Rubio L, Pérez-Álvarez L, Vilas-Vilela JL. Covalent Cross-Linking as a Strategy to Prepare Water-Dispersible Chitosan Nanogels. Polymers (Basel) 2023; 15:polym15020434. [PMID: 36679313 PMCID: PMC9863238 DOI: 10.3390/polym15020434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Due to the environmental problems generated by petroleum derivative polymers as mentioned in Agenda 2030, the use of natural polymers is increasing. Among them, cellulose and chitin are the most widespread biopolymers available in nature. Chitosan, obtained from chitin, is a really good candidate to develop nanocarriers due to its polyelectrolyte nature and ease of chemical modification. However, chitosan presents a solubility drawback in an aqueous medium at physiological pH (pH = 7.4), which restricts its applicability in biomedicine. In this work, nanogels were successfully synthesized from chitosan systems with different water solubilities (chitosan, oligosaccharide chitosan, and quaternized chitosan) using the reverse microemulsion method and polyethylene glycol diacid (PEGBCOOH) as a covalent cross-linking agent. Cross-linking with PEGBCOOH was analyzed by proton nuclear magnetic resonance (1H-NMR), which allowed for nanogels to be prepared whose size and swelling were comparatively studied by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential, respectively. The particle size of the swollen nanogels showed a different pH-responsive behavior that decreased for chitosan, increased for oligosaccharide chitosan, and remained constant for quaternized chitosan. Nevertheless, a drastic reduction was observed in all cases in the culture medium. Along the same line, the dispersibility of the synthesized nanogels in different media was comparatively evaluated, showing similar values for the nanogels prepared from soluble chitosans than for water insoluble chitosan as a consequence of the cross-linking with PEGBCOOH. After 6 months of storage of the dried nanogels, the water dispersibility values remained constant in all cases, demonstrating the stabilizing effect of the employed cross-linking agent and the potential use of synthesized nanogels as substrates for drug delivery.
Collapse
Affiliation(s)
- Sara Muñana-González
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Antonio Veloso-Fernández
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-946-01-2709
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
123
|
Ren LJ, Zhou HY, Hao PY, Zheng HJ, Tong JN, Chen YW, Park HJ. Amino acids grafted‐chitosan/glycerophosphate hydrogel for controlled release of berberine hydrochloride. J Appl Polym Sci 2023. [DOI: 10.1002/app.53632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li Jun Ren
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hui Yun Zhou
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Pei Yan Hao
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hui Jie Zheng
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Jia Nan Tong
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Ya Wei Chen
- Chemical Engineering & Pharmaceutics College Henan University of Science and Technology Luoyang China
| | - Hyun Jin Park
- Graduate School of Biotechnology Korea University Seoul Korea
| |
Collapse
|
124
|
Gericke M, Skodda LH, Heinze T. Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches — From modular synthesis to gel-formation. Carbohydr Polym 2023; 300:120251. [DOI: 10.1016/j.carbpol.2022.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
125
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
126
|
Mirbagheri MS, Akhavan-Mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr Polym 2023; 313:120512. [PMID: 37182929 DOI: 10.1016/j.carbpol.2022.120512] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.
Collapse
|
127
|
Thirupathi K, Raorane CJ, Ramkumar V, Ulagesan S, Santhamoorthy M, Raj V, Krishnakumar GS, Phan TTV, Kim SC. Update on Chitosan-Based Hydrogels: Preparation, Characterization, and Its Antimicrobial and Antibiofilm Applications. Gels 2022; 9:35. [PMID: 36661802 PMCID: PMC9858335 DOI: 10.3390/gels9010035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Chitosan is a prominent biopolymer in research for of its physicochemical properties and uses. Each year, the number of publications based on chitosan and its derivatives increases. Because of its comprehensive biological properties, including antibacterial, antioxidant, and tissue regeneration activities, chitosan and its derivatives can be used to prevent and treat soft tissue diseases. Furthermore, chitosan can be employed as a nanocarrier for therapeutic drug delivery. In this review, we will first discuss chitosan and chitosan-based hydrogel polymers. The structure, functionality, and physicochemical characteristics of chitosan-based hydrogels are addressed. Second, a variety of characterization approaches were used to analyze and validate the physicochemical characteristics of chitosan-based hydrogel materials. Finally, we discuss the antibacterial, antibiofilm, and antifungal uses of supramolecular chitosan-based hydrogels. This review study can be used as a base for future research into the production of various types of chitosan-based hydrogels in the antibacterial and antifungal fields.
