101
|
Assaf L, Eid AA, Nassif J. Role of AMPK/mTOR, mitochondria, and ROS in the pathogenesis of endometriosis. Life Sci 2022; 306:120805. [PMID: 35850246 DOI: 10.1016/j.lfs.2022.120805] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Endometriosis is the presence of endometrial tissue outside the uterine cavity usually in the ovaries, fallopian tube, and pelvic cavity. It's a chronic enigmatic gynecological condition associated with dysmenorrhea, dyspareunia, pelvic pain, and infertility. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of hormones, inflammation, and oxidative stress. This environment promotes cell survival through the binding of membrane receptors and subsequent cascading activation of intracellular kinases that stimulate a cellular response. In endometriosis, well-established signaling pathways, mTOR and AMPK, are altered via steroid hormones and other factors to promote cell growth, migration, and proliferation. This is accompanied by dysfunction in the mitochondria that increase energy production to sustain proliferation demands consequently leading to reactive oxygen species overproduction. This review aims to summarize the role of altered mTOR/AMPK signaling pathway, mitochondrial dysfunction, and reactive oxygen species overproduction along with providing therapeutic and diagnostic approaches. Highlighting these factors would provide a better understanding to reach a coherent theory for the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Lama Assaf
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut, Beirut, Lebanon.
| | - Joseph Nassif
- Division of Minimally Invasive Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
102
|
PFKM inhibits doxorubicin-induced cardiotoxicity by enhancing oxidative phosphorylation and glycolysis. Sci Rep 2022; 12:11684. [PMID: 35804014 PMCID: PMC9266090 DOI: 10.1038/s41598-022-15743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Heart failure (HF) is a global pandemic which affects about 26 million people. PFKM (Phosphofructokinase, Muscle), catalyzing the phosphorylation of fructose-6-phosphate, plays a very important role in cardiovascular diseases. However, the effect of PFKM in glycolysis and HF remains to be elucidated. H9c2 rat cardiomyocyte cells were treated with doxorubicin (DOX) to establish injury models, and the cell viability, apoptosis and glycolysis were measured. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting were used for gene expression. DOX treatment significantly inhibited PFKM expression in H9c2 cells. Overexpression of PFKM inhibited DOX-induced cell apoptosis and DOX-decreased glycolysis and oxidative phosphorylation (OXPHOS), while silencing PFKM promoted cell apoptosis and inhibited glycolysis and OXPHOS in H9c2 cells. Moreover, PFKM regulated DOX-mediated cell viability and apoptosis through glycolysis pathway. Mechanism study showed that histone deacetylase 1 (HDAC1) inhibited H3K27ac-induced transcription of PFKM in DOX-treated cells and regulated glycolysis. PFKM could inhibit DOX-induced cardiotoxicity by enhancing OXPHOS and glycolysis, which might benefit us in developing novel therapeutics for prevention or treatment of HF.
Collapse
|
103
|
Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, Yan Z, Lian C, Yang Y, Zhu L, Qu DH, Bao C. A Light-Driven Molecular Machine Controls K + Channel Transport and Induces Cancer Cell Apoptosis. Angew Chem Int Ed Engl 2022; 61:e202204605. [PMID: 35442566 DOI: 10.1002/anie.202204605] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/21/2022]
Abstract
The design of artificial ion channels with high activity, selectivity and gating function is challenging. Herein, we designed the light-driven motor molecule MC2, which provides new design criteria to overcome these challenges. MC2 forms a selective K+ channel through a single molecular transmembrane mechanism, and the light-driven rotary motion significantly accelerates ion transport, which endows the irradiated motor molecule with excellent cytotoxicity and cancer cell selectivity. Mechanistic studies reveal that the rotary motion of MC2 promotes K+ efflux, generates reactive oxygen species and eventually activates caspase-3-dependent apoptosis in cancer cells. Combined with the spatiotemporally controllable advantages of light, we believe this strategy can be exploited in the structural design and application of next-generation synthetic cation transporters for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shihao Pang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kai Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Duan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zexin Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Yang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
104
|
Differential response of hepatocellular carcinoma glycolytic metabolism and oxidative stress markers after exposure to human amniotic membrane proteins. Mol Biol Rep 2022; 49:7731-7741. [PMID: 35716291 DOI: 10.1007/s11033-022-07598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The human Amniotic Membrane (hAM) has been studied as a potential therapeutic option in cancer, namely in hepatocellular carcinoma. Previously, our research group evaluated the effect of human Amniotic Membrane Protein Extracts (hAMPE) in cancer therapy, demonstrating that hAMPE inhibit the metabolic activity of human hepatocellular carcinoma cell lines: Hep3B2.1-7, HepG2 and Huh7. Therefore, and considering the close relationship between metabolic activity and oxidative stress, the aim of this study was to evaluate the effect of hAMPE treatment in glucose metabolism and its role in oxidative stress of hepatocellular carcinoma. METHODS AND RESULTS Glucose uptake and lactate production was assessed by 1 H-NMR, and the expression of several mediators of the glycolytic pathway was evaluated by Western blot or fluorescence. Total antioxidant capacity (TAC) and biomarkers of oxidative stress effects in proteins were detected. Our results showed that hAMPE treatment increased glucose consumption on Hep3B2.1-7, HepG2, and Huh7 through the increase of GLUT1 in Hep3B2.1-7 and Huh7, and GLUT3 in HepG2 cells. It was observed an increased expression of 6-phosphofrutokinase (PFK-1L) in all cell lines though glucose was not converted to lactate on HepG2 and Huh7 cells, suggesting that hAMPE treatment may counteract the Warburg effect observed in carcinogenesis. In Hep3B2.1-7, hAMPE treatment induced an increase in expression of lactate dehydrogenase (LDH) and monocarboxylate transporter isoform 4 (MCT4). We further detected that hAMPE enhances the TAC of culture media after 2 and 8 h. This was followed by a degree of protection against proteins nitration and carbonylation. CONCLUSIONS Overall, this work highlights the potential usefulness of hAMPE as anticancer therapy through the modulation of the glycolytic and oxidative profile in human hepatocellular carcinoma.
