101
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
102
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
103
|
Mai N, Dos Anjos CH, Razavi P, Safonov A, Patil S, Chen Y, Drago JZ, Modi S, Bromberg JF, Dang CT, Liu D, Norton L, Robson M, Chandarlapaty S, Jhaveri K. Predictors of Response to CDK4/6i Retrial After Prior CDK4/6i Failure in ER+ Metastatic Breast Cancer. RESEARCH SQUARE 2024:rs.3.rs-4237867. [PMID: 38746324 PMCID: PMC11092820 DOI: 10.21203/rs.3.rs-4237867/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
After disease progression on endocrine therapy (ET) plus a CDK4/6 inhibitor, there is no standardized sequence for subsequent treatment lines for estrogen receptor positive (ER+) metastatic breast cancer (MBC). CDK4/6i retrial as a treatment strategy is commonplace in modern clinical practice; however, the available prospective data investigating this strategy have had inconclusive results. To frame this data in a real-world context, we performed a retrospective analysis assessing the efficacy of CDK4/6is in 195 patients who had previous exposure to CDK4/6i in a prior treatment line at our institution. Among patients who had stopped a CDK4/6i due to toxicity, CDK4/6i retrial either immediately after with a different CDK4/6i or in a further treatment line with the same initial CDK4/6i was both safe and effective, with a median time to treatment failure (TTF) of 10.1 months (95%CI, 4.8-16.9). For patients whose disease progressed on a prior CDK4/6i, we demonstrated comparable median TTFs for patients rechallenged with the same CDK4/6i (4.3 months, 95%CI 3.2-5.5) and with a different CDK4/6i (4.7 months, 95%CI 3.7-6.0) when compared to the recent PACE, PALMIRA, and MAINTAIN trials. Exploratory genomic analysis suggested that the presence of mutations known to confer CDK4/6i resistance, such as TP53 mutations, CDK4 amplifications, and RB1 or FAT1 loss of function mutations may be molecular biomarkers predictive of CDK4/6i retrial failure.
Collapse
Affiliation(s)
- Nicholas Mai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlos H Dos Anjos
- Oncology Service, Department of Medicine, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujata Patil
- Department of Quantitative Health Sciences, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Yuan Chen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Chau T Dang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dazhi Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
104
|
Nasrazadani A, Marti JLG, Lathrop K, Restrepo A, Leu SY, Bhat G, Brufsky A. Poziotinib treatment in patients with HER2-positive advanced breast cancer who have received prior anti-HER2 regimens. Breast Cancer Res Treat 2024; 205:29-37. [PMID: 38261228 DOI: 10.1007/s10549-023-07236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE Poziotinib is an irreversible pan-inhibitor of the human epidermal growth factor receptor (HER) that has shown acceptable tolerability and antitumor activity in phase I and II trials in patients with advanced solid tumors. In the present open-label, multicenter phase II study, we demonstrate safety, tolerability, and preliminary efficacy data from two different dosing schedules in patients with HER2-positive advanced breast cancer. PATIENTS AND METHODS Patients who had received at least two prior HER2-directed therapy lines for advanced disease, received 24 mg poziotinib on an intermittent dosing schedule (cohort 1) or 16 mg poziotinib once daily on a continuous dosing schedule (cohort 2). The primary endpoint was overall response rate (ORR). Secondary endpoints were progression-free survival (PFS), disease control rate (DCR), and time to progression (TTP). Secondary endpoints additionally included safety and pharmacokinetics. RESULTS A total of 67 patients were enrolled. The ORR was 30% in both groups (p = 0.98). DCR was 60% vs 78% (p = 0.15) and median PFS and TTP were 4.1 vs 4.9 months (both p = 0.30) for cohorts 1 and 2, respectively. The most common treatment related adverse events (AEs) of any grade included diarrhea (88% vs 85%, p = 0.76), rash (88% vs 88%, p = 0.96), and stomatitis (64% vs 56%, p = 0.52), with grade 3-4 diarrhea occurring in 33% vs 32% of patients (p = 0.93) and grade 3-4 rash in 27% vs 35% of patients (p = 0.48) in cohort 1 vs cohort 2, respectively. CONCLUSION Poziotinib demonstrated evidence of clinical activity in patients with pre-treated HER2-positive advanced breast cancer, although high levels of toxicity may preclude further studies at this time.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Division of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kate Lathrop
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | - Adam Brufsky
- Magee-Womens Hospital of UPMC, 300 Halket St, Pittsbugh, PA, 15213, USA.
| |
Collapse
|
105
|
Gupta A, Gazzo A, Selenica P, Safonov A, Pareja F, da Silva EM, Brown DN, Zhu Y, Patel J, Blanco-Heredia J, Stefanovska B, Carpenter MA, Pei X, Frosina D, Jungbluth AA, Ladanyi M, Curigliano G, Weigelt B, Riaz N, Powell SN, Razavi P, Harris RS, Reis-Filho JS, Marra A, Chandarlapaty S. APOBEC3 mutagenesis drives therapy resistance in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591453. [PMID: 38746158 PMCID: PMC11092499 DOI: 10.1101/2024.04.29.591453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.
Collapse
|
106
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
107
|
Goto K, Kiniwa Y, Kukita Y, Ohe S, Hiraki T, Hishima T, Takai T, Honma K. Recurrent GATA3 P409Afs*99 Frameshift Extension Mutations in Sweat-gland Carcinoma With Neuroendocrine Differentiation. Am J Surg Pathol 2024; 48:528-537. [PMID: 38353459 DOI: 10.1097/pas.0000000000002195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Sweat-gland carcinoma with neuroendocrine differentiation (SCAND) was recently proposed as a new cutaneous adnexal neoplasm with neuroendocrine differentiation; however, its genetics are not well known. Herein, we performed clinicopathologic and genetic analyses of 13 SCAND cases and 5 control cases of endocrine mucin-producing sweat gland carcinoma (EMPSGC). The SCAND group included 11 males and 2 females with a median age of 68 years (range, 50 to 80 y). All SCAND lesions occurred in the ventral trunk or genital area. Of the 13 SCAND cases, 9 and 5 exhibited lymph node and distant metastases, respectively. Three (23.1%) patients with SCAND died of the disease. In contrast, neither metastasis nor mortality was confirmed in the EMPSGC cases. Immunoexpression of the androgen receptor, c-Myb, and MUC2 was limited in SCAND, whereas EMPSGC frequently expressed these immunomarkers. GATA3 P409Afs*99 extension mutations were detected in 7 (53.8%) of the 13 SCAND cases, using Sanger or panel sequencing. All 7 SCAND cases with GATA3 mutations were located in the genital, inguinal, or lower abdominal regions, whereas 5 of the other 6 SCAND cases were located in the anterior upper to mid-trunk. No GATA3 mutations were detected in the EMPSGC cases (0/5, 0%). These clinicopathologic and genetic findings support SCAND as a tumor entity distinguishable from EMPSGC. In addition, the characteristic frameshift extension mutations in GATA3 contribute to the establishment of the tumor-type concept of SCAND.
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Diagnostic Pathology and Cytology
- Department of Diagnostic Pathology, Osaka National Hospital, Osaka
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital
- Department of Pathology, Itabashi Central Clinical Laboratory
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo
- Department of Dermatology, Hyogo Cancer Center, Akashi
- Department of Diagnostic Pathology, Chutoen General Medical Center, Kakegawa
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Research Center
| | - Shuichi Ohe
- Department of Dermatologic Oncology, Osaka International Cancer Institute
| | - Tsubasa Hiraki
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital
| | | | | |
Collapse
|
108
|
Llinas-Bertran A, Bellet-Ezquerra M, Seoane JA. Epigenetic Control of Cancer Cell Dormancy and Awakening in Endocrine Therapy Resistance. Cancer Discov 2024; 14:704-706. [PMID: 38690600 DOI: 10.1158/2159-8290.cd-24-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
SUMMARY Rosano, Sofyali, Dhiman, and colleagues show that epigenetic-related changes occur in endocrine therapy (ET)-induced dormancy in estrogen receptor positive (ER+) breast cancer, as well as in its reawakening. Targeting these epigenetic changes blocks the entrance to dormancy and reduces the persister cancer cell population, enhancing the cytotoxic effects of ET in vitro. See related article by Rosano et al., p. 866 (9).