Collapse
Affiliation(s)
- Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gopal Shankar Krishnakumar
- Department of Biotechnology, Applied Biomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
128
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
129
|
Wang H, Song X, Xiong J, Cheang UK. Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography. Polymers (Basel) 2022; 14:polym14245509. [PMID: 36559876 PMCID: PMC9784805 DOI: 10.3390/polym14245509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetically actuated microrobots showed increasing potential in various fields, especially in the biomedical area, such as invasive surgery, targeted cargo delivery, and treatment. However, it remains a challenge to incorporate biocompatible natural polymers that are favorable for practical biomedical applications. In this work, bilayer magnetic microrobots with an achiral planar design were fabricated using a biocompatible natural polymer and Fe3O4 nanoparticles through the photolithography by applying the layer-by-layer method. The microrobots consisted of a magnetic bottom layer and a photo-crosslinked chitosan top layer. The SEM results showed that the microrobot processed the L-shaped planar structure with the average width, length, and thickness of 99.18 ± 5.11 μm, 189.56 ± 11.37 μm, and 23.56 ± 4.08 μm, respectively. Moreover, microrobots actuated using a three-dimensional (3D) Helmholtz coil system was characterized and reached up to an average maximum velocity of 325.30 μm/s and a step-out frequency of 14 Hz. Furthermore, the microrobots exhibited excellent cell biocompatibility towards L929 cells in the CCK-8 assay. Therefore, the development of bi-layered chitosan-based microrobots offers a general solution for using magnetic microrobots in biomedical applications by providing an easy-to-fabricate, highly mobile microrobotic platform with the incorporation of biocompatible natural polymers for enhanced biocompatibility.
Collapse
Affiliation(s)
- Haoying Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.W.); (U.K.C.)
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junfeng Xiong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.W.); (U.K.C.)
| |
Collapse
|
130
|
Liu Z, Wei W, Tremblay PL, Zhang T. Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces 2022; 220:112902. [DOI: 10.1016/j.colsurfb.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/29/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022]
|
131
|
Lu B, Han X, Zou D, Luo X, Liu L, Wang J, Maitz MF, Yang P, Huang N, Zhao A. Catechol-chitosan/polyacrylamide hydrogel wound dressing for regulating local inflammation. Mater Today Bio 2022; 16:100392. [PMID: 36033376 PMCID: PMC9403564 DOI: 10.1016/j.mtbio.2022.100392] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Chronic wounds and the accompanying inflammation are ongoing challenges in clinical treatment. They are usually accompanied by low pH and high oxidative stress environments, limiting cell growth and proliferation. Ordinary medical gauze has limited therapeutic effects on chronic wounds, and there is active research to develop new wound dressings. The chitosan hydrogel could be widely used in biomedical science with great biocompatibility, but the low mechanical properties limit its development. This work uses polyacrylamide to prepare double-network (DN) hydrogels based on bioadhesive catechol-chitosan hydrogels. Cystamine and N, N′-Bis(acryloyl)cystamine, which can be cross-linking agents with disulfide bonds to prepare redox-responsive DN hydrogels and pH-responsive nanoparticles (NPs) prepared by acetalized cyclodextrin (ACD) are used to intelligently release drugs against chronic inflammation microenvironments. The addition of catechol groups and ACD-NPs loaded with the Resolvin E1 (RvE1), promotes cell adhesion and regulates the inflammatory response at the wound site. The preparation of the DN hydrogel in this study can be used to treat and regulate the inflammatory microenvironment of chronic wounds accurately. It provides new ideas for using inflammation resolving factor loaded in DN hydrogel of good biocompatibility with enhanced mechanical properties to intelligent regulate the wound inflammation and promote the wound repaired. Dual-response hydrogel drug delivery system was used to intelligently release drugs at inflammation area of chronic wound. DN hydrogel was designed to enhance the properties of chitosan-based hydrogel with two cross-linking agents. Resolvin E1 loaded into wound dressing can help to regulate wound inflammation by regulating macrophage behavior.