Collapse
|
105
|
Garreta E, Prado P, Stanifer ML, Monteil V, Marco A, Ullate-Agote A, Moya-Rull D, Vilas-Zornoza A, Tarantino C, Romero JP, Jonsson G, Oria R, Leopoldi A, Hagelkruys A, Gallo M, González F, Domingo-Pedrol P, Gavaldà A, Del Pozo CH, Hasan Ali O, Ventura-Aguiar P, Campistol JM, Prosper F, Mirazimi A, Boulant S, Penninger JM, Montserrat N. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab 2022; 34:857-873.e9. [PMID: 35561674 PMCID: PMC9097013 DOI: 10.1016/j.cmet.2022.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/02/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patricia Prado
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany; Research Group "Cellular Polarity and Viral Infection," German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vanessa Monteil
- Karolinska Institute and Karolinska University Hospital, Unit of Clinical Microbiology, 17182 Stockholm, Sweden
| | - Andrés Marco
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Asier Ullate-Agote
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amaia Vilas-Zornoza
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carolina Tarantino
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan Pablo Romero
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Gustav Jonsson
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Roger Oria
- Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, CA, USA
| | - Alexandra Leopoldi
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maria Gallo
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico González
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pere Domingo-Pedrol
- Internal Medicine Department, Hospital Universitario de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aleix Gavaldà
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Carmen Hurtado Del Pozo
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Omar Hasan Ali
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Institute of Immunobiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Pedro Ventura-Aguiar
- Nephrology and Kidney Transplant Department, Hospital Clínic Barcelona, Barcelona, Spain; Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per a la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Josep María Campistol
- Nephrology and Kidney Transplant Department, Hospital Clínic Barcelona, Barcelona, Spain; Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per a la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Unit of Clinical Microbiology, 17182 Stockholm, Sweden; National Veterinary Institute, Uppsala, Sweden.
| | - Steeve Boulant
- Research Group "Cellular Polarity and Viral Infection," German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.
| |
Collapse
|
106
|
Shiau JP, Chuang YT, Cheng YB, Tang JY, Hou MF, Yen CY, Chang HW. Impacts of Oxidative Stress and PI3K/AKT/mTOR on Metabolism and the Future Direction of Investigating Fucoidan-Modulated Metabolism. Antioxidants (Basel) 2022; 11:911. [PMID: 35624775 PMCID: PMC9137824 DOI: 10.3390/antiox11050911] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
The critical factors for regulating cancer metabolism are oxidative stress and phosphoinositide-3-kinase/AKT serine-threonine kinase/mechanistic target of the rapamycin kinase (PI3K/AKT/mTOR). However, the metabolic impacts of oxidative stress and PI3K/AKT/mTOR on individual mechanisms such as glycolysis (Warburg effect), pentose phosphate pathway (PPP), fatty acid synthesis, tricarboxylic acid cycle (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS) are complicated. Therefore, this review summarizes the individual and interacting functions of oxidative stress and PI3K/AKT/mTOR on metabolism. Moreover, natural products providing oxidative stress and PI3K/AKT/mTOR modulating effects have anticancer potential. Using the example of brown algae-derived fucoidan, the roles of oxidative stress and PI3K/AKT/mTOR were summarized, although their potential functions within diverse metabolisms were rarely investigated. We propose a potential application that fucoidan may regulate oxidative stress and PI3K/AKT/mTOR signaling to modulate their associated metabolic regulations. This review sheds light on understanding the impacts of oxidative stress and PI3K/AKT/mTOR on metabolism and the future direction of metabolism-based cancer therapy of fucoidan.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- Department of Oral, Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
107
|
Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, Yan Z, Lian C, Yang Y, Zhu L, Qu D, Bao C. A Light‐Driven Molecular Machine Controls K
+
Channel Transport and Induces Cancer Cell Apoptosis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huiting Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shihao Pang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kai Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qi Duan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zexin Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yi Yang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
108
|
Wang R, Krasniqi B, Li Y, Dehaen W. Triphenylphosphonium-linked derivative of allobetulin: preparation, anticancer properties and their mechanism of inhibiting SGC-7901 cells proliferation. Bioorg Chem 2022; 126:105853. [DOI: 10.1016/j.bioorg.2022.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
|
109
|
Abstract