Collapse
Affiliation(s)
- Arnau Llinas-Bertran
- Cancer Computational Biology Group, Vall d'Hebron Institute of Onco-logy, Barcelona, Spain
| | - Meritxell Bellet-Ezquerra
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Jose A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Onco-logy, Barcelona, Spain
| |
Collapse
|
109
|
Rosano D, Sofyali E, Dhiman H, Ghirardi C, Ivanoiu D, Heide T, Vingiani A, Bertolotti A, Pruneri G, Canale E, Dewhurst HF, Saha D, Slaven N, Barozzi I, Li T, Zemlyanskiy G, Phillips H, James C, Győrffy B, Lynn C, Cresswell GD, Rehman F, Noberini R, Bonaldi T, Sottoriva A, Magnani L. Long-term Multimodal Recording Reveals Epigenetic Adaptation Routes in Dormant Breast Cancer Cells. Cancer Discov 2024; 14:866-889. [PMID: 38527495 PMCID: PMC11061610 DOI: 10.1158/2159-8290.cd-23-1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Patients with estrogen receptor-positive breast cancer receive adjuvant endocrine therapies (ET) that delay relapse by targeting clinically undetectable micrometastatic deposits. Yet, up to 50% of patients relapse even decades after surgery through unknown mechanisms likely involving dormancy. To investigate genetic and transcriptional changes underlying tumor awakening, we analyzed late relapse patients and longitudinally profiled a rare cohort treated with long-term neoadjuvant ETs until progression. Next, we developed an in vitro evolutionary study to record the adaptive strategies of individual lineages in unperturbed parallel experiments. Our data demonstrate that ETs induce nongenetic cell state transitions into dormancy in a stochastic subset of cells via epigenetic reprogramming. Single lineages with divergent phenotypes awaken unpredictably in the absence of recurrent genetic alterations. Targeting the dormant epigenome shows promising activity against adapting cancer cells. Overall, this study uncovers the contribution of epigenetic adaptation to the evolution of resistance to ETs. SIGNIFICANCE This study advances the understanding of therapy-induced dormancy with potential clinical implications for breast cancer. Estrogen receptor-positive breast cancer cells adapt to endocrine treatment by entering a dormant state characterized by strong heterochromatinization with no recurrent genetic changes. Targeting the epigenetic rewiring impairs the adaptation of cancer cells to ETs. See related commentary by Llinas-Bertran et al., p. 704. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Dalia Rosano
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Center, The Institute of Cancer Research, London, United Kingdom
| | - Emre Sofyali
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Heena Dhiman
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Center, The Institute of Cancer Research, London, United Kingdom
| | - Chiara Ghirardi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Diana Ivanoiu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Timon Heide
- Human Technopole, Milan, Italy
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | | | | | - Giancarlo Pruneri
- Istituto Nazionale Tumori, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milano, Milano, Italy
| | - Eleonora Canale
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Hannah F. Dewhurst
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Debjani Saha
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Neil Slaven
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Centre for Cancer Research, Medical University of Vienna, Austria
| | - Tong Li
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Grigory Zemlyanskiy
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Henry Phillips
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chela James
- Human Technopole, Milan, Italy
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- RCNS Cancer Biomarker Research Group, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - Claire Lynn
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - George D. Cresswell
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Farah Rehman
- Charing Cross Hospital, Imperial College NHS Trust, London, United Kingdom
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milano, Milano, Italy
| | - Andrea Sottoriva
- Human Technopole, Milan, Italy
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Center, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
110
|
Khan MM, Yalamarty SSK, Rajmalani BA, Filipczak N, Torchilin VP. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol 2024; 197:104351. [PMID: 38615873 DOI: 10.1016/j.critrevonc.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center of Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Guarducci C, Nardone A, Russo D, Nagy Z, Heraud C, Grinshpun A, Zhang Q, Freelander A, Leventhal MJ, Feit A, Cohen Feit G, Feiglin A, Liu W, Hermida-Prado F, Kesten N, Ma W, De Angelis C, Morlando A, O'Donnell M, Naumenko S, Huang S, Nguyen QD, Huang Y, Malorni L, Bergholz JS, Zhao JJ, Fraenkel E, Lim E, Schiff R, Shapiro GI, Jeselsohn R. Selective CDK7 Inhibition Suppresses Cell Cycle Progression and MYC Signaling While Enhancing Apoptosis in Therapy-resistant Estrogen Receptor-positive Breast Cancer. Clin Cancer Res 2024; 30:1889-1905. [PMID: 38381406 PMCID: PMC11061603 DOI: 10.1158/1078-0432.ccr-23-2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.
Collapse
Affiliation(s)
- Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas Russo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zsuzsanna Nagy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Capucine Heraud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Qi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allegra Freelander
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Mathew Joseph Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Computational and Systems Biology PhD program, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Avery Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriella Cohen Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Weihan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikolas Kesten
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wen Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Antonio Morlando
- Bioinformatics Unit, Department of Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Madison O'Donnell
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sergey Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, Massachusetts
| | - Shixia Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Luca Malorni
- Translational Research Unit, Department of Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Johann S. Bergholz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
112
|
Toska E. Epigenetic mechanisms of cancer progression and therapy resistance in estrogen-receptor (ER+) breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189097. [PMID: 38518961 DOI: 10.1016/j.bbcan.2024.189097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most frequent breast cancer subtype. Agents targeting the ER signaling pathway have been successful in reducing mortality from breast cancer for decades. However, mechanisms of resistance to these treatments arise, especially in the metastatic setting. Recently, it has been recognized that epigenetic dysregulation is a common feature that facilitates the acquisition of cancer hallmarks across cancer types, including ER+ breast cancer. Alterations in epigenetic regulators and transcription factors (TF) coupled with changes to the chromatin landscape have been found to orchestrate breast oncogenesis, metastasis, and the development of a resistant phenotype. Here, we review recent advances in our understanding of how the epigenome dictates breast cancer tumorigenesis and resistance to targeted therapies and discuss novel therapeutic interventions for overcoming resistance.
Collapse
Affiliation(s)
- Eneda Toska
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
113
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
114
|
Trnkova L, Buocikova V, Mego M, Cumova A, Burikova M, Bohac M, Miklikova S, Cihova M, Smolkova B. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies. Biomed Pharmacother 2024; 174:116559. [PMID: 38603889 DOI: 10.1016/j.biopha.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer comprises a substantial proportion of cancer diagnoses in women and is a primary cause of cancer-related mortality. While hormone-responsive cases generally have a favorable prognosis, the aggressive nature of triple-negative breast cancer presents challenges, with intrinsic resistance to established treatments being a persistent issue. The complexity intensifies with the emergence of acquired resistance, further complicating the management of breast cancer. Epigenetic changes, encompassing DNA methylation, histone and RNA modifications, and non-coding RNAs, are acknowledged as crucial contributors to the heterogeneity of breast cancer. The unique epigenetic landscape harbored by each cellular component within the tumor microenvironment (TME) adds great diversity to the intricate regulations which influence therapeutic responses. The TME, a sophisticated ecosystem of cellular and non-cellular elements interacting with tumor cells, establishes an immunosuppressive microenvironment and fuels processes such as tumor growth, angiogenesis, and extracellular matrix remodeling. These factors contribute to challenging conditions in cancer treatment by fostering a hypoxic environment, inducing metabolic stress, and creating physical barriers to drug delivery. This article delves into the complex connections between breast cancer treatment response, underlying epigenetic changes, and vital interactions within the TME. To restore sensitivity to treatment, it emphasizes the need for combination therapies considering epigenetic changes specific to individual members of the TME. Recognizing the pivotal role of epigenetics in drug resistance and comprehending the specificities of breast TME is essential for devising more effective therapeutic strategies. The development of reliable biomarkers for patient stratification will facilitate tailored and precise treatment approaches.
Collapse
Affiliation(s)
- Lenka Trnkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Michal Mego
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia; 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Monika Burikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Martin Bohac
- 2nd Department of Oncology, Comenius University, Faculty of Medicine & National Cancer Institute, Bratislava 83310, Slovakia; Regenmed Ltd., Medena 29, Bratislava 811 01, Slovakia; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, Bratislava 811 08, Slovakia
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Marina Cihova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovakia.
| |
Collapse
|
115
|
Geukens T, De Schepper M, Van Den Bogaert W, Van Baelen K, Maetens M, Pabba A, Mahdami A, Leduc S, Isnaldi E, Nguyen HL, Bachir I, Hajipirloo M, Zels G, Van Cauwenberge J, Borremans K, Vandecaveye V, Weynand B, Vermeulen P, Leucci E, Baietti MF, Sflomos G, Battista L, Brisken C, Derksen PWB, Koorman T, Visser D, Scheele CLGJ, Thommen DS, Hatse S, Fendt SM, Vanderheyden E, Van Brussel T, Schepers R, Boeckx B, Lambrechts D, Marano G, Biganzoli E, Smeets A, Nevelsteen I, Punie K, Neven P, Wildiers H, Richard F, Floris G, Desmedt C. Rapid autopsies to enhance metastatic research: the UPTIDER post-mortem tissue donation program. NPJ Breast Cancer 2024; 10:31. [PMID: 38658604 PMCID: PMC11043338 DOI: 10.1038/s41523-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting.
Collapse
Affiliation(s)
- Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - Karen Van Baelen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Marion Maetens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anirudh Pabba
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amena Mahdami
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Edoardo Isnaldi
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ha-Linh Nguyen
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Imane Bachir
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Anesthesiology, Institut Jules Bordet, Brussels, Belgium
| | - Maysam Hajipirloo
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gitte Zels
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Josephine Van Cauwenberge
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Kristien Borremans
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | | | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vermeulen
- Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Eleonora Leucci
- TRACE and Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Francesca Baietti
- TRACE and Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - George Sflomos
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Battista
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Daan Visser
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Colinda L G J Scheele
- Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Evy Vanderheyden
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Rogier Schepers
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Giuseppe Marano
- Unit of Medical Statistics, Biometry and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, Università degli Studi di Milano, Milan, Italy
| | - Elia Biganzoli
- Unit of Medical Statistics, Biometry and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba campus, Università degli Studi di Milano, Milan, Italy
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
116
|
Bar Y, Keenan JC, Niemierko A, Medford AJ, Isakoff SJ, Ellisen LW, Bardia A, Vidula N. Genomic spectrum of actionable alterations in serial cell free DNA (cfDNA) analysis of patients with metastatic breast cancer. NPJ Breast Cancer 2024; 10:27. [PMID: 38605020 PMCID: PMC11009384 DOI: 10.1038/s41523-024-00633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
We aimed to study the incidence and genomic spectrum of actionable alterations (AA) detected in serial cfDNA collections from patients with metastatic breast cancer (MBC). Patients with MBC who underwent plasma-based cfDNA testing (Guardant360®) between 2015 and 2021 at an academic institution were included. For patients with serial draws, new pathogenic alterations in each draw were classified as actionable alterations (AA) if they met ESCAT I or II criteria of the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). A total of 344 patients with hormone receptor-positive (HR+)/HER2-negative (HER2-) MBC, 95 patients with triple-negative (TN) MBC and 42 patients with HER2-positive (HER2 + ) MBC had a baseline (BL) cfDNA draw. Of these, 139 HR+/HER2-, 33 TN and 13 HER2+ patients underwent subsequent cfDNA draws. In the HR+/HER2- cohort, the proportion of patients with new AA decreased from 63% at BL to 27-33% in the 2nd-4th draws (p < 0.0001). While some of the new AA in subsequent draws from patients with HR+/HER2- MBC were new actionable variants in the same genes that were known to be altered in previous draws, 10-24% of patients had new AA in previously unaltered genes. The incidence of new AA also decreased with subsequent draws in the TN and HER2+ cohorts (TN: 25% to 0-9%, HER2 + : 38% to 14-15%). While the incidence of new AA in serial cfDNA decreased with subsequent draws across all MBC subtypes, new alterations with a potential impact on treatment selection continued to emerge, particularly for patients with HR+/HER2- MBC.