Collapse
Affiliation(s)
- Bingyang Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiao Han
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dan Zou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiao Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingyue Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Ping Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ansha Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
132
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
133
|
Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. Int J Pharm 2022; 629:122385. [DOI: 10.1016/j.ijpharm.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
134
|
Injectable chitosan hydrogels tailored with antibacterial and antioxidant dual functions for regenerative wound healing. Carbohydr Polym 2022; 298:120103. [DOI: 10.1016/j.carbpol.2022.120103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022]
|
135
|
Wu M, Liu Y, Cong P, Mao S, Zou R, Lv J, Tian H, Zhao Y. Study of Polydopamine-modified β-Chitin Nanofiber Hydrogels for Full-Thickness Wound Healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
136
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
137
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
138
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers (Basel) 2022; 14:polym14235163. [PMID: 36501559 PMCID: PMC9741326 DOI: 10.3390/polym14235163] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Wound management remains a challenging issue around the world, although a lot of wound dressing materials have been produced for the treatment of chronic and acute wounds. Wound healing is a highly dynamic and complex regulatory process that involves four principal integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases of the normal wound healing process, and are usually stalled at the inflammatory phase. These wounds cause a lot of challenges to patients, such as severe emotional and physical stress and generate a considerable financial burden on patients and the general public healthcare system. It has been reported that about 1-2% of the global population suffers from chronic non-healing wounds during their lifetime in developed nations. Traditional wound dressings are dry, and therefore cannot provide moist environment for wound healing and do not possess antibacterial properties. Wound dressings that are currently used consist of bandages, films, foams, patches and hydrogels. Currently, hydrogels are gaining much attention as a result of their water-holding capacity, providing a moist wound-healing milieu. Chitosan is a biopolymer that has gained a lot of attention recently in the pharmaceutical industry due to its unique chemical and antibacterial nature. However, with its poor mechanical properties, chitosan is incorporated with other biopolymers, such as the cellulose of desirable biocompatibility, at the same time having the improved mechanical and physical properties of the hydrogels. This review focuses on the study of biopolymers, such as cellulose and chitosan hydrogels, for wound treatment.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
- Correspondence: ; Tel.: +7-960-272-3495
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| | - Alexander Krasichkov
- Departments of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, Saint Petersburg 197022, Russia
| | - Victoriya O. Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovsky 2-4, Saint Petersburg 191036, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| |
Collapse
|
139
|
Studies of Mercaptosuccinic Acid-Crosslinked Chitosan Hydrogel with Grafted Cinnamaldehyde and Silver Nanoparticles for Antibacterial Biomedical Application. Int J Mol Sci 2022; 23:ijms232314806. [PMID: 36499133 PMCID: PMC9736152 DOI: 10.3390/ijms232314806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
For the effective clinical antibacterial application of biomaterials, such as for wound management and tissue repair, the biomaterials need to show proper antibacterial capability as well as non-cytotoxicity. Furthermore, the material needs to have suitable mechanical characteristics for further medical use. Chitosan hydrogel is a potential candidate for various antibacterial biomedical applications due to its amine functionalities that lead to antimicrobial characteristics. Nevertheless, its antimicrobial capability is dependent upon the degree of protonation of amine groups caused by the pH value. Moreover, its mechanical compressive strength may not be high enough for clinical use if not chemically or physically crosslinked. This study utilized a novel chemical crosslinker, mercaptosuccinic acid, to improve its mechanical characteristics. The natural antibacterial agent, cinnamaldehyde, was grafted onto the crosslinked chitosan to improve its antimicrobial capability. Meanwhile, to take advantage of the thiol functionality in the mercaptosuccinic acid, the bactericidal silver nanoparticles were incorporated through silver-thiol covalent bounding. NMR analyses indicated the chitosan was successfully mercaptosuccinic acid-crosslinked and grafted with cinnamaldehyde at different ratios. Combined the results from the mechanical assessment, swelling experiments, antimicrobial assessment, and cytotoxicity assay, the chitosan hydrogel with the highest crosslinked degree and grafted with cinnamaldehyde and silver nanoparticles is of great promise for further clinical uses.