Rapid fluctuations in the plasma membrane potential (Vm) provide the basis underlying the action potential waveform in electrically excitable cells; however, a growing body of literature shows that the Vm is also functionally instructive in nonexcitable cells, including cancer cells. Various ion channels play a key role in setting and fine tuning the Vm in cancer and stromal cells within the tumor microenvironment (TME), raising the possibility that the Vm could be targeted therapeutically using ion channel-modulating compounds. Emerging evidence points to the Vm as a viable therapeutic target, given its functional significance in regulating cell cycle progression, migration, invasion, immune infiltration, and pH regulation. Several compounds are now undergoing clinical trials and there is increasing interest in therapeutic manipulation of the Vm via application of pulsed electric fields. The purpose of this article is to update the reader on the significant recent and ongoing progress to elucidate the functional significance of Vm regulation in tumors, to highlight key remaining questions and the prospect of future therapeutic targeting. In particular, we focus on key developments in understanding the functional consequences of Vm alteration on tumor development via the activation of small GTPase (K-Ras and Rac1) signaling, as well as the impact of Vm changes within the heterogeneous TME on immune cell function and cancer progression.
Collapse
Affiliation(s)
- Ming Yang
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| | - William J Brackenbury
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, United Kingdom
| |
Collapse
|
110
|
Morris V, Wang D, Li Z, Marion W, Hughes T, Sousa P, Harada T, Sui SH, Naumenko S, Kalfon J, Sensharma P, Falchetti M, Vinicius da Silva R, Candelli T, Schneider P, Margaritis T, Holstege FCP, Pikman Y, Harris M, Stam RW, Orkin SH, Koehler AN, Shalek AK, North TE, Pimkin M, Daley GQ, Lummertz da Rocha E, Rowe RG. Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Rep 2022; 39:110752. [PMID: 35476984 PMCID: PMC9099058 DOI: 10.1016/j.celrep.2022.110752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
High-risk forms of B-acute lymphoblastic leukemia (B-ALL) remain a therapeutic challenge. Leukemia-initiating cells (LICs) self-renew and spark relapse and therefore have been the subject of intensive investigation; however, the properties of LICs in high-risk B-ALL are not well understood. Here, we use single-cell transcriptomics and quantitative xenotransplantation to understand LICs in MLL-rearranged (MLL-r) B-ALL. Compared with reported LIC frequencies in acute myeloid leukemia (AML), engraftable LICs in MLL-r B-ALL are abundant. Although we find that multipotent, self-renewing LICs are enriched among phenotypically undifferentiated B-ALL cells, LICs with the capacity to replenish the leukemic cellular diversity can emerge from more mature fractions. While inhibiting oxidative phosphorylation blunts blast proliferation, this intervention promotes LIC emergence. Conversely, inhibiting hypoxia and glycolysis impairs MLL-r B-ALL LICs, providing a therapeutic benefit in xenotransplantation systems. These findings provide insight into the aggressive nature of MLL-r B-ALL and provide a rationale for therapeutic targeting of hypoxia and glycolysis.
Collapse
Affiliation(s)
- Vivian Morris
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dahai Wang
- Stem Cell Transplantation Program, Department of Hematology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zhiheng Li
- Stem Cell Transplantation Program, Department of Hematology, Boston Children's Hospital, Boston, MA 02115, USA
| | - William Marion
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Travis Hughes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Sousa
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sergey Naumenko
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jérémie Kalfon
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Prerana Sensharma
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Transplantation Program, Department of Hematology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marcelo Falchetti
- Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Renan Vinicius da Silva
- Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Yana Pikman
- Harvard Medical School, Boston, MA 02115, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
| | - Marian Harris
- Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Stuart H Orkin
- Harvard Medical School, Boston, MA 02115, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alex K Shalek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Maxim Pimkin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis Santa Catarina 88040-900, Brazil
| | - R Grant Rowe
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Stem Cell Transplantation Program, Department of Hematology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
112
|
Tang L, Xiao Q, Yin Y, Mei Y, Li J, Xu L, Gao H, Wang W. An enzyme-responsive and NIR-triggered lipid-polymer hybrid nanoplatform for synergistic photothermal/chemo cancer therapy. Biomater Sci 2022; 10:2370-2383. [PMID: 35383799 DOI: 10.1039/d2bm00216g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of photothermal therapy (PTT) and chemotherapy is an emerging therapeutic strategy with promising clinical prospects in cancer treatment. Despite the huge progress achieved in the past years, a number of obstacles still hamper the therapeutic efficacy of this synergistic modality such as uneven heat distribution, lack of targetability of anti-cancer agents and dosage-related side effects. Thus, developing a nanoplatform for targeted drug delivery against cancer is of great necessity. Herein, a lipid-polymer hybrid nanosystem (LP/ID) based on polyethyleneimine (PEI)-lecithin-polyethylene glycol (PEG) was fabricated to co-load indocyanine green (ICG) and dichloroacetate (DCA) for combined photothermal/chemotherapy. DCA and ICG were linked to the PEI backbone to form