Collapse
Affiliation(s)
- Yael Bar
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Tel Aviv Sourasky Medical Center and The Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | - Arielle J Medford
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Neelima Vidula
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
117
|
Lin CJ, Jin X, Ma D, Chen C, Ou-Yang Y, Pei YC, Zhou CZ, Qu FL, Wang YJ, Liu CL, Fan L, Hu X, Shao ZM, Jiang YZ. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell 2024; 42:701-719.e12. [PMID: 38593782 DOI: 10.1016/j.ccell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interactions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast cancer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor fragments, and in vivo models. Through this comprehensive approach, we construct a network comprising co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying biological basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resistance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alterations hold promise to improve patient outcomes. Our study highlights the significance of genetic interactions in guiding genome-informed treatment decisions beyond single driver alterations.
Collapse
Affiliation(s)
- Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ou-Yang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Chen Pei
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao-Zheng Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei-Lin Qu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun-Jin Wang
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Fan
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
118
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
119
|
Browne IM, André F, Chandarlapaty S, Carey LA, Turner NC. Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer. Lancet Oncol 2024; 25:e139-e151. [PMID: 38547898 DOI: 10.1016/s1470-2045(23)00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 04/02/2024]
Abstract
The growing availability of targeted therapies for patients with advanced oestrogen receptor-positive breast cancer has improved survival, but there remains much to learn about the optimal management of these patients. The PI3K-AKT and mTOR pathways are among the most commonly activated pathways in breast cancer, whose crucial role in the pathogenesis of this tumour type has spurred major efforts to target this pathway at specific kinase hubs. Approvals for oestrogen receptor-positive advanced breast cancer include the PI3K inhibitor alpelisib for PIK3CA-mutated tumours, the AKT inhibitor capivasertib for tumours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR inhibitor everolimus, which is used irrespective of mutation status. The availability of different inhibitors leaves physicians with a potentially challenging decision over which of these therapies should be used for individual patients and when. In this Review, we present a comprehensive summary of our current understanding of the pathways and the three inhibitors and discuss strategies for the optimal sequencing of therapies in the clinic, particularly after progression on a CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Iseult M Browne
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Fabrice André
- Department of Medical Oncology, INSERM U981, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lisa A Carey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
120
|
Cobleigh MA, Layng KV, Mauer E, Mahon B, Hockenberry AJ, Abukhdeir AM. Comparative genomic analysis of PIK3R1-mutated and wild-type breast cancers. Breast Cancer Res Treat 2024; 204:407-414. [PMID: 38153569 DOI: 10.1007/s10549-023-07196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.
Collapse
Affiliation(s)
- Melody A Cobleigh
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA.
| | | | | | - Brett Mahon
- Tempus Labs Inc, 600 W Chicago, Chicago, IL, 60654, USA
| | | | - Abde M Abukhdeir
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
121
|
Takeshita T, Iwamoto T, Niikura N, Watanabe K, Kikawa Y, Kobayashi K, Iwakuma N, Okamura T, Tada H, Ozaki S, Okuno T, Toh U, Yamamoto Y, Tsuneizumi M, Ishiguro H, Masuda N, Saji S. Identifying prognostic biomarkers for palbociclib add-on therapy in fulvestrant-resistant breast cancer using cell-free DNA sequencing. ESMO Open 2024; 9:102385. [PMID: 38387111 PMCID: PMC11076976 DOI: 10.1016/j.esmoop.2024.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The FUTURE trial (UMIN000029294) demonstrated the safety and efficacy of adding palbociclib after fulvestrant resistance in patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced and metastatic breast cancer (ABC/MBC). In this planned sub-study, cancer panel sequencing of cell-free DNA (cfDNA) was utilized to explore prognostic and predictive biomarkers for further palbociclib treatment following fulvestrant resistance. MATERIALS AND METHODS Herein, 149 cfDNA samples from 65 patients with fulvestrant-resistant disease were analysed at the time of palbociclib addition after fulvestrant resistance (baseline), on day 15 of cycle 1, and at the end of treatment using the assay for identifying diverse mutations in 34 cancer-related genes. RESULTS During the course of treatment, mutations in ESR1, PIK3CA, FOXA1, RUNX1, TBX3, and TP53 were the most common genomic alterations observed. Analysis of genomic mutations revealed that before fulvestrant introduction, baseline PIK3CA mutations were marginally lower in metastatic aromatase inhibitor (AI)-treated patients compared to adjuvant AI-treated patients (P = 0.063). Baseline PIK3CA mutations were associated with poorer progression-free survival [hazard ratio: 1.62, P = 0.04]. Comparative analysis between baseline and early-changing gene mutations identified poor prognostic factors including early-changing MAP3K1 mutations (hazard ratio: 4.66, P = 0.04), baseline AR mutations (hazard ratio: 3.53, P = 0.04), and baseline PIK3CA mutations (hazard ratio: 3.41, P = 0.02). Notably, the relationship between ESR1 mutations and mutations in PIK3CA, MAP3K1, and TP53 weakened as treatment progressed. Instead, PIK3CA mutations became correlated with TP53 and FOXA1 mutations. CONCLUSIONS Cancer panel testing for cfDNA identified prognostic and predictive biomarkers for palbociclib add-on therapy after acquiring fulvestrant resistance in patients with HR+/HER2- ABC/MBC.
Collapse
Affiliation(s)
- T Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto City Hospital, Kumamoto.
| | - T Iwamoto
- Department of Breast and Thyroid Surgery, Kawasaki Medical School Hospital, Kurashiki
| | - N Niikura
- Department of Breast Oncology, Tokai University School of Medicine, Isehara, Kanagawa
| | - K Watanabe
- Department of Breast Surgery, Hokkaido Cancer Center, Sapporo, Hokkaido
| | - Y Kikawa
- Department of Breast Surgery, Kansai Medical University Hospital, Hirakata, Osaka
| | - K Kobayashi
- Department of Medical Oncology, Saitama Red Cross Hospital, Chuo-ku, Saitama
| | - N Iwakuma
- Breast Center, Department of Breast Surgery, NHO Kyushu Medical Center, Fukuoka
| | - T Okamura
- Department of Breast Oncology, Tokai University School of Medicine, Isehara, Kanagawa
| | - H Tada
- Division of Breast and Endocrine Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi
| | - S Ozaki
- Department of Gastrointestinal and Breast Surgery, Hiroshima Prefectural Hospital, Hiroshima
| | - T Okuno
- Department of Breast Surgery, Kobe City Nishi-Kobe Medical Center, Kobe, Hyogo
| | - U Toh
- Department of Breast Surgery, Kurume University Hospital, Kurume, Fukuoka
| | - Y Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Hospital, Kumamoto
| | - M Tsuneizumi
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka
| | - H Ishiguro
- Breast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Saitama
| | - N Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya
| | - S Saji
- Department of Medical Oncology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
122
|
Shioi T, Hatazawa S, Oya E, Hosoya N, Kobayashi W, Ogasawara M, Kobayashi T, Takizawa Y, Kurumizaka H. Cryo-EM structures of RAD51 assembled on nucleosomes containing a DSB site. Nature 2024; 628:212-220. [PMID: 38509361 PMCID: PMC10990931 DOI: 10.1038/s41586-024-07196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.
Collapse
Affiliation(s)
- Takuro Shioi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eriko Oya
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takehiko Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
123
|
Liang S, Xu S, Zhou S, Chang C, Shao Z, Wang Y, Chen S, Huang Y, Guo Y. IMAGGS: a radiogenomic framework for identifying multi-way associations in breast cancer subtypes. J Genet Genomics 2024; 51:443-453. [PMID: 37783335 DOI: 10.1016/j.jgg.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Investigating correlations between radiomic and genomic profiling in breast cancer (BC) molecular subtypes is crucial for understanding disease mechanisms and providing personalized treatment. We present a well-designed radiogenomic framework image-gene-gene set (IMAGGS), which detects multi-way associations in BC subtypes by integrating radiomic and genomic features. Our dataset consists of 721 patients, each of whom has 12 ultrasound (US) images captured from different angles and gene mutation data. To better characterize tumor traits, 12 multi-angle US images are fused using two distinct strategies. Then, we analyze complex many-to-many associations between phenotypic and genotypic features using a machine learning algorithm, deviating from the prevalent one-to-one relationship pattern observed in previous studies. Key radiomic and genomic features are screened using these associations. In addition, gene set enrichment analysis is performed to investigate the joint effects of gene sets and delve deeper into the biological functions of BC subtypes. We further validate the feasibility of IMAGGS in a glioblastoma multiforme dataset to demonstrate the scalability of IMAGGS across different modalities and diseases. Taken together, IMAGGS provides a comprehensive characterization for diseases by associating imaging, genes, and gene sets, paving the way for biological interpretation of radiomics and development of targeted therapy.