Collapse
|
140
|
Peng K, Li M, Himawan A, Domínguez-Robles J, Vora LK, Duncan R, Dai X, Zhang C, Zhao L, Li L, Larrañeta E, Donnelly RF. Amphotericin B- and Levofloxacin-Loaded Chitosan Films for Potential Use in Antimicrobial Wound Dressings: Analytical Method Development and Its Application. Pharmaceutics 2022; 14:2497. [PMID: 36432684 PMCID: PMC9693580 DOI: 10.3390/pharmaceutics14112497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Levofloxacin (LVX) and amphotericin B (AMB) have been widely used to treat bacterial and fungal infections in the clinic. Herein, we report, for the first time, chitosan films loaded with AMB and LVX as wound dressings to combat antimicrobial infections. Additionally, we developed and validated a high-performance liquid chromatography (HPLC) method coupled with a UV detector to simultaneously quantify both AMB and LVX. The method is easy, precise, accurate and linear for both drugs at a concentration range of 0.7-5 µg/mL. The validated method was used to analyse the drug release, ex vivo deposition and permeation from the chitosan films. LVX was released completely from the chitosan film after a week, while approximately 60% of the AMB was released. Ex vivo deposition study revealed that, after 24-hour application, 20.96 ± 13.54 µg of LVX and approximately 0.35 ± 0.04 µg of AMB was deposited in porcine skin. Approximately 0.58 ± 0.16 µg of LVX permeated through the skin. AMB was undetectable in the receptor compartment due to its poor solubility and permeability. Furthermore, chitosan films loaded with AMB and LVX were found to be able to inhibit the growth of both Candida albicans and Staphylococcus aureus, indicating their potential for antimicrobial applications.
Collapse
Affiliation(s)
- Ke Peng
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ross Duncan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Xianbing Dai
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chunyang Zhang
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Li Zhao
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luchi Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
141
|
Russo C, Piccioni M, Lorenzini ML, Catalano C, Ambrogi V, Pagiotti R, Pietrella D. Bud-Poplar-Extract-Embedded Chitosan Films as Multifunctional Wound Healing Dressing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227757. [PMID: 36431858 PMCID: PMC9695786 DOI: 10.3390/molecules27227757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Wounds represent a major global health challenge. Acute and chronic wounds are sensitive to bacterial infection. The wound environment facilitates the development of microbial biofilms, delays healing, and promotes chronic inflammation processes. The aim of the present work is the development of chitosan films embedded with bud poplar extract (BPE) to be used as wound dressing for avoiding biofilm formation and healing delay. Chitosan is a polymer with antimicrobial and hydrating properties used in wound dressing, while BPE has antibacterial, antioxidative, and anti-inflammatory properties. Chitosan-BPE films showed good antimicrobial and antibiofilm properties against Gram-positive bacteria and the yeast Candida albicans. BPE extract induced an immunomodulatory effect on human macrophages, increasing CD36 expression and TGFβ production during M1/M2 polarization, as observed by means of cytofluorimetric analysis and ELISA assay. Significant antioxidant activity was revealed in a cell-free test and in a human neutrophil assay. Moreover, the chitosan-BPE films induced a good regenerative effect in human fibroblasts by in vitro cell migration assay. Our results suggest that chitosan-BPE films could be considered a valid plant-based antimicrobial material for advanced dressings focused on the acceleration of wound repair.
