101
|
Perrone F, Baldassarre G, Indraccolo S, Signoriello S, Chiappetta G, Esposito F, Ferrandina G, Franco R, Mezzanzanica D, Sonego M, Zulato E, Zannoni GF, Canzonieri V, Scambia G, Sorio R, Savarese A, Breda E, Scollo P, Ferro A, Tamberi S, Febbraro A, Natale D, Di Maio M, Califano D, Scognamiglio G, Lorusso D, Canevari S, Losito S, Gallo C, Pignata S. Biomarker analysis of the MITO2 phase III trial of first-line treatment in ovarian cancer: predictive value of DNA-PK and phosphorylated ACC. Oncotarget 2018; 7:72654-72661. [PMID: 27655643 PMCID: PMC5341934 DOI: 10.18632/oncotarget.12056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
Background No biomarker is available to predict prognosis of patients with advanced ovarian cancer (AOC) and guide the choice of chemotherapy. We performed a prospective-retrospective biomarker study within the MITO2 trial on the treatment of AOC. Patients and methods: MITO2 is a randomised multicentre phase 3 trial conducted with 820 AOC patients assigned carboplatin/paclitaxel (carboplatin: AUC5, paclitaxel: 175 mg/m², every 3 weeks for 6 cycles) or carboplatin/PLD-pegylated liposomal doxorubicin (carboplatin: AUC5, PLD: 30 mg/m², every 3 weeks for 6 cycles) as first line treatment. Sixteen biomarkers (pathways of adhesion/invasion, apoptosis, transcription regulation, metabolism, and DNA repair) were studied in 229 patients, in a tissue microarray. Progression-free and overall survival were analysed with multivariable Cox model. Results After 72 months median follow-up, 594 progressions and 426 deaths were reported; there was no significant difference between the two arms in the whole trial. No biomarker had significant prognostic value. Statistically significant interactions with treatment were found for DNA-dependent protein kinase (DNA-PK) and phosphorylated acetyl-coenzymeA carboxylase (pACC), both predicting worse outcome for patients receiving carboplatin/paclitaxel. Conclusion These data show that in presence of DNA-PK or pACC overexpression, carboplatin/paclitaxel might be less effective than carboplatin/PLD as first line treatment of ovarian cancer patients. Further validation of these findings is warranted.
Collapse
Affiliation(s)
- Francesco Perrone
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| | | | | | - Simona Signoriello
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Statistica Medica, Seconda Università, Napoli, Italy
| | - Gennaro Chiappetta
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| | | | | | - Renato Franco
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy.,Dipartimento di Salute mentale, Fisica e Medicina Preventiva, Anatomia Patologica, Seconda Università, Napoli Italy
| | | | - Maura Sonego
- Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy
| | | | | | | | | | - Roberto Sorio
- Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy
| | | | - Enrico Breda
- Ospedale S. Giovanni Calibita Fatebenefratelli, Roma, Italy
| | | | | | | | | | | | - Massimo Di Maio
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy.,Università degli Studi, Torino, Italy
| | - Daniela Califano
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| | - Giosuè Scognamiglio
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| | | | | | - Simona Losito
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| | - Ciro Gallo
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Statistica Medica, Seconda Università, Napoli, Italy
| | - Sandro Pignata
- Istituto Nazionale per lo Studio e la Cura dei Tumori - Fondazione G.Pascale, IRCCS, Napoli, Italy
| |
Collapse
|
102
|
Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts. Mol Cancer Ther 2018; 17:1207-1216. [PMID: 29549168 DOI: 10.1158/1535-7163.mct-17-1267] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under in vitro conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation. In a similar concentration-dependent manner, VX-984 treatment enhanced the radiosensitivity of each GBM cell line as defined by clonogenic analysis. As determined by γH2AX expression and neutral comet analyses, VX-984 inhibited the repair of radiation-induced DNA double-strand break in U251 and NSC11 GBM cells, suggesting that the VX-984-induced radiosensitization is mediated by an inhibition of DNA repair. Extending these results to an in vivo model, treatment of mice with VX-984 inhibited radiation-induced DNA-PKcs phosphorylation in orthotopic brain tumor xenografts, indicating that this compound crosses the blood-brain tumor barrier at sufficient concentrations. For mice bearing U251 or NSC11 brain tumors, VX-984 treatment alone had no significant effect on overall survival; radiation alone increased survival. The survival of mice receiving the combination protocol was significantly increased as compared with control and as compared with radiation alone. These results indicate that VX-984 enhances the radiosensitivity of brain tumor xenografts and suggest that it may be of benefit in the therapeutic management of GBM. Mol Cancer Ther; 17(6); 1207-16. ©2018 AACR.
Collapse
Affiliation(s)
- Cindy R Timme
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Barbara H Rath
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - John W O'Neill
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
103
|
Hu M, Du J, Cui L, Huang T, Guo X, Zhao Y, Ma X, Jin T, Li G, Song J. IL-10 and PRKDC polymorphisms are associated with glioma patient survival. Oncotarget 2018; 7:80680-80687. [PMID: 27811370 PMCID: PMC5348348 DOI: 10.18632/oncotarget.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
Interleukin-10 (IL-10) and DNA repair gene PRKDC mutations are implicated in the development of multiple human cancers, including glioma. We investigated associations between IL-10 and PRKDC gene polymorphisms and prognosis in low- and high-grade glioma patients. We analyzed the associations of one IL-10 and one PRKDC single nucleotide polymorphism with patient clinical factors in 481 glioma patients using Cox proportional hazard models and Kaplan-Meier curves. We also assessed associations between patient clinical characteristics and prognosis. Our data showed that the extent of tumor resection (gross-total resection) and application of chemotherapy were associated with improved patient outcomes in all glioma cases. Additionally, univariate (Log-rank p = 0.019) and multivariate Cox regression analyses (p = 0.022) showed that the IL-10 rs1800871 C/T genotype correlates with improved overall survival in cases of low-grade glioma, whereas the PRKDC rs7003908 C/C genotype correlated with reduced overall and progression-free survival in high-grade glioma patients in univariate (Log-rank p = 0.000 and p = 0.000, respectively) and multivariate Cox regression analyses (p = 0.001; p = 0.002, respectively). These results suggest that IL-10 rs1800871 and PRKDC rs7003908 may be useful biomarkers for predicting glioma patient outcome. Further functional studies are needed to evaluate the mechanisms by which these polymorphisms affect glioma progression.
Collapse
Affiliation(s)
- Mingjun Hu
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Neurosurgery, Xi'an First Hospital, Xi'an 710002, China
| | - Jieli Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China.,Department of Orthopedics and Traumatology, The 2nd Affiliated Hospital of Inner Mongolia University, Hohhot, Inner Mongolia, 010030, China
| | - Lihong Cui
- Department of Neurology, Shangluo Central Hospital, Shangluo 726000, China
| | - Tingqin Huang
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yonglin Zhao
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xudong Ma
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Jinning Song
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
104
|
Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget 2018; 7:62340-62351. [PMID: 27694690 PMCID: PMC5308731 DOI: 10.18632/oncotarget.11470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.
Collapse
|
105
|
Thangavel C, Boopathi E, Liu Y, McNair C, Haber A, Perepelyuk M, Bhardwaj A, Addya S, Ertel A, Shoyele S, Birbe R, Salvino JM, Dicker AP, Knudsen KE, Den RB. Therapeutic Challenge with a CDK 4/6 Inhibitor Induces an RB-Dependent SMAC-Mediated Apoptotic Response in Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:1402-1414. [PMID: 29311118 DOI: 10.1158/1078-0432.ccr-17-2074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Purpose: The retinoblastoma tumor suppressor (RB), a key regulator of cell-cycle progression and proliferation, is functionally suppressed in up to 50% of non-small cell lung cancer (NSCLC). RB function is exquisitely controlled by a series of proteins, including the CyclinD-CDK4/6 complex. In this study, we interrogated the capacity of a CDK4/6 inhibitor, palbociclib, to activate RB function.Experimental Design and Results: We employed multiple isogenic RB-proficient and -deficient NSCLC lines to interrogate the cytostatic and cytotoxic capacity of CDK 4/6 inhibition in vitro and in vivo We demonstrate that while short-term exposure to palbociclib induces cellular senescence, prolonged exposure results in inhibition of tumor growth. Mechanistically, CDK 4/6 inhibition induces a proapoptotic transcriptional program through suppression of IAPs FOXM1 and Survivin, while simultaneously augmenting expression of SMAC and caspase-3 in an RB-dependent manner.Conclusions: This study uncovers a novel function of RB activation to induce cellular apoptosis through therapeutic administration of a palbociclib and provides a rationale for the clinical evaluation of CDK 4/6 inhibitors in the treatment of patients with NSCLC. Clin Cancer Res; 24(6); 1402-14. ©2018 AACR.