Collapse
Affiliation(s)
- Shuyu Liang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China
| | - Sicheng Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yunxia Huang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yi Guo
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
124
|
Jiang YZ, Ma D, Jin X, Xiao Y, Yu Y, Shi J, Zhou YF, Fu T, Lin CJ, Dai LJ, Liu CL, Zhao S, Su GH, Hou W, Liu Y, Chen Q, Yang J, Zhang N, Zhang WJ, Liu W, Ge W, Yang WT, You C, Gu Y, Kaklamani V, Bertucci F, Verschraegen C, Daemen A, Shah NM, Wang T, Guo T, Shi L, Perou CM, Zheng Y, Huang W, Shao ZM. Integrated multiomic profiling of breast cancer in the Chinese population reveals patient stratification and therapeutic vulnerabilities. NATURE CANCER 2024; 5:673-690. [PMID: 38347143 DOI: 10.1038/s43018-024-00725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2024] [Indexed: 04/30/2024]
Abstract
Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei-Jie Dai
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Hua Su
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Naixin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wen-Juan Zhang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Virginia Kaklamani
- Division Haematology/Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - François Bertucci
- Predictive Oncology Laboratory and Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | | | - Anneleen Daemen
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
125
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
126
|
Bullock KK, Shattuck-Brandt R, Scalise C, Luo W, Chen SC, Saleh N, Gonzalez-Ericsson PI, Garcia G, Sanders ME, Ayers GD, Yan C, Richmond A. Endogenous pAKT activity is associated with response to AKT inhibition alone and in combination with immune checkpoint inhibition in murine models of TNBC. Cancer Lett 2024; 586:216681. [PMID: 38311054 PMCID: PMC11622984 DOI: 10.1016/j.canlet.2024.216681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.
Collapse
Affiliation(s)
- Kennady K Bullock
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Rebecca Shattuck-Brandt
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Carly Scalise
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Weifeng Luo
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nabil Saleh
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Paula I Gonzalez-Ericsson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guadalupe Garcia
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda E Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA.
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
127
|
Gómez Tejeda Zañudo J, Barroso-Sousa R, Jain E, Jin Q, Li T, Buendia-Buendia JE, Pereslete A, Abravanel DL, Ferreira AR, Wrabel E, Helvie K, Hughes ME, Partridge AH, Overmoyer B, Lin NU, Tayob N, Tolaney SM, Wagle N. Exemestane plus everolimus and palbociclib in metastatic breast cancer: clinical response and genomic/transcriptomic determinants of resistance in a phase I/II trial. Nat Commun 2024; 15:2446. [PMID: 38503755 PMCID: PMC10951222 DOI: 10.1038/s41467-024-45835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
The landscape of cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) resistance is still being elucidated and the optimal subsequent therapy to overcome resistance remains uncertain. Here we present the final results of a phase Ib/IIa, open-label trial (NCT02871791) of exemestane plus everolimus and palbociclib for CDK4/6i-resistant metastatic breast cancer. The primary objective of phase Ib was to evaluate safety and tolerability and determine the maximum tolerated dose/recommended phase II dose (100 mg palbociclib, 5 mg everolimus, 25 mg exemestane). The primary objective of phase IIa was to determine the clinical benefit rate (18.8%, n = 6/32), which did not meet the predefined endpoint (65%). Secondary objectives included pharmacokinetic profiling (phase Ib), objective response rate, disease control rate, duration of response, and progression free survival (phase IIa), and correlative multi-omics analysis to investigate biomarkers of resistance to CDK4/6i. All participants were female. Multi-omics data from the phase IIa patients (n = 24 tumor/17 blood biopsy exomes; n = 27 tumor transcriptomes) showed potential mechanisms of resistance (convergent evolution of HER2 activation, BRAFV600E), identified joint genomic/transcriptomic resistance features (ESR1 mutations, high estrogen receptor pathway activity, and a Luminal A/B subtype; ERBB2/BRAF mutations, high RTK/MAPK pathway activity, and a HER2-E subtype), and provided hypothesis-generating results suggesting that mTOR pathway activation correlates with response to the trial's therapy. Our results illustrate how genome and transcriptome sequencing may help better identify patients likely to respond to CDK4/6i therapies.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Oncology Center, Hospital Sírio-Libanês, Brasília, Brazil
| | - Esha Jain
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Repare Therapeutics, Cambridge, MA, USA
| | - Qingchun Jin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Jorge E Buendia-Buendia
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellarity, Somerville, MA, USA
| | | | - Daniel L Abravanel
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arlindo R Ferreira
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Eileen Wrabel
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Ann H Partridge
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Beth Overmoyer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy U Lin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nabihah Tayob
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Cancer Program, Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
128
|
Kakumoto A, Jamiyan T, Kuroda H, Harada O, Yamaguchi-Isochi T, Baba S, Kato Y, Nishihara H, Kawami H. Prognostic impact of tumor-associated neutrophils in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:51-62. [PMID: 38577697 PMCID: PMC10988089 DOI: 10.62347/jqdq1527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES Neutrophils are the most common type of leukocyte in mammals and play an essential role in the innate immune system and anti-cancer responses. However, recent studies identified the presence of tumor-associated neutrophils (TANs) as a poor prognostic factor. The present study investigated whether relationships exist between TANs and the clinicopathological factors and genetic status of breast cancer. METHODS A total of 196 breast cancer patients with sufficient biopsy, breast-conserving surgery, or mastectomy specimens between 2014 and 2021 in Hokuto Hospital were included. RESULTS TANs were individually counted in the tumor stroma (TS) and tumor nest (TN). A higher density of TANs in both TS and TN correlated with tumor size (TS P = 0.010; TN P = 0.001), a high histological grade (TS P < 0.001; TN P < 0.001), the histological type (TS P = 0.009; TN P = 0.034), a high ratio of lymph node metastasis (TS P < 0.001; TN P < 0.001), an advanced stage of cancer (TS P < 0.001; TN P = 0.002), intrinsic subtypes (TS P < 0.001; TN P < 0.001), ERBB2 (TS P < 0.001; TN P < 0.001), MAP3K1 (TS P = 0.002; TN P = 0.023), and TP53 (TS P < 0.001; TN P < 0.001). A higher density of TANs in TS and TN also correlated with shorter disease-free survival and overall survival (P < 0.001). CONCLUSION The present results suggest that a higher density of TANs correlates with unfavorable prognostic factors in breast cancer. Further research on clinicopathological and genetic factors associated with TANs in breast cancer is needed.
Collapse
Affiliation(s)
- Akinari Kakumoto
- Department of Diagnostic Pathology, Tokyo Women’s Medical University Adachi Medical Center 4-33-1 KohokuAdachi-Ku, Tokyo 123-0872, Japan
| | - Tsengelmaa Jamiyan
- Department of Pathology and Forensic Medicine, Mongolian National University of Medical SciencesUlan Bator 14210, Mongolia
| | - Hajime Kuroda
- Department of Diagnostic Pathology, Tokyo Women’s Medical University Adachi Medical Center 4-33-1 KohokuAdachi-Ku, Tokyo 123-0872, Japan
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
| | - Oi Harada
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Breast Center, Showa UniversityTokyo 142-8666, Japan
| | | | - Shogo Baba
- Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
| | - Yasutaka Kato
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Genomics Unit, Keio Cancer Center, Clinical and Translational Research Center, Keio University School of MedicineTokyo 160-8582, Japan
| | - Hiroshi Nishihara
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Genomics Unit, Keio Cancer Center, Clinical and Translational Research Center, Keio University School of MedicineTokyo 160-8582, Japan
| | - Hiroyuki Kawami
- Department of Clinical Pathology, Hokuto HospitalObihiro, Hokkaido 080-0833, Japan
- Center for Breast Diseases and Breast Cancer, Hokuto Hospital and ClinicObihiro, Hokkaido 080-0833, Japan
| |
Collapse
|
129
|
Vanacker H, Treilleux I, Schiffler C, Bieche I, Campone M, Patsouris A, Arnedos M, Cottu PH, Jacquin JP, Dalenc F, Pinton A, Servant N, Attignon V, Rouleau E, Morel A, Legrand F, Jimenez M, Andre F, Bachelot T. p4EBP1 staining predicts outcome in ER-positive endocrine-resistant metastatic breast cancer patients treated with everolimus and exemestane. Br J Cancer 2024; 130:613-619. [PMID: 38182687 PMCID: PMC10876520 DOI: 10.1038/s41416-023-02549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND To identify patients most likely to respond to everolimus, a mammalian target of rapamycin (mTOR) inhibitor, a prospective biomarker study was conducted in hormone receptor-positive endocrine-resistant metastatic breast cancer patients treated with exemestane-everolimus therapy. METHODS Metastatic tumor biopsies were processed for immunohistochemical staining (p4EBP1, PTEN, pAKT, LKB1, and pS6K). ESR1, PIK3CA and AKT1 gene mutations were detected by NGS. The primary endpoint was the association between the p4EBP1 expression and clinical benefit rate (CBR) at 6 months of everolimus plus exemestane treatment. RESULTS Of 150 patients included, 107 were evaluable for the primary endpoint. p4EBP1 staining above the median (Allred score ≥6) was associated with a higher CBR at 6 months (62% versus 40% in high-p4EBP1 versus low-p4EBP1, χ2 test, p = 0.026) and a longer progression-free survival (PFS) (median PFS of 9.2 versus 5.8 months in high-p4EBP1 versus low-p4EBP1; p = 0.02). When tested with other biomarkers, only p4EBP1 remained a significant predictive marker of PFS in multivariate analysis (hazard ratio, 0.591; p = 0.01). CONCLUSIONS This study identified a subset of patients with hormone receptor-positive endocrine-resistant metastatic breast cancer and poor outcome who would derive less benefit from everolimus and exemestane. p4EBP1 may be a useful predictive biomarker in routine clinical practice. CLINICAL TRIAL REGISTRATION NCT02444390.