a dense hydrophobic core through amide bonds and electrostatic interactions, which increased the payload of DCA and ICG as well as achieved enzyme-responsive drug release because of the overexpressed amidase in tumor cells. Lecithin and DSPE-PEG2000 self-assembled around the hydrophobic complexes to obtain prolonged blood circulation and attenuated systemic toxicity of the hybrid nanosystem. The prepared LP/ID exhibited favourable stability in a physiological environment, good tumor imaging properties, and satisfactory photothermal/chemotherapeutic performance. Moreover, LP/ID could also enhance the cellular uptake and tumor retention capacity in comparison with free drug administration. Notably, by co-loading two therapeutic agents with different anti-cancer mechanisms, an obvious inhibitory effect on tumor growth was observed with negligible damage to normal tissues and organs because of the synergistic photothermal/chemotherapy effect, indicating the great potential of LP/ID as a robust nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lin Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hongbin Gao
- Department of Pharmacy, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
113
|
Panda SS, Tran QL, Rajpurohit P, Pillai GG, Thomas SJ, Bridges AE, Capito JE, Thangaraju M, Lokeshwar BL. Design, Synthesis, and Molecular Docking Studies of Curcumin Hybrid Conjugates as Potential Therapeutics for Breast Cancer. Pharmaceuticals (Basel) 2022; 15:ph15040451. [PMID: 35455448 PMCID: PMC9028889 DOI: 10.3390/ph15040451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin (CUR) has received great attention over the past two decades due to its anticancer, anti-inflammatory, and antioxidant properties. Similarly, Dichloroacetate (DCA), an pyruvate dehydrogenase kinase 1 (PKD1) inhibitor, has gained huge attention as a potential anticancer drug. However, the clinical utility of these two agents is very limited because of the poor bioavailability and unsolicited side effects, respectively. We have synthesized fusion conjugates of CUR and DCA with an amino acids linker to overcome these limitations by utilizing the molecular hybridization approach. The molecular docking studies showed the potential targets of Curcumin-Modified Conjugates (CMCs) in breast cancer cells. We synthesized six hybrid conjugates named CMC1-6. These six CMC conjugates do not show any significant toxicity in a human normal immortalized mammary epithelial cell line (MCF10A) in vitro and C57BL/6 mice in vivo. However, treatment with CMC1 and CMC2 significantly reduced the growth and clonogenic survival by colony-formation assays in several human breast cancer cells (BC). Treatment by oral gavage of a transgenic mouse BC and metastatic BC tumor-bearing mice with CMC2 significantly reduced tumor growth and metastasis. Overall, our study provides strong evidence that CUR and DCA conjugates have a significant anticancer properties at a sub-micromolar concentration and overcome the clinical limitation of using CUR and DCA as potential anticancer drugs.
Collapse
Affiliation(s)
- Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; (Q.L.T.); (S.J.T.); (J.E.C.)
- Correspondence: (S.S.P.); (M.T.)
| | - Queen L. Tran
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; (Q.L.T.); (S.J.T.); (J.E.C.)
| | - Pragya Rajpurohit
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.R.); (A.E.B.); (B.L.L.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Sean J. Thomas
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; (Q.L.T.); (S.J.T.); (J.E.C.)
| | - Allison E. Bridges
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.R.); (A.E.B.); (B.L.L.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jason E. Capito
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; (Q.L.T.); (S.J.T.); (J.E.C.)
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.R.); (A.E.B.); (B.L.L.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Correspondence: (S.S.P.); (M.T.)
| | - Bal L. Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (P.R.); (A.E.B.); (B.L.L.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
114
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
115
|
Vang S, Cochran P, Sebastian Domingo J, Krick S, Barnes JW. The Glycobiology of Pulmonary Arterial Hypertension. Metabolites 2022; 12:metabo12040316. [PMID: 35448503 PMCID: PMC9026683 DOI: 10.3390/metabo12040316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease of complex etiology. Cases of PAH that do not receive therapy after diagnosis have a low survival rate. Multiple reports have shown that idiopathic PAH, or IPAH, is associated with metabolic dysregulation including altered bioavailability of nitric oxide (NO) and dysregulated glucose metabolism. Multiple processes such as increased proliferation of pulmonary vascular cells, angiogenesis, apoptotic resistance, and vasoconstriction may be regulated by the metabolic changes demonstrated in PAH. Recent reports have underscored similarities between metabolic abnormalities in cancer and IPAH. In particular, increased glucose uptake and altered glucose utilization have been documented and have been linked to the aforementioned processes. We were the first to report a link between altered glucose metabolism and changes in glycosylation. Subsequent reports have highlighted similar findings, including a potential role for altered metabolism and aberrant glycosylation in IPAH pathogenesis. This review will detail research findings that demonstrate metabolic dysregulation in PAH with an emphasis on glycobiology. Furthermore, this report will illustrate the similarities in the pathobiology of PAH and cancer and highlight the novel findings that researchers have explored in the field.