Collapse
Affiliation(s)
- Chellappagounder Thangavel
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yi Liu
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alex Haber
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maryna Perepelyuk
- Department of Pharmaceutical Science, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, X-ray Crystallography and Molecular Interactions, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Cancer Genomics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Cancer Genomics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sunday Shoyele
- Department of Pharmaceutical Science, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth Birbe
- Department of Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Cancer Genomics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Cancer Genomics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
106
|
Ghashghaei M, Niazi TM, Heravi M, Bekerat H, Trifiro M, Paliouras M, Muanza T. Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen-sensitive prostate cancer cells. Prostate 2018; 78:64-75. [PMID: 29134684 DOI: 10.1002/pros.23445] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a progressive disease and the most diagnosed cancer in men. The current standard of care for high-risk localized PCa is a combination of androgen deprivation therapy (ADT) and radiation (XRT). The majority of these patients however become resistant due to incomplete responses to ADT as a result of selective cells maintaining androgen receptor (AR) activity. Improvement can be made if increasing radiosensitivity is realized. Therefore, the aim of this study is to investigate the efficacy of the next-generation PCa drug Enzalutamide (ENZA), as a radiosensitizer in XRT therapy. METHODS Using a number of androgen-dependent (LNCaP, PC3-T877A) and androgen-independent (C4-2, 22RV1, PC3, PC3-AR V7) cell lines, the effect of ENZA as a radiosensitizer was studied alone or in combination with ADT and/or XRT. Cell viability and cell survival were assessed, along with determination of cell cycle arrest, DNA damage response and repair, apoptosis and senescence. RESULTS Our results indicated that either ENZA alone (in AR positive, androgen-dependent PCa cells) or in combination with ADT (in AR positive, hormone-insensitive PCa cells) potentiates radiation response [Dose enhancement factor (DEF) of 1.75 in LNCAP and 1.35 in C4-2] stronger than ADT + XRT conditions. Additionally, ENZA sensitized androgen dependent PCa cells to XRT in a schedule-dependent manner, where concurrent administration of ENZA and radiation lead to a maximal radiosensitization when compared to either drug administration prior or after XRT. In LNCaP cells, ENZA treatment significantly prolonged the presence of XRT-induced phospho-γH2AX up to 24 h after treatment; suggesting enhanced DNA damage. It also significantly increased XRT-induced apoptosis and senescence. CONCLUSIONS Our data indicates that ENZA acts as a much stronger radiosensitizer compared to ADT. We have also observed that its efficacy is schedule dependent and related to increased levels of DNA damage and a delay of DNA repair processes. Finally, the initial abrogation of DNA-PKcs activity by AR inhibition and its subsequent recovery might represent an important mechanism by which PCa cells acquire resistance to combined anti-androgen and XRT treatment. This work suggests a new use of ENZA in combination with XRT that could be applicable in clinical trial settings for patients with early and intermediate hormone responsive disease.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Tamim M Niazi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| | - Mitra Heravi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hamed Bekerat
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| | - Mark Trifiro
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Miltiadis Paliouras
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Thierry Muanza
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Radiation Oncology, Jewish General Hospital, Quebec, Canada
| |
Collapse
|
107
|
Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat Rev 2017; 63:48-60. [PMID: 29223828 PMCID: PMC7505164 DOI: 10.1016/j.ctrv.2017.11.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022]
Abstract
Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity–including, but not limited to, ADCC–provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications.
Collapse
|
108
|
Jin PY, Lu HJ, Tang Y, Fan SH, Zhang ZF, Wang Y, Li XN, Wu DM, Lu J, Zheng YL. Retracted: The effect of DNA-PKcs gene silencing on proliferation, migration, invasion and apoptosis, and in vivo tumorigenicity of human osteosarcoma MG-63 cells. Biomed Pharmacother 2017; 96:1324-1334. [PMID: 29203385 DOI: 10.1016/j.biopha.2017.11.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to explore the role by which the DNA-dependent protein kinase complex catalytic subunit (DNA-PKcs) influences osteosarcoma MG-63 cell apoptosis, proliferation, migration and invasion. Osteosarcoma tissues and adjacent normal tissues were obtained from 57 osteosarcoma patients. Human osteosarcoma MG-63 cells were assigned into designated groups including the blank, siRNA-negative control (NC) and siRNA-DNA-PKcs groups. RT-qPCR and Western blotting methods were employed to evaluate the mRNA and protein expressions of DNA-PKcs. A cell counting kit-8 (CCK-8) assay was performed to assess cell viability. The evaluation of cell migration and invasion were conducted by means of Scratch test and Transwell assay. Flow cytometry with PI and annexin V/PI double staining was applied for the analysis of the cell cycle and apoptosis. Twenty-Four Balb/c nude mice were recruited and randomly divided into the blank, siRNA-NC and siRNA-DNA-PKcs groups. Tumorigenicity of the Balb/c nude mice was conducted to evaluate the rate of tumor formation, as well as for the assessment of tumor size and weight, and confirm the number of lung metastatic nodules in the mice post transfection. Osteosarcoma tissues were found to possess greater expression of DNA-PKcs than that of the adjacent normal tissues. DNA-PKcs expression in osteosarcoma tissues were correlated with the clinical stage and metastasis. Compared with the blank and siRNA-NC groups, proliferation, miration, as well as the invasion abilities of the MG-63 cells increased. Furthermore, an increase in apoptosis and cells at the G1 stage in the MG-63 cells was observed, while there were reductions in the cells detected at the S stage. The mRNA and protein expressions of CyclinD1, PCNA, Bcl-2 decreased while those of Bax increased in the siRNA-DNA-PKcs group. The tumor formation rate, tumor diameter, weight and lung metastatic nodules among the nude mice in the siRNA-DNA-PKcs group were all lower than those in the blank and siRNA-NC groups. The observations and findings of the study suggested that the silencing of DNA-PKcs inhibits the proliferation, migration and invasion, while acting to promote cell apoptosis in MG-63 cells and osteosarcoma growth in nude mice.
Collapse
Affiliation(s)
- Pei-Ying Jin
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Hong-Jie Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yao Tang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yan Wang
- Department of Oncology, Beijing Hospital, Beijing 100730, PR China
| | - Xu-Ning Li
- Department of Oncology, Beijing Hospital, Beijing 100730, PR China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
109
|
Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. Br J Cancer 2017; 118:189-199. [PMID: 29136407 PMCID: PMC5785744 DOI: 10.1038/bjc.2017.391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. Methods: PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. Results: PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the same specific PLD1 inhibitor significantly reduced colony formation. Conclusions: A new specific inhibitor of PLD1, which is well tolerated in mice, reduces PCa cell survival and thus has potential as a novel therapeutic agent to reduce prostate cancer progression. Increased PLD1 expression may contribute to the hyperplasia characteristic of BPH and in the progression of castrate-resistant PCa, where an expanding population of neuroendocrine-like cells express PLD1.