Collapse
Affiliation(s)
| | | | | | | | - Mario Campone
- Institut de cancérologie de l'ouest Pays de Loire Nantes-Angers, Saint-Herblain, France
| | - Anne Patsouris
- Institut de cancérologie de l'ouest Pays de Loire Nantes-Angers, Saint-Herblain, France
| | | | | | | | - Florence Dalenc
- ICR, Institut Universitaire du Cancer de Toulouse, Oncopole, Toulouse, France
| | | | | | | | | | - Alain Morel
- Institut de cancérologie de l'ouest Pays de Loire Nantes-Angers, Saint-Herblain, France
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000, Angers, France
| | | | | | | | | |
Collapse
|
130
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
131
|
Marra A, Chandarlapaty S, Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat Rev Clin Oncol 2024; 21:185-202. [PMID: 38191924 DOI: 10.1038/s41571-023-00849-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Amplification and/or overexpression of ERBB2, the gene encoding HER2, can be found in 15-20% of invasive breast cancers and is associated with an aggressive phenotype and poor clinical outcomes. Relentless research efforts in molecular biology and drug development have led to the implementation of several HER2-targeted therapies, including monoclonal antibodies, tyrosine-kinase inhibitors and antibody-drug conjugates, constituting one of the best examples of bench-to-bedside translation in oncology. Each individual drug class has improved patient outcomes and, importantly, the combinatorial and sequential use of different HER2-targeted therapies has increased cure rates in the early stage disease setting and substantially prolonged survival for patients with advanced-stage disease. In this Review, we describe key steps in the development of the modern paradigm for the treatment of HER2-positive advanced-stage breast cancer, including selecting and sequencing new-generation HER2-targeted therapies, and summarize efficacy and safety outcomes from pivotal studies. We then outline the factors that are currently known to be related to resistance to HER2-targeted therapies, such as HER2 intratumoural heterogeneity, activation of alternative signalling pathways and immune escape mechanisms, as well as potential strategies that might be used in the future to overcome this resistance and further improve patient outcomes.
Collapse
Affiliation(s)
- Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
132
|
Bottosso M, Mosele F, Michiels S, Cournède PH, Dogan S, Labaki C, André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024; 9:102247. [PMID: 38401248 PMCID: PMC10982863 DOI: 10.1016/j.esmoop.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years, technological advances have widely improved the understanding of breast cancer biology and several trials have been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients' outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical implications are discussed, along with technological advancements that could broaden precision medicine applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast cancer precision oncology as well as to identify future research directions.
Collapse
Affiliation(s)
- M Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - F Mosele
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif
| | - S Michiels
- Gustave Roussy, Department of Biostatistics and Epidemiology, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, Ligue Contre le Cancer, Villejuif
| | - P-H Cournède
- Université Paris-Saclay, Centrale Supélec, Laboratory of Mathematics and Computer Science (MICS), Gif-Sur-Yvette, France
| | - S Dogan
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - C Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - F André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Gif Sur-Yvette, France.
| |
Collapse
|
133
|
Srithanyarat T, Taoma K, Sutthibutpong T, Ruengjitchatchawalya M, Liangruksa M, Laomettachit T. Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles. BioData Min 2024; 17:8. [PMID: 38424554 PMCID: PMC10905801 DOI: 10.1186/s13040-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy among women worldwide. Despite advances in treating breast cancer over the past decades, drug resistance and adverse effects remain challenging. Recent therapeutic progress has shifted toward using drug combinations for better treatment efficiency. However, with a growing number of potential small-molecule cancer inhibitors, in silico strategies to predict pharmacological synergy before experimental trials are required to compensate for time and cost restrictions. Many deep learning models have been previously proposed to predict the synergistic effects of drug combinations with high performance. However, these models heavily relied on a large number of drug chemical structural fingerprints as their main features, which made model interpretation a challenge. RESULTS This study developed a deep neural network model that predicts synergy between small-molecule pairs based on their inhibitory activities against 13 selected key proteins. The synergy prediction model achieved a Pearson correlation coefficient between model predictions and experimental data of 0.63 across five breast cancer cell lines. BT-549 and MCF-7 achieved the highest correlation of 0.67 when considering individual cell lines. Despite achieving a moderate correlation compared to previous deep learning models, our model offers a distinctive advantage in terms of interpretability. Using the inhibitory activities against key protein targets as the main features allowed a straightforward interpretation of the model since the individual features had direct biological meaning. By tracing the synergistic interactions of compounds through their target proteins, we gained insights into the patterns our model recognized as indicative of synergistic effects. CONCLUSIONS The framework employed in the present study lays the groundwork for future advancements, especially in model interpretation. By combining deep learning techniques and target-specific models, this study shed light on potential patterns of target-protein inhibition profiles that could be exploited in breast cancer treatment.
Collapse
Affiliation(s)
- Thanyawee Srithanyarat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Thana Sutthibutpong
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
134
|
Ma J, Li L, Ma B, Liu T, Wang Z, Ye Q, Peng Y, Wang B, Chen Y, Xu S, Wang K, Dang F, Wang X, Zeng Z, Jian Y, Ren Z, Fan Y, Li X, Liu J, Gao Y, Wei W, Li L. MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation. Nat Commun 2024; 15:1871. [PMID: 38424044 PMCID: PMC10904810 DOI: 10.1038/s41467-024-45796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixuan Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhihua Ren
- Kintor Parmaceutical, Inc, Suzhou, 215123, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
135
|
Chaudhary N, Chibly AM, Collier A, Martinalbo J, Perez-Moreno P, Moore HM, Luhn P, Metcalfe C, Hafner M. CDK4/6i-treated HR+/HER2- breast cancer tumors show higher ESR1 mutation prevalence and more altered genomic landscape. NPJ Breast Cancer 2024; 10:15. [PMID: 38388477 PMCID: PMC10883990 DOI: 10.1038/s41523-024-00617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
As CDK4/6 inhibitor (CDK4/6i) approval changed treatment strategies for patients with hormone receptor-positive HER2-negative (HR+/HER2-) breast cancer (BC), understanding how exposure to CDK4/6i affects the tumor genomic landscape is critical for precision oncology. Using real-world data (RWD) with tumor genomic profiling from 5910 patients with metastatic HR+/HER2- BC, we investigated the evolution of alteration prevalence in commonly mutated genes across patient journeys. We found that ESR1 is more often altered in tumors exposed to at least 1 year of adjuvant endocrine therapy, contrasting with TP53 alterations. We observed a similar trend after first-line treatments in the advanced setting, but strikingly exposure to aromatase inhibitors (AI) combined with CDK4/6i led to significantly higher ESR1 alteration prevalence compared to AI alone, independent of treatment duration. Further, CDK4/6i exposure was associated with higher occurrence of concomitant alterations in multiple oncogenic pathways. Differences based on CDK4/6i exposure were confirmed in samples collected after 2L and validated in samples from the acelERA BC clinical trial. In conclusion, our work uncovers opportunities for further treatment personalization and stresses the need for effective combination treatments to address the altered tumor genomic landscape following AI+CDK4/6i exposure. Further, we demonstrated the potential of RWD for refining patient treatment strategy and guiding clinical trial design.
Collapse
Affiliation(s)
- Nayan Chaudhary
- Real World Data Science, Genentech Inc., South San Francisco, CA, USA
| | - Alejandro M Chibly
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Ann Collier
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Jorge Martinalbo
- Department of Product Development Oncology, Hoffmann La Roche, Basel, Switzerland
| | - Pablo Perez-Moreno
- Department of Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Heather M Moore
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Patricia Luhn
- Real World Data Science, Genentech Inc., South San Francisco, CA, USA
| | - Ciara Metcalfe
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, CA, USA.