Collapse
|
116
|
Li C, He Q, Xu Y, Lou H, Fan P. Synthesis of 3- O-Acetyl-11-keto-β-boswellic Acid (AKBA)-Derived Amides and Their Mitochondria-Targeted Antitumor Activities. ACS OMEGA 2022; 7:9853-9866. [PMID: 35350335 PMCID: PMC8945107 DOI: 10.1021/acsomega.2c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 05/10/2023]
Abstract
In this study, we synthesized a series of amide and mitochondria-targeted derivatives with 3-O-acetyl-11-keto-β-boswellic acid (AKBA) as the parent structure and an ethylenediamine moiety as the link chain. Compound 5e, a mitochondrial-targeting potential derivative, showed significantly stronger antitumor activity than that of AKBA, and it could induce vacuolization of A549 cells and stimulate the production of reactive oxygen species (ROS) in a time- and concentration-dependent manner. The antioxidant N-acetylcysteine (NAC) could inhibit the ROS level but could not suppress vacuolization and cell death induced by 5e. Further studies demonstrated that 5e caused abnormal opening of mitochondrial permeability transition pore (MPTP) and a decrease of mitochondrial membrane potential; additionally, it caused cell cycle arrest in G0/G1 but did not induce apoptosis. 5e represented a compound with improved antiproliferative effects for cancer therapy working through new mechanisms.
Collapse
Affiliation(s)
- Changhao Li
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Cheeloo College of
Medicine, Shandong University, Jinan 250012, P.R. China
| | - Qiaobian He
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Cheeloo College of
Medicine, Shandong University, Jinan 250012, P.R. China
| | - Yuwen Xu
- Shandong
Institute for Food and Drug Control, Jinan 250101, P.R. China
| | - Hongxiang Lou
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Cheeloo College of
Medicine, Shandong University, Jinan 250012, P.R. China
| | - Peihong Fan
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Cheeloo College of
Medicine, Shandong University, Jinan 250012, P.R. China
| |
Collapse
|
117
|
Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022; 1877:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.
Collapse
Affiliation(s)
- Katerina Hönigova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
118
|
Zervopoulos SD, Boukouris AE, Saleme B, Haromy A, Tejay S, Sutendra G, Michelakis ED. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol Cell 2022; 82:1066-1077.e7. [PMID: 35245450 DOI: 10.1016/j.molcel.2022.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.
Collapse
Affiliation(s)
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
119
|
Elkholi IE, Elsherbiny ME, Emara M. Myoglobin: From physiological role to potential implications in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188706. [PMID: 35247507 DOI: 10.1016/j.bbcan.2022.188706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 10/19/2022]
Abstract
Myoglobin (MB) belongs to the well-studied globin proteins superfamily. It has been extensively studied for its physiological roles in oxygen storage and transport for about a century now. However, the last two decades shed the light on unexpected aspects for MB research. Myoglobin has been suggested as a scavenger for nitric oxide and reactive oxygen species (ROS). Furthermore, MB was found to be expressed and regulated in different tissues, beyond the muscle lineage, including cancers. Current evidence suggest that MB is directly regulated by hypoxia and might be contributing to the metabolic rewiring in cancer tissues. In this article, we first discuss the MB physiological roles and then focus on the latter potential roles and regulatory networks of MB in cancer.
Collapse
Affiliation(s)
- Islam E Elkholi
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt; Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases (CAAD), Zewail City of Science, Technology, and Innovation, 6th of October City, Giza 12578, Egypt.
| |
Collapse
|
120
|
Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. NANOMATERIALS 2022; 12:nano12050743. [PMID: 35269231 PMCID: PMC8911864 DOI: 10.3390/nano12050743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the "powerhouse" inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For several decades, cancer nanotherapeutics have been designed to specifically target mitochondria with several targeting moieties, and cause mitochondrial dysfunction via photodynamic, photothermal, or/and chemo therapies. These strategies have been shown to augment the killing of cancer cells in a tumor while reducing damage to its surrounding healthy tissues. Furthermore, mitochondria-targeting nanotechnologies have been demonstrated to be highly efficacious compared to non-mitochondria-targeting platforms both in vitro and in vivo for cancer therapies. Moreover, mitochondria-targeting nanotechnologies have been intelligently designed and tailored to the hypoxic and slightly acidic tumor microenvironment for improved cancer therapies. Collectively, mitochondria-targeting may be a promising strategy for the engineering of nanoparticles for drug delivery to combat cancer.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
121
|
Liang H, Dong S, Fu W, Zhang S, Yu W, Dong F, He B, Wang J, Gao Y, Zhou Y, Ru Y. Deciphering the Heterogeneity of Mitochondrial Functions During Hematopoietic Lineage Differentiation. Stem Cell Rev Rep 2022; 18:2179-2194. [DOI: 10.1007/s12015-022-10354-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/23/2022]
|
122
|
Greene J, Segaran A, Lord S. Targeting OXPHOS and the electronic transport chain in cancer; molecular and therapeutic implications. Semin Cancer Biol 2022; 86:851-859. [PMID: 35122973 DOI: 10.1016/j.semcancer.2022.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Oxidative phosphorylation (OXPHOS) takes place in mitochondria and is the process whereby cells use carbon fuels and oxygen to generate ATP. Formerly OXPHOS was thought to be reduced in tumours and that glycolysis was the critical pathway for generation of ATP but it is now clear that OXPHOS, at least in many tumour types, plays a critical role in delivering the bioenergetic and macromolecular anabolic requirements of cancer cells. There is now great interest in targeting the OXPHOS and the electron transport chain for cancer therapy and in this review article we describe current therapeutic approaches and challenges.