Collapse
|
110
|
Maag JLV, Fisher OM, Levert-Mignon A, Kaczorowski DC, Thomas ML, Hussey DJ, Watson DI, Wettstein A, Bobryshev YV, Edwards M, Dinger ME, Lord RV. Novel Aberrations Uncovered in Barrett's Esophagus and Esophageal Adenocarcinoma Using Whole Transcriptome Sequencing. Mol Cancer Res 2017; 15:1558-1569. [PMID: 28751461 DOI: 10.1158/1541-7786.mcr-17-0332] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest increases in incidence of any cancer, along with poor five-year survival rates. Barrett's esophagus (BE) is the main risk factor for EAC; however, the mechanisms driving EAC development remain poorly understood. Here, transcriptomic profiling was performed using RNA-sequencing (RNA-seq) on premalignant and malignant Barrett's tissues to better understand this disease. Machine-learning and network analysis methods were applied to discover novel driver genes for EAC development. Identified gene expression signatures for the distinction of EAC from BE were validated in separate datasets. An extensive analysis of the noncoding RNA (ncRNA) landscape was performed to determine the involvement of novel transcriptomic elements in Barrett's disease and EAC. Finally, transcriptomic mutational investigation of genes that are recurrently mutated in EAC was performed. Through these approaches, novel driver genes were discovered for EAC, which involved key cell cycle and DNA repair genes, such as BRCA1 and PRKDC. A novel 4-gene signature (CTSL, COL17A1, KLF4, and E2F3) was identified, externally validated, and shown to provide excellent distinction of EAC from BE. Furthermore, expression changes were observed in 685 long noncoding RNAs (lncRNA) and a systematic dysregulation of repeat elements across different stages of Barrett's disease, with wide-ranging downregulation of Alu elements in EAC. Mutational investigation revealed distinct pathways activated between EAC tissues with or without TP53 mutations compared with Barrett's disease. In summary, transcriptome sequencing revealed altered expression of numerous novel elements, processes, and networks in EAC and premalignant BE.Implications: This study identified opportunities to improve early detection and treatment of patients with BE and esophageal adenocarcinoma. Mol Cancer Res; 15(11); 1558-69. ©2017 AACR.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Oliver M Fisher
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Angelique Levert-Mignon
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Dominik C Kaczorowski
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Melissa L Thomas
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
- University of Notre Dame School of Medicine, Sydney, Australia
| | - Damian J Hussey
- Department of Surgery, Flinders University, Adelaide, Australia
| | - David I Watson
- Department of Surgery, Flinders University, Adelaide, Australia
| | - Antony Wettstein
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Yuri V Bobryshev
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Melanie Edwards
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
- University of Notre Dame School of Medicine, Sydney, Australia
| | - Marcel E Dinger
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Reginald V Lord
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia.
- University of Notre Dame School of Medicine, Sydney, Australia
| |
Collapse
|
111
|
Rycaj K, Tang DG. Molecular determinants of prostate cancer metastasis. Oncotarget 2017; 8:88211-88231. [PMID: 29152153 PMCID: PMC5675705 DOI: 10.18632/oncotarget.21085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Metastatic cancer remains largely incurable and fatal. The general course of cancer, from the initiation of primary tumor formation and progression to metastasis, is a multistep process wherein tumor cells at each step must display specific phenotypic features. Distinctive capabilities required for primary tumor initiation and growth form the foundation, and sometimes may remain critical, for subsequent metastases. These phenotypic features must remain easily malleable during the acquisition of additional capabilities unique and essential to the metastatic process such as dissemination to distant tissues wherein tumor cells interact with foreign microenvironments. Thus, the metastatic phenotype is a culmination of multiple genetic and epigenetic alterations and subsequent selection for favorable traits under the pressure of ever-changing tumor microenvironments. Although our understanding of the molecular programs that drive cancer metastasis are incomplete, increasing evidence suggests that successful metastatic colonization relies on the dissemination of cancer stem cells (CSCs) with tumor-regenerating capacity and adaptive programs for survival in distant organs. In the past 2-3 years, a myriad of novel molecular regulators and determinants of prostate cancer metastasis have been reported, and in this Perspective, we comprehensively review this body of literature and summarize recent findings regarding cell autonomous molecular mechanisms critical for prostate cancer metastasis.
Collapse
Affiliation(s)
- Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Dean G. Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
112
|
Abramenkovs A, Stenerlöw B. Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity. Radiat Res 2017; 188:597-604. [PMID: 28952912 DOI: 10.1667/rr14693.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than γ-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of γ-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of γ-H2AX.
Collapse
Affiliation(s)
- Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
113
|
Anandi L, Chakravarty V, Ashiq KA, Bodakuntla S, Lahiri M. DNA-dependent protein kinase plays a central role in transformation of breast epithelial cells following alkylation damage. J Cell Sci 2017; 130:3749-3763. [PMID: 28923836 DOI: 10.1242/jcs.203034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022] Open
Abstract
DNA alkylating agents form the first line of cancer chemotherapy. They not only kill cells but also behave as potential carcinogens. MNU, a DNA methylating agent, is well known to induce mammary tumours in rodents. However, the mechanism of tumorigenesis is not well understood. Our study reports a novel role played by DNA-dependent protein kinase (DNA-PK) in methylation damage-induced transformation using three-dimensional breast acinar cultures. Here, we report that exposure of breast epithelial cells to MNU inhibited polarisation at the basolateral domain, increased dispersal of the Golgi at the apical domain and induced an epithelial-to-mesenchymal transition (EMT)-like phenotype as well as invasion. This altered Golgi phenotype correlated with impaired intracellular trafficking. Inhibition of DNA-PK resulted in almost complete reversal of the altered Golgi phenotype and partial rescue of the polarity defect and EMT-like phenotype. The results confirm that methylation damage-induced activation of DNA-PK is a major mechanism in mediating cellular transformation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Libi Anandi
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Vaishali Chakravarty
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - K A Ashiq
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Satish Bodakuntla
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.,Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
| | - Mayurika Lahiri
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
114
|
Speers C, Zhao SG, Chandler B, Liu M, Wilder-Romans K, Olsen E, Nyati S, Ritter C, Alluri PG, Kothari V, Hayes DF, Lawrence TS, Spratt DE, Wahl DR, Pierce LJ, Feng FY. Androgen receptor as a mediator and biomarker of radioresistance in triple-negative breast cancer. NPJ Breast Cancer 2017; 3:29. [PMID: 28840192 PMCID: PMC5562815 DOI: 10.1038/s41523-017-0038-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
Increased rates of locoregional recurrence have been observed in triple-negative breast cancer despite chemotherapy and radiation therapy. Thus, approaches that combine therapies for radiosensitization in triple-negative breast cancer are critically needed. We characterized the radiation therapy response of 21 breast cancer cell lines and paired this radiation response data with high-throughput drug screen data to identify androgen receptor as a top target for radiosensitization. Our radiosensitizer screen nominated bicalutamide as the drug most effective in treating radiation therapy-resistant breast cancer cell lines. We subsequently evaluated the expression of androgen receptor in >2100 human breast tumor samples and 51 breast cancer cell lines and found significant heterogeneity in androgen receptor expression with enrichment at the protein and RNA level in triple-negative breast cancer. There was a strong correlation between androgen receptor RNA and protein expression across all breast cancer subtypes (R2 = 0.72, p < 0.01). In patients with triple-negative breast cancer, expression of androgen receptor above the median was associated with increased risk of locoregional recurrence after radiation therapy (hazard ratio for locoregional recurrence 2.9-3.2)) in two independent data sets, but there was no difference in locoregional recurrence in triple-negative breast cancer patients not treated with radiation therapy when stratified by androgen receptor expression. In multivariable analysis, androgen receptor expression was most significantly associated with worse local recurrence-free survival after radiation therapy (hazard ratio of 3.58) suggesting that androgen receptor expression may be a biomarker of radiation response in triple-negative breast cancer. Inhibition of androgen receptor with MDV3100 (enzalutamide) induced radiation sensitivity (enhancement ratios of 1.22-1.60) in androgen receptor-positive triple-negative breast cancer lines, but did not affect androgen receptor-negative triple-negative breast cancer or estrogen-receptor-positive, androgen receptor-negative breast cancer cell lines. androgen receptor inhibition with MDV3100 significantly radiosensitized triple-negative breast cancer xenografts in mouse models and markedly delayed tumor doubling/tripling time and tumor weight. Radiosensitization was at least partially dependent on impaired dsDNA break repair mediated by DNA protein kinase catalytic subunit. Our results implicate androgen receptor as a mediator of radioresistance in breast cancer and identify androgen receptor inhibition as a potentially effective strategy for the treatment of androgen receptor-positive radioresistant tumors.