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
136
|
Aryal B, Bizhanova Z, Joseph EA, Yin Y, Wagner PL, Dalton E, LaFramboise WA, Bartlett DL, Allen CJ. Navigating Precision Oncology: Insights from an Integrated Clinical Data and Biobank Repository Initiative across a Network Cancer Program. Cancers (Basel) 2024; 16:760. [PMID: 38398150 PMCID: PMC10886699 DOI: 10.3390/cancers16040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Advancing cancer treatment relies on the rapid translation of new scientific discoveries to patient care. To facilitate this, an oncology biobank and data repository program, also referred to as the "Moonshot" program, was launched in 2021 within the Integrated Network Cancer Program of the Allegheny Health Network. A clinical data program (CDP) and biospecimen repository were established, and patient data and blood and tissue samples have been collected prospectively. To date, the study has accrued 2920 patients, predominantly female (61%) and Caucasian (90%), with a mean age of 64 ± 13 years. The most common cancer sites were the endometrium/uterus (12%), lung/bronchus (12%), breast (11%), and colon/rectum (11%). Of patients diagnosed with cancer, 34% were diagnosed at stage I, 25% at stage II, 26% at stage III, and 15% at stage IV. The CDP is designed to support our initiative in advancing personalized cancer research by providing a comprehensive array of patient data, encompassing demographic characteristics, diagnostic details, and treatment responses. The "Moonshot" initiative aims to predict therapy responses and clinical outcomes through cancer-related biomarkers. The CDP facilitates this initiative by fostering data sharing, enabling comparative analyses, and informing the development of novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Bibek Aryal
- Allegheny Singer Research Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.A.); (Z.B.); (E.A.J.); (Y.Y.)
| | - Zhadyra Bizhanova
- Allegheny Singer Research Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.A.); (Z.B.); (E.A.J.); (Y.Y.)
| | - Edward A. Joseph
- Allegheny Singer Research Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.A.); (Z.B.); (E.A.J.); (Y.Y.)
| | - Yue Yin
- Allegheny Singer Research Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA; (B.A.); (Z.B.); (E.A.J.); (Y.Y.)
| | - Patrick L. Wagner
- Division of Surgical Oncology, Institute of Surgery, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | | | | | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA;
| | - Casey J. Allen
- Division of Surgical Oncology, Institute of Surgery, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| |
Collapse
|
137
|
Kingston B, Pearson A, Herrera-Abreu MT, Sim LX, Cutts RJ, Shah H, Moretti L, Kilburn LS, Johnson H, Macpherson IR, Ring A, Bliss JM, Hou Y, Toy W, Katzenellenbogen JA, Chandarlapaty S, Turner NC. ESR1 F404 Mutations and Acquired Resistance to Fulvestrant in ESR1-Mutant Breast Cancer. Cancer Discov 2024; 14:274-289. [PMID: 37982575 PMCID: PMC10850945 DOI: 10.1158/2159-8290.cd-22-1387] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Fulvestrant is used to treat patients with hormone receptor-positive advanced breast cancer, but acquired resistance is poorly understood. PlasmaMATCH Cohort A (NCT03182634) investigated the activity of fulvestrant in patients with activating ESR1 mutations in circulating tumor DNA (ctDNA). Baseline ESR1 mutations Y537S are associated with poor outcomes and Y537C with good outcomes. Sequencing of baseline and EOT ctDNA samples (n = 69) revealed 3/69 (4%) patients acquired novel ESR1 F404 mutations (F404L, F404I, and F404V), in cis with activating mutations. In silico modeling revealed that ESR1 F404 contributes to fulvestrant binding to estrogen receptor-alpha (ERα) through a pi-stacking bond, with mutations disrupting this bond. In vitro analysis demonstrated that single F404L, E380Q, and D538G models were less sensitive to fulvestrant, whereas compound mutations D538G + F404L and E380Q + F404L were resistant. Several oral ERα degraders were active against compound mutant models. We have identified a resistance mechanism specific to fulvestrant that can be targeted by treatments in clinical development. SIGNIFICANCE Novel F404 ESR1 mutations may be acquired to cause overt resistance to fulvestrant when combined with preexisting activating ESR1 mutations. Novel combinations of mutations in the ER ligand binding domain may cause drug-specific resistance, emphasizing the potential of similar drug-specific mutations to impact the efficacy of oral ER degraders in development. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Belinda Kingston
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Maria Teresa Herrera-Abreu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Li-Xuan Sim
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rosalind J. Cutts
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Heena Shah
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Moretti
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Lucy S. Kilburn
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Hannah Johnson
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Iain R. Macpherson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alistair Ring
- Breast Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Yingwei Hou
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Weiyi Toy
- Memorial Sloan Kettering Cancer Center, New York City, New York
- Department of Medicine, Weill Cornell Medical College, New York City, New York
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sarat Chandarlapaty
- Memorial Sloan Kettering Cancer Center, New York City, New York
- Department of Medicine, Weill Cornell Medical College, New York City, New York
| | - Nicholas C. Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
138
|
Lawrence-Paul MR, Pan TC, Pant DK, Shih NNC, Chen Y, Belka GK, Feldman M, DeMichele A, Chodosh LA. Rare subclonal sequencing of breast cancers indicates putative metastatic driver mutations are predominately acquired after dissemination. Genome Med 2024; 16:26. [PMID: 38321573 PMCID: PMC10848417 DOI: 10.1186/s13073-024-01293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Evolutionary models of breast cancer progression differ on the extent to which metastatic potential is pre-encoded within primary tumors. Although metastatic recurrences often harbor putative driver mutations that are not detected in their antecedent primary tumor using standard sequencing technologies, whether these mutations were acquired before or after dissemination remains unclear. METHODS To ascertain whether putative metastatic driver mutations initially deemed specific to the metastasis by whole exome sequencing were, in actuality, present within rare ancestral subclones of the primary tumors from which they arose, we employed error-controlled ultra-deep sequencing (UDS-UMI) coupled with FFPE artifact mitigation by uracil-DNA glycosylase (UDG) to assess the presence of 132 "metastasis-specific" mutations within antecedent primary tumors from 21 patients. Maximum mutation detection sensitivity was ~1% of primary tumor cells. A conceptual framework was developed to estimate relative likelihoods of alternative models of mutation acquisition. RESULTS The ancestral primary tumor subclone responsible for seeding the metastasis was identified in 29% of patients, implicating several putative drivers in metastatic seeding including LRP5 A65V and PEAK1 K140Q. Despite this, 93% of metastasis-specific mutations in putative metastatic driver genes remained undetected within primary tumors, as did 96% of metastasis-specific mutations in known breast cancer drivers, including ERRB2 V777L, ESR1 D538G, and AKT1 D323H. Strikingly, even in those cases in which the rare ancestral subclone was identified, 87% of metastasis-specific putative driver mutations remained undetected. Modeling indicated that the sequential acquisition of multiple metastasis-specific driver or passenger mutations within the same rare subclonal lineage of the primary tumor was highly improbable. CONCLUSIONS Our results strongly suggest that metastatic driver mutations are sequentially acquired and selected within the same clonal lineage both before, but more commonly after, dissemination from the primary tumor, and that these mutations are biologically consequential. Despite inherent limitations in sampling archival primary tumors, our findings indicate that tumor cells in most patients continue to undergo clinically relevant genomic evolution after their dissemination from the primary tumor. This provides further evidence that metastatic recurrence is a multi-step, mutation-driven process that extends beyond primary tumor dissemination and underscores the importance of longitudinal tumor assessment to help guide clinical decisions.
Collapse
Affiliation(s)
- Matthew R Lawrence-Paul
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tien-Chi Pan
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhruv K Pant
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie N C Shih
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Chen
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - George K Belka
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Feldman
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angela DeMichele
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lewis A Chodosh
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Abramson Family Cancer Research Institute, Philadelphia, USA.
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
139
|
Zhu K, Yang X, Tai H, Zhong X, Luo T, Zheng H. HER2-targeted therapies in cancer: a systematic review. Biomark Res 2024; 12:16. [PMID: 38308374 PMCID: PMC10835834 DOI: 10.1186/s40364-024-00565-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Abnormal alterations in human epidermal growth factor receptor 2 (HER2, neu, and erbB2) are associated with the development of many tumors. It is currently a crucial treatment for multiple cancers. Advanced in molecular biology and further exploration of the HER2-mediated pathway have promoted the development of medicine design and combination drug regimens. An increasing number of HER2-targeted drugs including specific monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and antibody-drug conjugates (ADCs) have been approved by the U.S. Food and Drug Administration. The emergence of ADCs, has significantly transformed the treatment landscape for various tumors, such as breast, gastric, and bladder cancer. Classic monoclonal antibodies and novel TKIs have not only demonstrated remarkable efficacy, but also expanded their indications, with ADCs in particular exhibiting profound clinical applications. Moreover the concept of low HER2 expression signifies a breakthrough in HER2-targeted therapy, indicating that an increasing number of tumors and patients will benefit from this approach. This article, provides a comprehensive review of the underlying mechanism of action, representative drugs, corresponding clinical trials, recent advancements, and future research directions pertaining to HER2-targeted therapy.
Collapse
Affiliation(s)
- Kunrui Zhu
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Hebei Tai
- College of Clinical Medical, Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Xiaorong Zhong
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Zheng
- Institute for Breast Health Medicine, Cance Center, Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
140
|
Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol 2024; 21:89-105. [PMID: 38082107 DOI: 10.1038/s41571-023-00840-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/27/2024]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibition in combination with endocrine therapy is the standard-of-care treatment for patients with advanced-stage hormone receptor-positive, HER2 non-amplified (HR+HER2-) breast cancer. These agents can also be administered as adjuvant therapy to patients with higher-risk early stage disease. Nonetheless, the clinical success of these agents has created several challenges, such as how to address acquired resistance, identifying which patients are most likely to benefit from therapy prior to treatment, and understanding the optimal timing of administration and sequencing of these agents. In this Review, we describe the rationale for targeting CDK4/6 in patients with breast cancer, including a summary of updated clinical evidence and how this should inform clinical practice. We also discuss ongoing research efforts that are attempting to address the various challenges created by the widespread implementation of these agents.
Collapse
Affiliation(s)
- Laura Morrison
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK
- Breast Unit, The Royal Marsden Hospital, London, UK
| | - Sibylle Loibl
- German Breast Group, Goethe University, Frankfurt, Germany
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, UK.