Collapse
Affiliation(s)
- Carla Russo
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
| | - Miranda Piccioni
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Maria Laura Lorenzini
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Chiara Catalano
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Valeria Ambrogi
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Rita Pagiotti
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Donatella Pietrella
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
142
|
Huang B, Hu D, Dong A, Tian J, Zhang W. Highly Antibacterial and Adhesive Hyaluronic Acid Hydrogel for Wound Repair. Biomacromolecules 2022; 23:4766-4777. [DOI: 10.1021/acs.biomac.2c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dan Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
143
|
Gao Y, Sun W, Zhang Y, Liu L, Zhao W, Wang W, Song Y, Sun Y, Ma Q. All-Aqueous Microfluidics Fabrication of Multifunctional Bioactive Microcapsules Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48426-48437. [PMID: 36265178 DOI: 10.1021/acsami.2c13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wound healing involves multiple stages of body responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. New material design satisfying all demands throughout different stages of wound healing is cherished but rarely discussed. Here we introduce all-aqueous multiphase microfluidics as a novel strategy to fabricate self-assembled, multifunctional alkylated chitosan/alginate microcapsules (SAAMs) as novel therapeutic materials for rapid blood coagulation and wound healing. SAAMs are structurally distinguished by their ultrathin shells with polycationic surface for rapid activation of clotting cascade and their internal porous dextran-rich cores for fast absorption of blood and exudate. These features endow SAAMs with excellent hemostatic properties for acute hemorrhage. Moreover, the alkylated chitosan within the microcapsules exhibits persistent antimicrobial activities against bactericidal infections due to their amphiphilic and cationic surfaces. Besides, cytokines can be safely loaded into the organic-solvent-free microcapsules and released precisely to promote the proliferation of epidermal cells, supporting the subsequent development of granulation tissue and suppression of inflammation in the last stages of wound healing. With the ability to fabricate size-tailored soft microcapsules and to realize time-sequential functions for tissue repairing, the presented "all-aqueous microfluidics generation of multifunctional bioactive SAAMs" create a versatile and robust paradigm for wound treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin300071, P.R. China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao266113, P.R. China
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong999077, P.R. China
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong518060, P.R. China
| | - Lijun Liu
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composite, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Yong Sun
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao266071, P.R. China
| |
Collapse
|
144
|
Xu F, Wang S, Cao C, Ma W, Zhang X, Du J, Sun W, Ma Q. Microfluidic generation of multifunctional core-shell microfibers promote wound healing. Colloids Surf B Biointerfaces 2022; 219:112842. [PMID: 36137335 DOI: 10.1016/j.colsurfb.2022.112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Wound healing is a complex physiological process involving four coordinated stages, including hemostasis, anti-inflammatory, repair, and epithelial formation. Herein, multifunctional core-shell alkylated chitosan/calcium alginate microfibers are fabricated as a novel strategy for promoting wound healing by contributing to each four stages in the entire healing process. Taking advantages of the microfluidic technology, the core-shell microfibers can be generated in a continuous and convenient manner through the interfacial assembly between alkylated chitosan and Na-alginate, as well as the simultaneous crosslink between calcium and the alginate. Generated microfibers possess unique internal structure which can effectively promote the absorption of blood and exudate produced during trauma. Moreover, the dodecyl carbon chain and abundant amino groups of alkylated chitosan provide microfibers with excellent hemostatic and antibacterial properties, which can repair acute hemorrhage and destroy bacteria rapidly. Further, the chronic wound healing process of a skin injury model can be significantly promoted by applying the fabricated microfibers. With these sequential functions to guide the whole-stage wound healing, the presented multifunctional core-shell microfibers create a versatile and robust paradigm for comprehensive wound treatment.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Suning Wang
- Inner Mongolian Institute for Drug Control, Hohhot 010010, China
| | - Chenxi Cao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenyuan Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Junhan Du
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
145
|
Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
146
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
147
|