Collapse
Affiliation(s)
- Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Ben Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Eric Olsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Cassandra Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Prasanna G Alluri
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Vishal Kothari
- University of California San Francisco, San Francisco, CA USA
| | - Daniel F Hayes
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI USA.,Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| | - Felix Y Feng
- University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
115
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
116
|
Yin Y, Li R, Xu K, Ding S, Li J, Baek G, Ramanand SG, Ding S, Liu Z, Gao Y, Kanchwala MS, Li X, Hutchinson R, Liu X, Woldu SL, Xing C, Desai NB, Feng FY, Burma S, de Bono JS, Dehm SM, Mani RS, Chen BPC, Raj GV. Androgen Receptor Variants Mediate DNA Repair after Prostate Cancer Irradiation. Cancer Res 2017; 77:4745-4754. [PMID: 28754673 DOI: 10.1158/0008-5472.can-17-0164] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 12/25/2022]
Abstract
In prostate cancer, androgen deprivation therapy (ADT) enhances the cytotoxic effects of radiotherapy. This effect is associated with weakening of the DNA damage response (DDR) normally supported by the androgen receptor. As a significant number of patients will fail combined ADT and radiotherapy, we hypothesized that DDR may be driven by androgen receptor splice variants (ARV) induced by ADT. Investigating this hypothesis, we found that ARVs increase the clonogenic survival of prostate cancer cells after irradiation in an ADT-independent manner. Notably, prostate cancer cell irradiation triggers binding of ARV to the catalytic subunit of the critical DNA repair kinase DNA-PK. Pharmacologic inhibition of DNA-PKc blocked this interaction, increased DNA damage, and elevated prostate cancer cell death after irradiation. Our findings provide a mechanistic rationale for therapeutic targeting of DNA-PK in the context of combined ADT and radiotherapy as a strategy to radiosensitize clinically localized prostate cancer. Cancer Res; 77(18); 4745-54. ©2017 AACR.
Collapse
Affiliation(s)
- Yi Yin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Rui Li
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kangling Xu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sentai Ding
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Jeffrey Li
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - GuemHee Baek
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Susmita G Ramanand
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sam Ding
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhao Liu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yunpeng Gao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammed S Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiangyi Li
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryan Hutchinson
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xihui Liu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Solomon L Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Neil B Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California.,Department of Urology, University of California at San Francisco, San Francisco, California.,Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Johann S de Bono
- Drug Development Unit and Prostate Cancer Targeted Therapy Group, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, United Kingdom
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Ram S Mani
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
117
|
He SS, Chen Y, Shen XM, Wang HZ, Sun P, Dong J, Guo GF, Chen JG, Xia LP, Hu PL, Qiu HJ, Liu SS, Zhou YX, Wang W, Hu WH, Cai XY. DNA-dependent protein kinase catalytic subunit functions in metastasis and influences survival in advanced-stage laryngeal squamous cell carcinoma. J Cancer 2017; 8:2410-2416. [PMID: 28819445 PMCID: PMC5560160 DOI: 10.7150/jca.20069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/18/2017] [Indexed: 01/15/2023] Open
Abstract
Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known to function in several types of cancer. In this study, we investigated the expression and clinicopathologic significance of DNA-PKcs in laryngeal squamous cell carcinoma (LSCC). Methods: We conducted a retrospective study of 208 patients with advanced-stage LSCC treated at Sun Yat-sen University Cancer Center, Guangzhou, China. We assessed DNA-PKcs and p16INK4a (p16) status using immunohistochemistry. We examined the association between DNA-PKcs expression and clinicopathologic features and survival outcomes. To evaluate the independent prognostic relevance of DNA-PKcs, we used univariate and multivariate Cox regression models. We estimated overall survival (OS) and distant metastasis-free survival (DMFS) using the Kaplan-Meier method. Results: Immunohistochemical analyses revealed that 163/208 (78.4%) of the LSCC tissue samples exhibited high DNA-PKcs expression. High DNA-PKcs expression was significantly associated with survival outcomes (P = 0.016) and distant metastasis (P = 0.02; chi-squared test). High DNA-PKcs expression was associated with a significantly shorter OS and DMFS than low DNA-PKcs expression (P = 0.029 and 0.033, respectively; log-rank test), and was associated with poor OS in the p16-positive subgroup (P = 0.047). Multivariate analysis identified DNA-PKcs as an independent prognostic indicator of OS and DMFS in all patients (P = 0.039 and 0.037, respectively). Conclusions: Our results suggest that patients with LSCC in whom DNA-PKcs expression is elevated have a higher incidence of distant metastasis and a poorer prognosis. DNA-PKcs may represent a marker of tumor progression in patients with p16-positive LSCC.
Collapse
Affiliation(s)
- Sha-Sha He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Radiation, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yong Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Radiation, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ming Shen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Radiology, The First People's Hospital of Foshan (The affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, Guangdong, China
| | - Hong-Zhi Wang
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun Dong
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Gui-Fang Guo
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Ju-Gao Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou
| | - Liang-Ping Xia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Pei-Li Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Juan Qiu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Shou-Sheng Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Xin Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Gastric Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Han Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of Radiation, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiu-Yu Cai
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou.,Department of VIP Region, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
118
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
119
|
Bhattacharya S, Asaithamby A. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Transl Cancer Res 2017; 6:S822-S839. [PMID: 30613483 DOI: 10.21037/tcr.2017.05.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the leading cause of death worldwide. Almost 50% of all cancer patients undergo radiation therapy (RT) during treatment, with varying success. The main goal of RT is to kill tumor cells by damaging their DNA irreversibly while sparing the surrounding normal tissue. The outcome of RT is often determined by how tumors recognize and repair their damaged DNA. A growing body of evidence suggests that tumors often show abnormal expression of DNA double-strand break (DSB) repair genes that are absent from normal cells. Defects in a specific DNA repair pathway make tumor cells overly dependent on alternative or backup pathways to repair their damaged DNA. These tumor cell-specific abnormalities in the DNA damage response (DDR) machinery can potentially be used as biomarkers for treatment outcomes or as targets for sensitization to ionizing radiation (IR). An improved understanding of genetic or epigenetic alterations in the DNA repair pathways specific to cancer cells has paved the way for new treatments that combine pharmacological exploitation of tumor-specific molecular vulnerabilities with IR. Inhibiting DNA repair pathways has the potential to greatly enhance the therapeutic ratio of RT. In this review, we will discuss DNA repair pathways in active cells and how these pathways are deregulated in tumors. We will also describe the impact of targeting cancer-specific aberrations in the DDR as a treatment strategy to improve the efficacy of RT. Finally, we will address the current roadblocks and future prospects of these approaches.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
120
|
Cui L, Nakano K, Obchoei S, Setoguchi K, Matsumoto M, Yamamoto T, Obika S, Shimada K, Hiraoka N. Small Nucleolar Noncoding RNA SNORA23, Up-Regulated in Human Pancreatic Ductal Adenocarcinoma, Regulates Expression of Spectrin Repeat-Containing Nuclear Envelope 2 to Promote Growth and Metastasis of Xenograft Tumors in Mice. Gastroenterology 2017; 153:292-306.e2. [PMID: 28390868 DOI: 10.1053/j.gastro.2017.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small nucleolar noncoding RNAs (snoRNAs) regulate function of ribosomes, and specific snoRNAs are dysregulated in some cancer cells. We investigated dysregulation of snoRNAs in pancreatic ductal adenocarcinoma (PDAC) cells. METHODS We investigated snoRNA expression in PDAC cell lines by complementary DNA microarray and quantitative reverse transcription polymerase chain reaction. In PDAC (n = 133), intraductal papillary mucinous neoplasm (n = 16), mucinous cystic neoplasm-associated PDAC (n = 1), and non-tumor pancreas (n = 8) and liver (n = 3) tissues from subjects who underwent surgical resection, levels of snoRNA were measured by quantitative reverse transcription polymerase chain reaction and compared with clinicopathologic parameters and survival times determined by Kaplan-Meier analysis. To examine snoRNA function, PDAC cells were transfected with snoRNA-antisense oligonucleotides flanked with amido-bridged nucleic acids, or snoRNA-expression plasmids, and analyzed in proliferation, colony formation, spheroid formation, and invasion assays. To identify snoRNA-related factors, cells were analyzed by gene expression and proteomic profiling and immunoblot assays. Mice were given intrasplenic injections of MIA PaCa2- or Suit2-HLMC cells; tumor-bearing nude mice were then given 3 weekly injections of an antisense oligonucleotides against SNORA23, a H/ACA-box type snoRNA, and tumor growth and metastasis to liver, blood, and pancreas were analyzed. RESULTS Levels of SNORA23 increased and accumulated at the nucleolus in highly metastatic MIA PaCa2- or Suit2-HLMC cells compared with their parental cells. We detected SNORA23 in human PDAC specimens but not in non-tumor pancreatic tissue. PDAC level of SNORA23 correlated with invasion grade and correlated inversely with disease-free survival time of patients. Expression of SNORA23 in PDAC cells increased their invasive activity and colony formation, and spheroid formation was inhibited by SNORA23 knockdown. In gene expression and proteomic profile analyses, we found SNORA23 to increase expression of spectrin repeat-containing nuclear envelope 2 (SYNE2) messenger RNA and protein. Knockdown of SYNE2 in PDAC cells reduced their invasive activities and anchor-independent survival. Administration of SNORA23 antisense oligonucleotides to mice slowed growth of xenograft tumors, tumor expression of SYNE2, tumor cell dissemination, and metastasis to liver. CONCLUSIONS We found expression of the snoRNA SNORA23, which mediates sequence-specific pseudouridylation of ribosomal RNAs, to be increased in human PDAC tissues compared with non-tumor tissues, and levels to correlate with tumor invasion grade and patient survival time. SNORA23 increases expression of SYNE2, possibly through modulation of ribosome biogenesis, to promote PDAC cell survival and invasion, and growth and metastasis of xenograft tumors in mice.