- Breast Unit, The Royal Marsden Hospital, London, UK.
| |
Collapse
|
141
|
Migliaccio I, Romagnoli D, Galardi F, De Luca F, Biagioni C, Curigliano G, Criscitiello C, Minisini AM, Moretti E, Risi E, Guarducci C, Nardone A, Biganzoli L, Benelli M, Malorni L. Mutational Analysis of Circulating Tumor DNA in Patients With Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer Receiving Palbociclib: Results From the TREnd Trial. JCO Precis Oncol 2024; 8:e2300285. [PMID: 38427931 PMCID: PMC10919481 DOI: 10.1200/po.23.00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 03/03/2024] Open
Abstract
PURPOSE To identify prognostic circulating biomarkers to cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i), we performed a mutational analysis on circulating tumor DNA (ctDNA) samples from patients included in the TREnd trial, which randomly assigned patients to receive the CDK4/6i palbociclib alone or with the endocrine treatment (ET) to which they had progressed. METHODS Forty-six patients were enrolled in this substudy. Plasma was collected before treatment (T0), after the first cycle of therapy (T1), and at the time of progression (T2). ctDNA hybridization and capture were performed using the Illumina TruSight Tumor 170 Kit. Acquired mutations were confirmed by digital polymerase chain reaction. Progression-free survival analysis was estimated using the Kaplan-Meier method and compared with the log-rank test. RESULTS The most frequently mutated genes at T0 were ESR1 (23%), PIK3CA (17%), AR, FGFR2, and TP53 (10%). Mutations in ESR1 at T0 conferred higher risk of progression in the entire population (P = .02) and in patients treated with palbociclib + ET (P = .04). ESR1 mutation effect remained significant after correction for clinical variables (P = .03). PIK3CA mutations at T0 were not prognostic, but higher risk of progression was observed when a broader analysis of PI3K pathway was performed (P = .04). At T2, we observed the emergence of nine new mutations in seven genes. CONCLUSION Mutations in ESR1 and in PI3K pathway genes at T0 were associated with worse prognosis in palbociclib-treated patients. We describe the emergence of newly acquired mutations in palbociclib-treated patients, which might potentially affect subsequent treatment.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Dario Romagnoli
- Bioinformatics Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Francesca Galardi
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Francesca De Luca
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Chiara Biagioni
- Bioinformatics Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | | | - Erica Moretti
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Emanuela Risi
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Cristina Guarducci
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Agostina Nardone
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Laura Biganzoli
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| | - Luca Malorni
- Translational Research Unit, Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
- Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, Prato, Italy
| |
Collapse
|
142
|
House RRJ, Tovar EA, Redlon LN, Essenburg CJ, Dischinger PS, Ellis AE, Beddows I, Sheldon RD, Lien EC, Graveel CR, Steensma MR. NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. Mol Metab 2024; 80:101876. [PMID: 38216123 PMCID: PMC10844973 DOI: 10.1016/j.molmet.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE NF1 is a tumor suppressor gene and its protein product, neurofibromin, is a negative regulator of the RAS pathway. NF1 is one of the top driver mutations in sporadic breast cancer such that 27 % of breast cancers exhibit damaging NF1 alterations. NF1 loss-of-function is a frequent event in the genomic evolution of estrogen receptor (ER)+ breast cancer metastasis and endocrine resistance. Individuals with Neurofibromatosis type 1 (NF) - a disorder caused by germline NF1 mutations - have an increased risk of dying from breast cancer [1-4]. NF-related breast cancers are associated with decreased overall survival compared to sporadic breast cancer. Despite numerous studies interrogating the role of RAS mutations in tumor metabolism, no study has comprehensively profiled the NF1-deficient breast cancer metabolome to define patterns of energetic and metabolic reprogramming. The goals of this investigation were (1) to define the role of NF1 deficiency in estrogen receptor-positive (ER+) breast cancer metabolic reprogramming and (2) to identify potential targeted pathway and metabolic inhibitor combination therapies for NF1-deficient ER + breast cancer. METHODS We employed two ER+ NF1-deficient breast cancer models: (1) an NF1-deficient MCF7 breast cancer cell line to model sporadic breast cancer, and (2) three distinct, Nf1-deficient rat models to model NF-related breast cancer [1]. IncuCyte proliferation analysis was used to measure the effect of NF1 deficiency on cell proliferation and drug response. Protein quantity was assessed by Western Blot analysis. We then used RNAseq to investigate the transcriptional effect of NF1 deficiency on global and metabolism-related transcription. We measured cellular energetics using Agilent Seahorse XF-96 Glyco Stress Test and Mito Stress Test assays. We performed stable isotope labeling and measured [U-13C]-glucose and [U-13C]-glutamine metabolite incorporation and measured total metabolite pools using mass spectrometry. Lastly, we used a Bliss synergy model to investigate NF1-driven changes in targeted and metabolic inhibitor synergy. RESULTS Our results revealed that NF1 deficiency enhanced cell proliferation, altered neurofibromin expression, and increased RAS and PI3K/AKT pathway signaling while constraining oxidative ATP production and restricting energetic flexibility. Neurofibromin deficiency also increased glutamine influx into TCA intermediates and dramatically increased lipid pools, especially triglycerides (TG). Lastly, NF1 deficiency alters the synergy between metabolic inhibitors and traditional targeted inhibitors. This includes increased synergy with inhibitors targeting glycolysis, glutamine metabolism, mitochondrial fatty acid transport, and TG synthesis. CONCLUSIONS NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. This reprogramming is characterized by oxidative ATP constraints, glutamine TCA influx, and lipid pool expansion, and these metabolic changes introduce novel metabolic-to-targeted inhibitor synergies.
Collapse
Affiliation(s)
- Rachel Rae J House
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Luke N Redlon
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA; Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
143
|
Derakhshan F, Da Cruz Paula A, Selenica P, da Silva EM, Grabenstetter A, Jalali S, Gazzo AM, Dopeso H, Marra A, Brown DN, Ross DS, Mandelker D, Razavi P, Chandarlapaty S, Wen HY, Brogi E, Zhang H, Weigelt B, Pareja F, Reis-Filho JS. Nonlobular Invasive Breast Carcinomas with Biallelic Pathogenic CDH1 Somatic Alterations: A Histologic, Immunophenotypic, and Genomic Characterization. Mod Pathol 2024; 37:100375. [PMID: 37925055 PMCID: PMC11154908 DOI: 10.1016/j.modpat.2023.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
CDH1 encodes for E-cadherin, and its loss of function is the hallmark of invasive lobular carcinoma (ILC). Albeit vanishingly rare, biallelic CDH1 alterations may be found in nonlobular breast carcinomas (NL-BCs). We sought to determine the clinicopathologic characteristics and repertoire of genetic alterations of NL-BCs harboring CDH1 biallelic genetic alterations. Analysis of 5842 breast cancers (BCs) subjected to clinical tumor-normal sequencing with an FDA-cleared multigene panel was conducted to identify BCs with biallelic CDH1 pathogenic/likely pathogenic somatic mutations lacking lobular features. The genomic profiles of NL-BCs with CDH1 biallelic genetic alterations were compared with those of ILCs and invasive ductal carcinomas (IDCs), matched by clinicopathologic characteristics. Of the 896 CDH1-altered BCs, 889 samples were excluded based on the diagnosis of invasive mixed ductal/lobular carcinoma or ILC or the detection of monoallelic CDH1 alterations. Only 7 of the 5842 (0.11%) BCs harbored biallelic CDH1 alterations and lacked lobular features. Of these, 4/7 (57%) cases were ER-positive/HER2-negative, 1/7 (14%) was ER-positive/HER2-positive, and 2/7 (29%) were ER-negative/HER2-negative. In total, 5/7 (71%) were of Nottingham grade 2, and 2/7 (29%) were of grade 3. The NL-BCs with CDH1 biallelic genetic alterations included a mucinous carcinoma (n = 1), IDCs with focal nested growth (n = 2), IDC with solid papillary (n = 1) or apocrine (n = 2) features, and an IDC of no special type (NST; n = 1). E-cadherin expression, as detected by immunohistochemistry, was absent (3/5) or aberrant (discontinuous membranous/cytoplasmic/granular; 2/5). However, NL-BCs with CDH1 biallelic genetic alterations displayed recurrent genetic alterations, including TP53, PIK3CA (57%, 4/7; each), FGFR1, and NCOR1 (28%, 2/7, each) alterations. Compared with CDH1 wild-type IDC-NSTs, NL-BCs less frequently harbored GATA3 mutations (0% vs 47%, P = .03), but no significant differences were detected when compared with matched ILCs. Therefore, NL-BCs with CDH1 biallelic genetic alterations are vanishingly rare, predominantly comprise IDCs with special histologic features, and have genomic features akin to luminal B ER-positive BCs.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Grabenstetter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sahar Jalali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dara S Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
144
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
145
|
Ikeda S, Tsuboi M, Sakai K, Misumi T, Akamatsu H, Shoda H, Sakakura N, Nakamura A, Ohde Y, Hayashi H, Okishio K, Okada M, Yoshino I, Okami J, Takahashi K, Ikeda N, Tanahashi M, Tambo Y, Saito H, Toyooka S, Inokawa H, Chen‐Yoshikawa T, Yokoyama T, Okamoto T, Yanagitani N, Oki M, Takahama M, Sawa K, Tada H, Nakagawa K, Mitsudomi T, Nishio K. NOTCH1 and CREBBP co-mutations negatively affect the benefit of adjuvant therapy in completely resected EGFR-mutated NSCLC: translational research of phase III IMPACT study. Mol Oncol 2024; 18:305-316. [PMID: 37864465 PMCID: PMC10850799 DOI: 10.1002/1878-0261.13542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