Collapse
Affiliation(s)
- John Greene
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Ashvina Segaran
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
123
|
Ishiguro T, Ishiguro RH, Ishiguro M, Toki A, Terunuma H. Synergistic Anti-tumor Effect of Dichloroacetate and Ivermectin. Cureus 2022; 14:e21884. [PMID: 35265417 PMCID: PMC8898092 DOI: 10.7759/cureus.21884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
We formerly reported that the combination of dichloroacetate, omeprazole, and tamoxifen blocked cancer progression by reducing lactic acid production and inducing superoxide production. Recently, ivermectin, a well-known anti-parasite drug, was reported to share the same mechanisms with them and have anti-tumor activity. Here, we present three patients in whom the combination of dichloroacetate, omeprazole (plus tamoxifen), and ivermectin dramatically relieved the symptoms accompanying cancer and sarcoma progression.
Collapse
Affiliation(s)
| | | | | | - Atsushi Toki
- Internal Medicine, Tama Nanbu Chiiki Hospital, Tokyo, JPN
| | | |
Collapse
|
124
|
Zou J, Gu Y, Zhu Q, Li X, Qin L. Identifying Glycolysis-related LncRNAs for predicting prognosis in breast cancer patients. Cancer Biomark 2022; 34:393-401. [PMID: 35068448 PMCID: PMC9198763 DOI: 10.3233/cbm-210446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE: Functions associated with glycolysis could serve as targets or biomarkers for therapy cancer. Our purpose was to establish a prognostic model that could evaluate the importance of Glycolysis-related lncRNAs in breast cancer. METHODS: Gene expressions were evaluated for breast cancer through The Cancer Genome Atlas (TCGA) database, and we calculated Pearson correlations to discover potential related lncRNAs. Differentially expressed genes were identified via criteria of FDR < 0.05 and |FC|> 2. Total samples were separated into training and validating sets randomly. Univariate Cox regression identified 14 prognostic lncRNAs in training set. A prognostic model was constructed to evaluate the accuracy in predicting prognosis. The univariate and multivariate Cox analysis were performed to verify whether lncRNA signature could be an independent prognostic factor The signature was validated in validating set. Immune infiltration levels were assessed. RESULTS: Eighty-nine differentially expressed lncRNAs were identified from 420 Glycolysis-related lncRNAs. 14 lncRNAs were correlated with prognosis in training set and were selected to establish the prognostic model. Low risk group had better prognosis in both training (p= 9.025 e -10) and validating (p= 4.272 e -3) sets. The univariate and multivariate Cox analysis revealed that risk score of glycolysis-related lncRNAs (P< 0.001) was an independent prognostic factor in both training and validating sets. The neutrophils (p= 4.214 e -13, r=-0.223), CD4+ T cells (p= 1.833 e -20, r=-0.283), CD8+ T cells (p= 7.641 e -12, r=-0.211), B cells (p= 2.502 e -10, r=-0.195) and dendritic cells (p= 5.14 e -18, r=-0.265) were negatively correlated with risk score of prognostic model. The Macrophage (p= 0.016, r= 0.0755) was positively correlated with the risk score. CONCLUSION: Our study indicated that glycolysis-related lncRNAs had a significant role to facilitate the individualized survival prediction in breast cancer patients, which would be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiayue Zou
- Department of Hepatobiliary Surgery, General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanlin Gu
- Department of Thyroid and Breast Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhu
- Department of Thyroid and Breast Surgery, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Wuzhong People’s Hospital of Suzhou City, Suzhou, Jiangsu, China
| | - Lei Qin
- Department of Hepatobiliary Surgery, General Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
125
|
Xie Y, Wang M, Xia M, Guo Y, Zu X, Zhong J. Ubiquitination regulation of aerobic glycolysis in cancer. Life Sci 2022; 292:120322. [PMID: 35031261 DOI: 10.1016/j.lfs.2022.120322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
Abstract
Aerobic glycolysis, or the Warburg effect, is regarded as a critical part of metabolic reprogramming and plays a crucial role in the occurrence and development of tumours. Ubiquitination and deubiquitination, essential post-translational modifications, have attracted increasing attention with regards to the regulation of metabolic reprogramming in cancer. However, the mechanism of ubiquitination in glycolysis remains unclear. In this review, we discuss the roles of ubiquitination and deubiquitination in regulating glycolysis, and their involvement in regulating important signalling pathways, enzymes, and transcription factors. Focusing on potential mechanisms may provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Yao Xie
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mu Wang
- Clinical Research Institute, the NanHua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Min Xia
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yinping Guo
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
126
|