Collapse
Affiliation(s)
- Lin Cui
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | - Sumalee Obchoei
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kiyoko Setoguchi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazuaki Shimada
- Surgery Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
121
|
Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep 2017; 7:4363. [PMID: 28663555 PMCID: PMC5491519 DOI: 10.1038/s41598-017-04718-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023] Open
Abstract
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Collapse
|
122
|
Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1767198. [PMID: 28698766 PMCID: PMC5494106 DOI: 10.1155/2017/1767198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
Scope Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4) against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK), NNK acetate (NNK-Ae), methotrexate (MTX), and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX) and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53) and repair (DNA-PKcs and Ku80) mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p ≤ 0.05) inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.
Collapse
|
123
|
Argiris A, Harrington KJ, Tahara M, Schulten J, Chomette P, Ferreira Castro A, Licitra L. Evidence-Based Treatment Options in Recurrent and/or Metastatic Squamous Cell Carcinoma of the Head and Neck. Front Oncol 2017; 7:72. [PMID: 28536670 PMCID: PMC5422557 DOI: 10.3389/fonc.2017.00072] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
The major development of the past decade in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) was the introduction of cetuximab in combination with platinum plus 5-fluorouracil chemotherapy (CT), followed by maintenance cetuximab (the "EXTREME" regimen). This regimen is supported by a phase 3 randomized trial and subsequent observational studies, and it confers well-documented survival benefits, with median survival ranging between approximately 10 and 14 months, overall response rates between 36 and 44%, and disease control rates of over 80%. Furthermore, as indicated by patient-reported outcome measures, the addition of cetuximab to platinum-based CT leads to a significant reduction in pain and problems with social eating and speech. Conversely, until very recently, there has been a lack of evidence-based second-line treatment options, and the therapies that have been available have shown low response rates and poor survival outcomes. Presently, a promising new treatment option in R/M SCCHN has emerged: immune checkpoint inhibitors (ICIs), which have demonstrated favorable results in second-line clinical trials. Nivolumab and pembrolizumab are the first two ICIs that were approved by the US Food and Drug Administration. We note that the trials that showed benefit with ICIs included not only patients who previously received ≥1 platinum-based regimens for R/M SCCHN but also patients who experienced recurrence within 6 months after combined modality therapy with a platinum agent for locally advanced disease. In this review, we outline the available clinical and observational evidence for the EXTREME regimen and the initial results from clinical trials for ICIs in patients with R/M SCCHN. We propose that these treatment options can be integrated into a new continuum of care paradigm, with first-line EXTREME regimen followed by second-line ICIs. A number of ongoing clinical trials are comparing regimens with ICIs, alone and in combination with other ICIs or CT, with the EXTREME regimen for first-line treatment of R/M SCCHN. As we eagerly await the results of these trials, the EXTREME regimen remains the standard of care for the first-line treatment of R/M SCCHN.
Collapse
Affiliation(s)
- Athanassios Argiris
- Hygeia Hospital, Athens, Greece
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Tokyo, Japan
| | | | | | | | - Lisa Licitra
- Department of Head and Neck Cancer Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, University of Milan, Milan, Italy
| |
Collapse
|
124
|
Sun G, Yang L, Dong C, Ma B, Shan M, Ma B. PRKDC regulates chemosensitivity and is a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients. Oncol Rep 2017; 37:3536-3542. [DOI: 10.3892/or.2017.5634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
|
125
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
126
|
McNair C, Urbanucci A, Comstock CES, Augello MA, Goodwin JF, Launchbury R, Zhao SG, Schiewer MJ, Ertel A, Karnes J, Davicioni E, Wang L, Wang Q, Mills IG, Feng FY, Li W, Carroll JS, Knudsen KE. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017; 36:1655-1668. [PMID: 27669432 PMCID: PMC5364060 DOI: 10.1038/onc.2016.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Abstract
The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- C McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospitals, Oslo, Norway
| | - C E S Comstock
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - M A Augello
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J F Goodwin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - R Launchbury
- Cambridge Research Institute, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - S G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - M J Schiewer
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Karnes
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - L Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Q Wang
- Ohio State University College of Medicine, Columbus, OH, USA
| | - I G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospitals, Oslo, Norway
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - F Y Feng
- Department of Radiation Oncology, Urology, and Medicine and Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - W Li
- Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J S Carroll
- Cambridge Research Institute, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - K E Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
127
|
González Del Alba A, Arranz JÁ, Puente J, Méndez-Vidal MJ, Gallardo E, Grande E, Pérez-Valderrama B, González-Billalabeitia E, Lázaro-Quintela M, Pinto Á, Lainez N, Piulats JM, Esteban E, Maroto Rey JP, García JA, Suárez C. Recent advances in genitourinary tumors: A review focused on biology and systemic treatment. Crit Rev Oncol Hematol 2017; 113:171-190. [PMID: 28427506 DOI: 10.1016/j.critrevonc.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/23/2016] [Accepted: 03/09/2017] [Indexed: 01/04/2023] Open
Abstract
Updated information published up to 2016 regarding major advances in renal cancer, bladder cancer, and prostate cancer is here presented. Based on an ever better understanding of the genetic and molecular alterations that govern the initial pathogenic mechanisms of tumor oncogenesis, an improvement in the characterization and treatment of urologic tumors has been achieved in the past year. According to the Cancer Genome Atlas (ATLAS) project, alterations in the MET pathway are characteristics of type 1 papillary renal cell carcinomas, and activation of NRF2-ARE pathway is associated with the biologically distinct type 2. While sunitinib and pazopanib continue to be the standard first-line treatment in metastatic renal cell carcinoma of clear cell histology, nivolumab and cabozantinib are now the agents of choice in the second-line setting. In relation to urothelial bladder carcinoma, new potential molecular targets such as FGFR3, PI3K/AKT, RTK/RAS, CDKN2A, ARIDIA, ERBB2 have been identified. Response to adjuvant cisplatin-based chemotherapy appears to be related to basal, luminal, and p53-like intrinsic subtypes. A phase II study with eribulin and a maintenance phase II trial with vinflunine have shown promising results. Similarly, the use of the check point inhibitors in advanced disease is likely to revolutionize the management of patients who have progressed after cisplatin-based chemotherapy. In prostate cancer, seven mutually exclusive molecular subtypes have been identified by the TCGA project. Chemotherapy has been consolidated as a key treatment for castration-sensitive metastatic prostate cancer, and abiraterone, enzalutamide, cabazitaxel, and radium-223 remain standard therapeutic options for men with metastatic castration-resistant prostate cancer. All this progress will undoubtedly contribute to the development of new treatments and therapeutic strategies that will improve the survival and quality of life of our patients.