Mechanical Amorphization of Chitosan with Different Molecular Weights. Polymers (Basel) 2022; 14:polym14204438. [PMID: 36298017 PMCID: PMC9606905 DOI: 10.3390/polym14204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical amorphization of three chitosan samples with high, medium, and low molecular weight was studied. It is shown that there are no significant differences between the course of amorphization process in a planetary ball mill of chitosan with different molecular weights, and the maximum degree of amorphization was achieved in 600 s of high intensity mechanical action. Specific energy consumption was 28 kJ/g, being comparable to power consumption for amorphization of cellulose determined previously (29 kJ/g) and 5–7-fold higher than that for amorphization of starch (4–6 kJ/g). Different techniques for determining the crystallinity index (CrI) of chitosan (analysis of the X-ray diffraction (XRD) data, the peak height method, the amorphous standard method, peak deconvolution, and full-profile Rietveld analysis) were compared. The peak height method is characterized by a broader working range but provides deviated CrI values. The peak deconvolution method (with the amorphous Voigt function) makes it possible to calculate the crystallinity index of chitosan with greater accuracy, but the analysis becomes more difficult with samples subjected to mechanical processing. In order to refine the structure and calculation of CrI by the Rietveld method, an attempt to optimize the structure file by the density functional theory (DFT) method was performed. The averaged profile of amorphous chitosan approximated by an eighth-order Fourier model improved the correctness of the description of the amorphous contribution for XRD data processing. The proposed equation may be used as a universal standard model of amorphous chitosan to determine the crystallinity index both for the amorphous standard method and for peak deconvolution of XRD patterns for arbitrary chitosan samples.
Collapse
|
148
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
149
|
Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. COSMETICS 2022. [DOI: 10.3390/cosmetics9050099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cosmetic industry has an undeniable need to design and develop new ecosustainable products to respond to the demands of consumers and international regulations. This requires substituting some traditional ingredients derived from petrochemical sources with new ones with more ecofriendly profiles. However, this transition towards the use of green ingredients in the cosmetic industry cannot compromise the effectiveness of the obtained products. Emerging ingredients in this new direction of the cosmetic industry are chitosan and its derivatives, which combine many interesting physicochemical and biological properties for the fabrication of cosmetic products. Thus, the use of chitosan opens a promising future path to the design of cosmetic formulations. In particular, chitosan’s ability for interacting electrostatically with negatively charged substrates (e.g., skin or damaged hair), resulting in the formation of polymeric films which contribute to the conditioning and moisturizing of cosmetic substrates, makes this polymer an excellent candidate for the design of skin and hair care formulations. This review tries to provide an updated perspective on the potential interest of chitosan and its derivatives as ingredients of cosmetics for skin and hair care.
Collapse
|
150
|
Ryall C, Chen S, Duarah S, Wen J. Chitosan-based microneedle arrays for dermal delivery of Centella Asiatica. Int J Pharm 2022; 627:122221. [PMID: 36162607 DOI: 10.1016/j.ijpharm.2022.122221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Centella asiatica, a medicinal herb used for wound healing, has a limited effect when delivered as an ointment. Centella asiatica's active component asiatic acid (AA) increases extracellular matrix development and reduces inflammation but cannot penetrate the stratum corneum to access deeper skin layers. To bypass the stratum corneum, we formulated two types of AA-loaded microneedle arrays. We fabricated, characterised and optimised a dissolving array made from chitosan and PVA and a hydrogel array made from chitosan and PVP. Both needles were strong and long enough to pierce the epidermis without breaking. Both were biocompatible with keratinocytes and fibroblasts (>75% viability at 100% concentration) and showed a sustained drug release over 48 hours. The hydrogel microneedle released more AA (52.2%) than the dissolving formulation (26.4%); thus, we evaluated them in an excisional rat model. The hydrogel microneedle arrays significantly increased the rate of wound closure compared to the control. This research has shown that the chitosan-PVA hydrogel microneedles could penetrate the epidermis, effectively release AA, and increase the wound closure rate. This AA-loaded delivery system shows promise as a natural treatment for wound healing and may be applied to other bioactive compounds with similar physiochemical properties in the future.
Collapse
Affiliation(s)
- Cameron Ryall
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, School of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Sanjukta Duarah
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|