Zhou Y, Guo Y, Tam KY. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 2022; 32:441-453. [PMID: 35001793 DOI: 10.1080/13543776.2022.2027912] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION One of the most distinctive hallmarks of cancer cells is increased glucose consumption for aerobic glycolysis which is named the Warburg effect. In recent decades, extensive research has been carried out to exploit this famous phenomenon, trying to detect promising targetable vulnerabilities in altered metabolism to fight cancer. Targeting aberrant glucose metabolism can perturb cancer malignant proliferation and even induce programmed cell death. AREAS COVERED This review covered the recent patents which focused on targeting key glycolytic enzymes including hexokinase, pyruvate dehydrogenase kinases and lactate dehydrogenase for cancer treatment. EXPERT OPINION Compared with the conventional cancer treatment, specifically targeting the well-known Achilles heel Warburg effect has attracted considerable attention. Although there is still no single glycolytic agent for clinical cancer treatment, the combination of glycolytic inhibitor with conventional anticancer drug or the combined use of multiple glycolytic inhibitors are being investigated extensively in recent years, which could emerge as attractive anticancer strategies.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, PR China
| |
Collapse
|
127
|
Da BB, Luo S, Huang M, Song F, Ding R, Xiao Y, Fu Y, Yang YS, Wang HL. Prediction of Hepatocellular Carcinoma Prognosis and Immune Cell Infiltration Using Gene Signature Associated with Inflammatory Response. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2415129. [PMID: 35035517 PMCID: PMC8759924 DOI: 10.1155/2022/2415129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
It has been demonstrated that the inflammatory response influences cancer development and can be used as a prognostic biomarker in various tumors. However, the relevance of genes associated with inflammatory responses in hepatocellular carcinoma (HCC) remains unknown. The Cancer Genome Atlas (TCGA) database was analyzed using weighted gene coexpression network analysis (WGCNA) and differential analysis to discover essential inflammatory response-related genes (IFRGs). Cox regression studies, both univariate and multivariate, were employed to develop a prognostic IFRGs signature. Additionally, Gene Set Enrichment Analysis (GSEA) was used to deduce the biological function of the IFRGs signature. Finally, we estimated immune cell infiltration using a single sample GSEA (ssGSEA) and x-cell. Our results revealed that, among the major HCC IFRGs, two (DNASE1L3 and KLKB1) were employed to create a predictive IFRG signature. The IFRG signature could correctly predict overall survival (O.S) as per Kaplan-Meier time-dependent roc curves analysis. It was also linked to pathological tumor stage and T stage and might be used as a prognostic predictor in HCC. GSEA analysis concluded that the IFRG signature might influence the immune response in HCC. Immunological cell infiltration and immune checkpoint molecule expression differed in the high-risk and low-risk groups. As a result of our findings, DNASILE may play a role in the tumor microenvironment. However, more research is necessary to confirm the role of DNASE1L3 and KLKB1.
Collapse
Affiliation(s)
- Bin-Bin Da
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Shuai Luo
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Ming Huang
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Fei Song
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Rong Ding
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Yao Xiao
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Yang Fu
- CT Room, Kunming First People's Hospital, Kunming 650000, China
| | - Yin-Shan Yang
- Department of Minimally Invasive Interventional Medicine Yunnan Cancer Hospital, Kunming 650118, China
| | - Hai-Lei Wang
- Hepatobiliary Pancreatic Vascular Surgery, Kunming First People's Hospital, Kunming 650031, China
| |
Collapse
|
128
|
C T, Zaravinos A, Tsartsalis AN, Tagka A, Kotoulas A, Geronikolou SA, Braoudaki M, Lambrou GI. Systems Approaches in the Common Metabolomics in Acute Lymphoblastic Leukemia and Rhabdomyosarcoma Cells: A Computational Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1338:55-66. [PMID: 34973010 DOI: 10.1007/978-3-030-78775-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute lymphoblastic leukemia is the most common childhood malignancy. Rhabdomyosarcoma, on the other hand, is a rare type of malignancy which belongs to the primitive neuroectodermal family of tumors. The aim of the present study was to use computational methods in order to examine the similarities and differences of the two different tumors using two cell lines as a model, the T-cell acute lymphoblastic leukemia CCRF-CEM and rhabdomyosarcoma TE-671, and, in particular, similarities of the metabolic pathways utilized by two different cell types in vitro. Both cell lines were studied using microarray technology. Differential expression profile has revealed genes with similar expression, suggesting that there are common mechanisms between the two cell types, where some of these mechanisms are preserved from their ancestor embryonic cells. Expression of identified species was modeled using known functions, in order to find common patterns in metabolism-related mechanisms. Species expression manifested very interesting dynamics, and we were able to model the system with elliptical/helical functions. We discuss the results of our analysis in the context of the commonly occurring genes between the two cell lines and the respective participating pathways as far as extracellular signaling and cell cycle regulation/proliferation are concerned. In the present study, we have developed a methodology, which was able to unravel some of the underlying dynamics of the metabolism-related species of two different cell types. Such approaches could prove useful in understanding the mechanisms of tumor ontogenesis, progression, and proliferation.