Collapse
Affiliation(s)
| | - José Ángel Arranz
- Medical Oncology Department, Unit of Urological and Gynecological Tumors, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Puente
- Medical Oncology Department, Hospital Universitario San Carlos, Madrid, Spain
| | - María José Méndez-Vidal
- Oncology Department, Maimonides Institute of Medical Research (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Enrique Gallardo
- Oncology Department, Hospital Universitari Parc Taulí, Sabadell, Barcelona, Spain
| | - Enrique Grande
- Medical Oncology Department, GI, Endocrine and Translational Research Unit, Early Drug Development Unit-IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Álvaro Pinto
- Medical Oncology Department, Hospital Universitario La Paz, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Nuria Lainez
- Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Josep M Piulats
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Emilio Esteban
- Medical Oncology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Jorge A García
- Hematology/Oncology and Urology Departments, Cleveland Clinic, Cleveland, OH, United States
| | - Cristina Suárez
- Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
128
|
Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, Nataraj S, Deonarine LD, Augello MA, Sailer V, Ponnala L, Ittmann M, Chinnaiyan AM, Sboner A, Chen Y, Rubin MA, Barbieri CE. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell 2017; 31:436-451. [PMID: 28292441 PMCID: PMC5384998 DOI: 10.1016/j.ccell.2017.02.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/18/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.
Collapse
Affiliation(s)
- Mirjam Blattner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dennis Huang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anton Poliakov
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Srilakshmi Nataraj
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Augello
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Pathology and Urology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea Sboner
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Yu Chen
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA.
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
129
|
Yanai M, Makino H, Ping B, Takeda K, Tanaka N, Sakamoto T, Yamaguchi K, Kodani M, Yamasaki A, Igishi T, Shimizu E. DNA-PK Inhibition by NU7441 Enhances Chemosensitivity to Topoisomerase Inhibitor in Non-Small Cell Lung Carcinoma Cells by Blocking DNA Damage Repair. Yonago Acta Med 2017; 60:9-15. [PMID: 28331416 PMCID: PMC5355839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND DNA double-strand breaks (DSBs) are the most cytotoxic form of DNA damage and are induced by ionizing radiation and specific chemotherapeutic agents, such as topoisomerase inhibitors. Cancer cells acquire resistance to such therapies by repairing DNA DSBs. A major pathway for the repair of DNA DSBs is non-homologous end-joining (NHEJ), which requires DNA-dependent protein kinase (DNA-PK) activity. In this study, we investigated the effect of NU7441, a synthetic small-molecule compound, as a specific inhibitor of DNA-PK on the chemosensitization of non-small cell lung carcinoma (NSCLC) A549 cells. METHODS The combined effects of chemotherapeutic agents and NU7441 were evaluated by isobologram analysis using Cell Counting Kit-8. DNA DSBs were assessed by immunofluorescence assay. Apoptosis was examined by flow cytometry using an Annexin V apoptosis kit. Activation of DNA-PK was assayed by western blotting. RESULTS The combination of NU7441 and topoisomerase inhibitors such as amrubicin and irinotecan had a synergistic effect on cell proliferation in A549 cells. NU7441 increased 53BP1 foci and apoptosis induced by topoisomerase inhibitors and decreased phospho-DNA-dependent protein kinase, catalytic subunit (pDNA-PKcs) (S2056) protein expression caused by topoisomerase inhibitors. Interestingly, mitotic inhibitors such as pacritaxel did not cause the pDNA-PKcs (S2056) protein expression and the combination of NU7441 and pacritaxel had an only additive effect. CONCLUSION NU7441 inhibited the growth of NSCLC cells and enhanced the chemosensitization to topoisomerase inhibitors by blocking DNA repair. A combination of NU7441 and topoisomerase inhibitor may be a promising treatment for NSCLC.
Collapse
Affiliation(s)
- Masaaki Yanai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Bingqiong Ping
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Kenichi Takeda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Natsumi Tanaka
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomohiro Sakamoto
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Kosuke Yamaguchi
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masahiro Kodani
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tadashi Igishi
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Eiji Shimizu
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
130
|
Patel SA, Vanharanta S. Epigenetic determinants of metastasis. Mol Oncol 2017; 11:79-96. [PMID: 27756687 PMCID: PMC5423227 DOI: 10.1016/j.molonc.2016.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Genetic analyses of cancer progression in patient samples and model systems have thus far failed to identify specific mutational drivers of metastasis. Yet, at least in experimental systems, metastatic cancer clones display stable traits that can facilitate progression through the many steps of metastasis. How cancer cells establish and maintain the transcriptional programmes required for metastasis remains mostly unknown. Emerging evidence suggests that metastatic traits may arise from epigenetically altered transcriptional output of the oncogenic signals that drive tumour initiation and early progression. Molecular dissection of such mechanisms remains a central challenge for a comprehensive understanding of the origins of metastasis.
Collapse
Affiliation(s)
- Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
131
|
Kyprianou N. Prostate cancer: Kinases and CHIPS sign-off personalization of therapy. Nat Rev Urol 2016; 13:636-637. [PMID: 27725640 DOI: 10.1038/nrurol.2016.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, 800 Rose Street, 306 Combs Building, Lexington, Kentucky 40536, USA
| |
Collapse
|
132
|
Pascale RM, Joseph C, Latte G, Evert M, Feo F, Calvisi DF. DNA-PKcs: A promising therapeutic target in human hepatocellular carcinoma? DNA Repair (Amst) 2016; 47:12-20. [PMID: 27789167 DOI: 10.1016/j.dnarep.2016.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a frequent and deadly disease worldwide. The absence of effective therapies when the tumor is surgically unresectable leads to an extremely poor outcome of HCC patients. Thus, it is mandatory to elucidate the molecular pathogenesis of HCC in order to develop novel therapeutic strategies against this pernicious tumor. Mounting evidence indicates that suppression of the DNA damage response machinery might be deleterious for the survival and growth of the tumor cells. In particular, DNA dependent protein kinase catalytic subunit (DNA-PKcs), a major player in the non-homologous end-joining (NHEJ) repair process, seems to represent a valuable target for innovative anti-neoplastic therapies in cancer. DNA-PKcs levels are strongly upregulated and associated with a poor clinical outcome in various tumor types, including HCC. Importantly, DNA-PKcs not only protects tumor cells from harmful DNA insults coming either from the microenvironment or chemotherapeutic drug treatments, but also possesses additional properties, independent from its DNA repair activity, that provide growth advantages to cancer cells. These properties (metabolic and gene reprogramming, invasiveness and metastasis, resistance to apoptosis, etc.) have started to be elucidated. In the present review, we summarize the physiologic and oncogenic roles of DNA-PKcs, with a special emphasis on liver cancer. In particular, this work focuses on the molecular mechanism whereby DNA-PKcs exerts its pro-tumorigenic activity in cancer cells. In addition, the upstream regulator of DNA-PKcs activation as well as its downstream effectors thus far identified are illustrated. Furthermore, the potential therapeutic strategies aimed at inhibiting DNA-PKcs activity in HCC are discussed.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy
| | - Christy Joseph
- Institute of Pathology, Universitätsmedizin Greifswald, 17489 Greifswald, Germany
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy
| | - Diego F Calvisi
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; Institute of Pathology, Universitätsmedizin Greifswald, 17489 Greifswald, Germany.