The phase III IMPACT study (UMIN000044738) compared adjuvant gefitinib with cisplatin plus vinorelbine (cis/vin) in completely resected epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Although the primary endpoint of disease-free survival (DFS) was not met, we searched for molecular predictors of adjuvant gefitinib efficacy. Of 234 patients enrolled in the IMPACT study, 202 patients were analyzed for 409 cancer-related gene mutations and tumor mutation burden using resected lung cancer specimens. Frequent somatic mutations included tumor protein p53 (TP53; 58.4%), CUB and Sushi multiple domains 3 (CSMD3; 11.8%), and NOTCH1 (9.9%). Multivariate analysis showed that NOTCH1 co-mutation was a significant poor prognostic factor for overall survival (OS) in the gefitinib group and cAMP response element binding protein (CREBBP) co-mutation for DFS and OS in the cis/vin group. In patients with NOTCH1 co-mutations, gefitinib group had a shorter OS than cis/vin group (Hazard ratio 5.49, 95% CI 1.07-28.00), with a significant interaction (P for interaction = 0.039). In patients with CREBBP co-mutations, the gefitinib group had a longer DFS than the cis/vin group, with a significant interaction (P for interaction = 0.058). In completely resected EGFR-mutated NSCLC, NOTCH1 and CREBBP mutations might predict poor outcome in patients treated with gefitinib and cis/vin, respectively.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Respiratory MedicineKanagawa Cardiovascular and Respiratory CenterYokohamaJapan
| | - Masahiro Tsuboi
- Division of Thoracic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Kazuko Sakai
- Department of Genome BiologyKindai University Faculty of MedicineOsaka‐SayamaJapan
| | - Toshihiro Misumi
- Department of Data ScienceNational Cancer Center Hospital EastKashiwaJapan
| | | | - Hiroyasu Shoda
- Department of Respiratory MedicineHiroshima Citizens HospitalJapan
| | - Noriaki Sakakura
- Department of Thoracic SurgeryAichi Cancer Center HospitalNagoyaJapan
| | | | - Yasuhisa Ohde
- Division of Thoracic SurgeryShizuoka Cancer CenterSunto‐gunJapan
| | - Hidetoshi Hayashi
- Department of Medical OncologyKindai University Faculty of MedicineOsaka‐SayamaJapan
| | - Kyoichi Okishio
- Department of Thoracic OncologyNational Hospital Organization Kinki‐Chuo Chest Medical CenterSakaiJapan
| | - Morihito Okada
- Department of Surgical OncologyHiroshima UniversityJapan
| | - Ichiro Yoshino
- Department of General Thoracic SurgeryChiba University Graduate School of MedicineJapan
| | - Jiro Okami
- Department of General Thoracic SurgeryOsaka International Cancer InstituteJapan
| | - Kazuhisa Takahashi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineBunkyo‐kuJapan
| | - Norihiko Ikeda
- Department of SurgeryTokyo Medical UniversityShinjuku‐kuJapan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease CenterSeirei Mikatahara General HospitalHamamatsuJapan
| | - Yuichi Tambo
- Department of Respiratory MedicineKanazawa University HospitalJapan
| | - Haruhiro Saito
- Department of Thoracic OncologyKanagawa Cancer CenterYokohamaJapan
| | - Shinichi Toyooka
- Department of General Thoracic SurgeryOkayama University Graduate School of MedicineJapan
| | | | | | | | - Tatsuro Okamoto
- Department of Thoracic OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Noriko Yanagitani
- Department of Thoracic Medical OncologyCancer Institute Hospital of Japanese Foundation for Cancer ResearchKoto‐kuJapan
| | - Masahide Oki
- Department of Respiratory MedicineNational Hospital Organization Nagoya Medical CenterJapan
| | - Makoto Takahama
- Department of General Thoracic SurgeryOsaka City General HospitalJapan
| | - Kenji Sawa
- Department of Clinical OncologyOsaka Metropolitan University Graduate School of MedicineJapan
| | - Hirohito Tada
- Department of Thoracic SurgerySuita Tokushukai HospitalJapan
| | - Kazuhiko Nakagawa
- Department of Medical OncologyKindai University Faculty of MedicineOsaka‐SayamaJapan
| | - Tetsuya Mitsudomi
- Division of Thoracic SurgeryKindai University Faculty of MedicineOsaka‐SayamaJapan
| | - Kazuto Nishio
- Department of Genome BiologyKindai University Faculty of MedicineOsaka‐SayamaJapan
| |
Collapse
|
146
|
Purohit L, Jones C, Gonzalez T, Castrellon A, Hussein A. The Role of CD4/6 Inhibitors in Breast Cancer Treatment. Int J Mol Sci 2024; 25:1242. [PMID: 38279242 PMCID: PMC10816395 DOI: 10.3390/ijms25021242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Over the last decade, treatment paradigms for breast cancer have undergone a renaissance, particularly in hormone-receptor-positive/HER2-negative breast cancer. These revolutionary therapies are based on the selective targeting of aberrancies within the cell cycle. This shift towards targeted therapies has also changed the landscape of disease monitoring. In this article, we will review the fundamentals of cell cycle progression in the context of the new cyclin-dependent kinase inhibitors. In addition to discussing the currently approved cyclin-dependent kinase inhibitors for breast cancer, we will explore the ongoing development and search for predictive biomarkers and modalities to monitor treatment.
Collapse
Affiliation(s)
| | | | | | - Aurelio Castrellon
- Memorial Health System, Pembroke Pines, FL 33024, USA; (L.P.); (C.J.); (T.G.); (A.H.)
| | | |
Collapse
|
147
|
Ji D, Shao C, Yu J, Hou Y, Gao X, Wu Y, Wang L, Chen P. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol Cell 2024; 84:244-260.e7. [PMID: 38101414 DOI: 10.1016/j.molcel.2023.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Changrong Shao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyao Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao Gao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Yichuan Wu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Liang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
148
|
Ciriello G, Magnani L, Aitken SJ, Akkari L, Behjati S, Hanahan D, Landau DA, Lopez-Bigas N, Lupiáñez DG, Marine JC, Martin-Villalba A, Natoli G, Obenauf AC, Oricchio E, Scaffidi P, Sottoriva A, Swarbrick A, Tonon G, Vanharanta S, Zuber J. Cancer Evolution: A Multifaceted Affair. Cancer Discov 2024; 14:36-48. [PMID: 38047596 PMCID: PMC10784746 DOI: 10.1158/2159-8290.cd-23-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chromatin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces interact and influence each other while shaping tumor progression. A comprehensive characterization of the cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery. SIGNIFICANCE Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, experimental and theoretical approaches must account for multiple evolutionary mechanisms and their interactions to ultimately understand, predict, and steer tumor evolution.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Luca Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Epigenetic Plasticity and Evolution Laboratory, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Sarah J. Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Douglas Hanahan
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Dan A. Landau
- New York Genome Center, New York, New York
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Darío G. Lupiáñez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna C. Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Elisa Oricchio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Paola Scaffidi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Cancer Epigenetic Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Sottoriva
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Giovanni Tonon
- Vita-Salute San Raffaele University, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
149
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
150
|
Huang X, Yu Y, Luo S, Fu W, Zhang J, Song C. The value of oral selective estrogen receptor degraders in patients with HR-positive, HER2-negative advanced breast cancer after progression on ≥ 1 line of endocrine therapy: systematic review and meta-analysis. BMC Cancer 2024; 24:21. [PMID: 38166684 PMCID: PMC10763362 DOI: 10.1186/s12885-023-11722-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Currently, the value of oral selective estrogen receptor degraders (SERDs) for hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (aBC) after progression on ≥ 1 line of endocrine therapy (ET) remains controversial. We conducted a meta-analysis to evaluate progression-free survival (PFS) and safety benefits in several clinical trials. MATERIALS AND METHODS Cochrane Library, Embase, PubMed, and conference proceedings (SABCS, ASCO, ESMO, and ESMO Breast) were searched systematically and comprehensively. Random effects models or fixed effects models were used to assess pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for treatment with oral SERDs versus standard of care. RESULTS A total of four studies involving 1,290 patients were included in our analysis. The hazard ratio (HR) of PFS showed that the oral SERD regimen was better than standard of care in patients with HR+/HER2- aBC after progression on ≥ 1 line of ET (HR: 0.75, 95% CI: 0.62-0.91, p = 0.004). In patients with ESR1 mutations, the oral SERD regimen provided better PFS than standard of care (HR: 0.58, 95% CI: 0.47-0.71, p < 0.00001). Regarding patients with disease progression following previous use of CDK4/6 inhibitors, PFS benefit was observed in oral SERD-treatment arms compared to standard of care (HR: 0.75, 95% CI: 0.64-0.87, p = 0.0002). CONCLUSIONS The oral SERD regimen provides a significant PFS benefit compared to standard-of-care ET in patients with HR+/HER2- aBC after progression on ≥ 1 line of ET. In particular, we recommend oral SERDs as a preferred choice for those patients with ESR1m, and it could be a potential replacement for fulvestrant. The oral SERD regimen is also beneficial after progression on CDK4/6 inhibitors combined with endocrine therapy.
Collapse
Affiliation(s)
- Xiewei Huang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yushuai Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shiping Luo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Wenfen Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Surgery Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|