| |
Collapse
|
133
|
Lan T, Zhao Z, Qu Y, Zhang M, Wang H, Zhang Z, Zhou W, Fan X, Yu C, Zhan Q, Song Y. Targeting hyperactivated DNA-PKcs by KU0060648 inhibits glioma progression and enhances temozolomide therapy via suppression of AKT signaling. Oncotarget 2016; 7:55555-55571. [PMID: 27487130 PMCID: PMC5342436 DOI: 10.18632/oncotarget.10864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/29/2016] [Indexed: 12/01/2022] Open
Abstract
The overall survival remains undesirable in clinical glioma treatment. Inhibition of DNA-PKcs activity by its inhibitors suppresses tumor growth and enhances chemosensitivity of several tumors to chemotherapy. However, whether DNA-PKcs could be a potential target in glioma therapy remains unknown. In this study, we reported that the hyperactivated DNA-PKcs was profoundly correlated with glioma malignancy and observe a significant association between DNA-PKcs activation and survival of the glioma patients. Our data also found that inhibition of DNA-PKcs by its inhibitor KU0060648 sensitized glioma cells to TMZ in vitro. Specifically, we demonstrated that KU0060648 interrupted the formation of DNA-PKcs/AKT complex, leading to suppression of AKT signaling and resultantly enhanced TMZ efficacy. Combination of KU0060648 and TMZ substantially inhibited downstream effectors of AKT. The in vivo results were similar to those obtained in vitro. In conclusion, this study indicated that inhibition of DNA-PKcs activity could suppress glioma malignancies and increase TMZ efficacy, which was mainly through regulation of the of AKT signaling. Therefore, DNA-PKcs/AKT axis may be a promising target for improving current glioma therapy.
Collapse
Affiliation(s)
- Tian Lan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Haoran Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhihua Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Fan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
134
|
Weaver AN, Cooper TS, Wei S, Carroll WR, Rosenthal EL, Yang ES. DNA-Pk CS expression in oropharyngeal squamous cell carcinoma: Correlations with human papillomavirus status and recurrence after transoral robotic surgery. Head Neck 2016; 39:206-214. [PMID: 27507640 DOI: 10.1002/hed.24562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (SCC) has improved clinical outcomes compared to HPV-negative disease. However, the biology underlying differences in prognosis remains unclear. METHODS We characterized the expression of DNA-protein kinase catalytic subunit (DNA-PkCS ), a key DNA repair protein also associated with tumor progression, in 29 cases of oropharyngeal SCCs and correlated our findings with HPV status and disease recurrence. In addition, we assessed therapeutic response, migration, and invasion in head and neck cancer cell lines upon DNA-PkCS knockdown. RESULTS DNA-PkCS expression was significantly decreased in HPV-positive compared to HPV-negative oropharyngeal SCC samples. Within the HPV-positive subgroup, DNA-PkCS expression was inversely related to HPV E6 and E7 expression and trended toward significance as a predictor of recurrence. DNA-PkCS knockdown in cell lines resulted in increased sensitivity to cisplatin and radiotherapy and reduced cell migration and invasion. CONCLUSION These results suggest DNA-PkCS should be further studied as a potential marker of tumor progression in HPV-positive oropharyngeal SCCs. © 2016 Wiley Periodicals, Inc. Head Neck 39: 206-214, 2017.
Collapse
Affiliation(s)
- Alice N Weaver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiffiny S Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William R Carroll
- Department of Otolaryngology - Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eben L Rosenthal
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
135
|
Gleave ME, Klotz L. Testosterone Therapy Can be Given to Men with No Concern that it will Promote Prostate Cancer Development or Progression: Con. J Urol 2016; 196:985-8. [PMID: 27520085 DOI: 10.1016/j.juro.2016.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Martin E Gleave
- Department of Urology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurence Klotz
- Department of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
136
|
Drake JM, Paull EO, Graham NA, Lee JK, Smith BA, Titz B, Stoyanova T, Faltermeier CM, Uzunangelov V, Carlin DE, Fleming DT, Wong CK, Newton Y, Sudha S, Vashisht AA, Huang J, Wohlschlegel JA, Graeber TG, Witte ON, Stuart JM. Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer. Cell 2016; 166:1041-1054. [PMID: 27499020 DOI: 10.1016/j.cell.2016.07.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/15/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
We used clinical tissue from lethal metastatic castration-resistant prostate cancer (CRPC) patients obtained at rapid autopsy to evaluate diverse genomic, transcriptomic, and phosphoproteomic datasets for pathway analysis. Using Tied Diffusion through Interacting Events (TieDIE), we integrated differentially expressed master transcriptional regulators, functionally mutated genes, and differentially activated kinases in CRPC tissues to synthesize a robust signaling network consisting of druggable kinase pathways. Using MSigDB hallmark gene sets, six major signaling pathways with phosphorylation of several key residues were significantly enriched in CRPC tumors after incorporation of phosphoproteomic data. Individual autopsy profiles developed using these hallmarks revealed clinically relevant pathway information potentially suitable for patient stratification and targeted therapies in late stage prostate cancer. Here, we describe phosphorylation-based cancer hallmarks using integrated personalized signatures (pCHIPS) that shed light on the diversity of activated signaling pathways in metastatic CRPC while providing an integrative, pathway-based reference for drug prioritization in individual patients.
Collapse
Affiliation(s)
- Justin M Drake
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Rutgers Cancer Institute of New Jersey and Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | - Evan O Paull
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicholas A Graham
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - John K Lee
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bjoern Titz
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya Stoyanova
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA 94304, USA
| | - Claire M Faltermeier
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vladislav Uzunangelov
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Daniel E Carlin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Teo Fleming
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher K Wong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yulia Newton
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sud Sudha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Joshua M Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
137
|
Expression of Ku70 predicts results of radiotherapy in prostate cancer. Strahlenther Onkol 2016; 193:29-37. [PMID: 27465041 DOI: 10.1007/s00066-016-1023-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/05/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Therapeutic strategy for prostate cancer is decided according to T stage, Gleason score, and prostate-specific antigen (PSA) level. These clinical factors are not accurate enough to predict individual risk of local failure of prostate cancer after radiotherapy. Parameters involved with radiosensitivity are required to improve the predictive capability for local relapse. PATIENTS AND METHODS We analyzed 58 patients with localized adenocarcinoma of the prostate between August 2007 and October 2010 treated with 76 Gy of intensity-modulated radiotherapy (IMRT) as a discovery cohort and 42 patients between March 2001 and May 2007 treated with three-dimensional conformal radiotherapy (3D-CRT) as a validation cohort. Immunohistochemical examination for proteins involved in nonhomologous end-joining was performed using biopsy specimens. RESULTS Ku70 expression was not correlated with various clinical parameters, such as the Gleason score and D'amico risk classification, indicating that Ku70 expression was an independent prognostic factor. The predictive value for PSA relapse was markedly improved after the combination of Gleason score and Ku70 expression, as compared with Gleason score alone. In patients treated with radiotherapy and androgen deprivation therapy (ADT), no relapses were observed in patients with Gleason score ≤7 or low Ku70 expression. In contrast, patients with Gleason score ≥8 and high Ku70 expression had high PSA relapse rates. In the validation cohort, similar results were obtained. CONCLUSION Treatment with 76 Gy and ADT can be effective for patients with Gleason score ≤7 or low Ku70 expression, but is not enough for patients with Gleason score ≥8 and high Ku70 expression and, thus, require other treatment approaches.
Collapse
|
138
|
Morgentaler A. Testosterone Therapy Can be Given to Men with No Concern that it will Promote Prostate Cancer Development or Progression: Pro. J Urol 2016; 196:985-8. [PMID: 27449261 DOI: 10.1016/j.juro.2016.07.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
|
139
|
Molina S, Guerif S, Garcia A, Debiais C, Irani J, Fromont G. DNA-PKcs Expression Is a Predictor of Biochemical Recurrence After Permanent Iodine 125 Interstitial Brachytherapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2016; 95:965-972. [DOI: 10.1016/j.ijrobp.2016.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
|
140
|
Abstract
In spite of the development of new treatments for late stage prostate cancer, significant challenges persist to match individuals with effective targeted therapies. Genomic classification using high-throughput sequencing technologies has the potential to achieve this goal and make precision medicine a reality in the management of men with castrate-resistant prostate cancer. This chapter reviews some of the most recent studies that have resulted in significant progress in determining the landscape of somatic genomic alterations in this cohort and, more importantly, have provided clinically actionable information that could guide treatment decisions. This chapter reviews the current understanding of common alterations such as alterations of the androgen receptor and PTEN pathway, as well as ETS gene fusions and the growing importance of PARP inhibition. It also reviews recent studies that characterize the evolution to neuroendocrine tumors, which is becoming an increasingly important clinical problem. Finally, this chapter reviews recent innovative studies that characterize the compelling evolutionary history of lethal prostate cancer evidenced by polyclonal seeding and interclonal cooperation between metastasis and the importance of tumor clone dynamics measured serially in response to treatment. The genomic landscape of late stage prostate cancer is becoming better defined, and the prospect for assigning clinically actionable data to inform rationale treatment for individuals with this disease is becoming a reality.
Collapse
Affiliation(s)
- Daniel H Shevrin
- Department of Medicine, Division of Hematology/Oncology, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, Illinois 60201, USA
| |
Collapse
|
141
|
Bunch H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett 2016; 590:1064-75. [PMID: 27010360 DOI: 10.1002/1873-3468.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Maintaining genomic integrity is vital for cell survival and homeostasis. Mutations in critical genes in germ-line and somatic cells are often implicated with the onset or progression of diseases. DNA repair enzymes thus take important roles as guardians of the genome in the cell. Besides the known function to repair DNA damage, recent findings indicate that DNA repair enzymes regulate the transcription of protein-coding and noncoding RNA genes. In particular, a novel role of DNA damage response signaling has been identified in the regulation of transcriptional elongation. Topoisomerases-mediated DNA breaks appear important for the regulation. In this review, recent findings of these DNA break- and repair-associated enzymes in transcription and potential roles of transcriptional activation-coupled DNA breaks are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
142
|
Schiewer MJ, Knudsen KE. Linking DNA Damage and Hormone Signaling Pathways in Cancer. Trends Endocrinol Metab 2016; 27:216-225. [PMID: 26944914 PMCID: PMC4808434 DOI: 10.1016/j.tem.2016.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
DNA damage response and repair (DDR) is a tightly controlled process that serves as a barrier to tumorigenesis. Consequently, DDR is frequently altered in human malignancy, and can be exploited for therapeutic gain either through molecularly targeted therapies or as a consequence of therapeutic agents that induce genotoxic stress. In select tumor types, steroid hormones and cognate receptors serve as major drivers of tumor development/progression, and as such are frequently targets of therapeutic intervention. Recent evidence suggests that the existence of crosstalk mechanisms linking the DDR machinery and hormone signaling pathways cooperate to influence both cancer progression and therapeutic response. These underlying mechanisms and their implications for cancer management will be discussed.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 S 10th St Philadelphia, PA 19107, USA.
| |
Collapse
|
143
|
Sun S, Cheng S, Zhu Y, Zhang P, Liu N, Xu T, Sun C, Lv Y. Identification of PRKDC (Protein Kinase, DNA-Activated, Catalytic Polypeptide) as an essential gene for colorectal cancer (CRCs) cells. Gene 2016; 584:90-96. [PMID: 26992638 DOI: 10.1016/j.gene.2016.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Oncogene and non-oncogene addictions describe the phenomenon that tumor cells become reliant on certain genes for maintenance of malignancy. Reversal of these mutations profoundly affects tumor growth and survival, providing a fundamental rationale for development of targeted cancer therapy. However, inadequate knowledge on cancer signaling networks and lack of potential drug targets limited its clinical application. A screen was conducted using a custom small interfering RNA (siRNA) library in colorectal cancer (CRC). Transient knockdown followed by cell proliferation assays were performed to validate the essentiality of PRKDC (Protein Kinase, DNA-Activated, Catalytic Polypeptide) in CRC. Western blot analysis was performed to examine the mechanism by which PRKDC confers selective survival advantage in CRC cells. Inducible knockdown and overexpression cell lines were introduced into nude mice to assess PRKDC dependency of CRC cells in vivo. PRKDC expression level in patient samples and overall survival of patients with low or high PRKDC expression were analyzed. Transient knockdown of PRKDC reduced cell proliferation/survival in HCT116 and DLD1, but not FHC cells. PRKDC down-regulation induced apoptosis partially through inhibiting AKT activation, and sensitized HCT116 cells to chemotherapeutic agents interfering with DNA replication. Inducible knockdown of PRKDC inhibited tumor growth in vivo. PRKDC was up-regulated in cancerous tissues compared with normal tissues. Patients with high PRKDC expression showed poorer overall survival. PRKDC is an essential gene required for CRC cell proliferation/survival, which may represent as a potential prognostic biomarker and an ideal therapeutic target for CRC.
Collapse
Affiliation(s)
- Shangfeng Sun
- The Central Hospital of Zaozhuang Mining Group of Shandong, Qilianshan Road, High-tech Zone, Zaozhuang 277800, Shandong, China.
| | - Shuguang Cheng
- The Central Hospital of Zaozhuang Mining Group of Shandong, Qilianshan Road, High-tech Zone, Zaozhuang 277800, Shandong, China
| | - Yunxiao Zhu
- The Central Hospital of Zaozhuang Mining Group of Shandong, Qilianshan Road, High-tech Zone, Zaozhuang 277800, Shandong, China
| | - Peng Zhang
- The Central Hospital of Zaozhuang Mining Group of Shandong, Qilianshan Road, High-tech Zone, Zaozhuang 277800, Shandong, China.
| | - Ning Liu
- Department of Information Technology, Jining Medical University, Hehua Road, Jining 272067, Shandong, China
| | - Tong Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining 272029, Shandong, China
| | - Chao Sun
- Central Laboratory, Second Hospital of Shandong University, Jinan 250014, Shandong, China
| | - Yanfeng Lv
- Department of General Surgery, Second Hospital of Shandong University, Jinan 250014, Shandong, China
| |
Collapse
|
144
|
Bhasin JM, Lee BH, Matkin L, Taylor MG, Hu B, Xu Y, Magi-Galluzzi C, Klein EA, Ting AH. Methylome-wide Sequencing Detects DNA Hypermethylation Distinguishing Indolent from Aggressive Prostate Cancer. Cell Rep 2015; 13:2135-46. [PMID: 26628371 DOI: 10.1016/j.celrep.2015.10.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
A critical need in understanding the biology of prostate cancer is characterizing the molecular differences between indolent and aggressive cases. Because DNA methylation can capture the regulatory state of tumors, we analyzed differential methylation patterns genome-wide among benign prostatic tissue and low-grade and high-grade prostate cancer and found extensive, focal hypermethylation regions unique to high-grade disease. These hypermethylation regions occurred not only in the promoters of genes but also in gene bodies and at intergenic regions that are enriched for DNA-protein binding sites. Integration with existing RNA-sequencing (RNA-seq) and survival data revealed regions where DNA methylation correlates with reduced gene expression associated with poor outcome. Regions specific to aggressive disease are proximal to genes with distinct functions from regions shared by indolent and aggressive disease. Our compendium of methylation changes reveals crucial molecular distinctions between indolent and aggressive prostate cancer.
Collapse
Affiliation(s)
- Jeffrey M Bhasin
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lars Matkin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Margaret G Taylor
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bo Hu
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Cristina Magi-Galluzzi
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Angela H Ting
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
145
|
Rodemann HP, Bodis S. Cutting-edge research in basic and translational radiation biology/oncology reflections from the 14th International Wolfsberg Meeting on Molecular Radiation Biology/Oncology 2015. Radiother Oncol 2015; 116:335-41. [DOI: 10.1016/j.radonc.2015.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/11/2023]
|