Collapse
Affiliation(s)
- Tselios C
- National and Kapodistrian University of Athens, Laboratory for the Research of Musculoskeletal Disorders, Athens, Greece
| | | | - Athanasios N Tsartsalis
- Naval Hospital of Athens, Department of Endocrinology Diabetes and Metabolism, Athens, Greece
| | - Anna Tagka
- First Department of Dermatology and Venereology, "Andreas Syggros" Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Kotoulas
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Athens, Greece
| | - Styliani A Geronikolou
- Biomedical Research Foundation of Academy of Athens, Clinical, Translational, Experimental Surgery Research Centerment of Pediatrics, Choremeio Research Laboratory, Athens, Greece
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hatfield, England
| | - George I Lambrou
- National and Kapodistrian University of Athens, First Department of Pediatrics, Choremeio Research Laboratory, Athens, Greece.
| |
Collapse
|
129
|
Xu Y, Chen H, Wan K, Zhou K, Wang Y, Li J, Tang Z, Sun W, Wu L, An R, Ren Z, Ding Q, Liang K, Sun Z. Effects of supplementing low-protein diets with sodium dichloroacetate and glucose on growth performance, carcass traits, and meat quality of growing-finishing pigs. J Anim Sci 2022; 100:6449488. [PMID: 34865045 DOI: 10.1093/jas/skab359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to evaluate the effects of supplementing low-protein diets with sodium dichloroacetate (DCA) and glucose on growth performance, carcass traits, and meat quality of growing-finishing pigs. A total of 80 crossbred (Duroc × Landrace × Large White) growing barrows (27 ± 0.4 kg body weight) were allocated randomly to one of the five treatments during three successive 4-wk periods. There were five diets in each phase. Diet 1 was the control diet with normal protein levels (CON) where protein levels in the three phases were 18%, 16.5%, and 15.5%, respectively. The dietary protein levels of Diets 2, 3, 4, and 5 (the low-protein diets, LP) were decreased by 4.5% compared to Diet 1. Additionally, Diets 3 and 4 were supplemented with an extra 120 mg/kg DCA (LP + DCA) or 1.8% glucose (LP + GLUC), respectively. Diet 5 was further supplemented with an extra 120 mg/kg DCA and 1.8% glucose (LP + DCA + GLUC). The LP + DCA diet increased the average daily weight gain of pigs compared to the CON and LP diet in phase 3 and the overall experimental period (P < 0.001). The LP diet reduced the gain:feed ratios of the pigs compared to the CON, LP + DCA, and LP + DCA + GLUC diets in phase 1 and the overall experimental period (P < 0.001). Furthermore, gain:feed ratios in LP + DCA and LP + DCA + GLUC groups did not differ from that of the CON group (P > 0.10). Pigs fed the LP + DCA diet had higher pH values of meat at 24 h post-mortem than the CON group (P < 0.05). The LP + DCA + GLUC diet increased the total protein content in the longissimus dorsi (LD) muscle of pigs, compared to the other dietary treatments (P < 0.05), and increased the Arg and Leu contents in the LD muscle compared to the LP + DCA diet (P < 0.05). Moreover, the LP + DCA diet induced a higher C18:1n9t percentage in the LD muscle of pigs compared to other groups (P < 0.05). In conclusion, an LP diet reduced the feed efficiency in pigs and barely affected meat quality, whereas 120 mg/kg DCA supplementation in an LP diet improved the growth performance of growing-finishing pigs, showed modest effects on carcass traits, and improved the muscle protein content with the addition of glucose.
Collapse
Affiliation(s)
- Yetong Xu
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Huiyuan Chen
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Ke Wan
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan 250002, P. R. China
| | - Yongsheng Wang
- Nutrition and Health Research Institute, COFCO, Beijing 102209, P. R. China
| | - Jigang Li
- Chongqing Academy of Animal Sciences, Chongqing 500153, P. R. China
| | - Zhiru Tang
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Weizhong Sun
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Liuting Wu
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Rui An
- Sichuan Academy of Animal Science, Chengdu, 610066, P. R. China
| | - Zhongxiang Ren
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Qi Ding
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Kaiyang Liang
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| | - Zhihong Sun
- Department of Animal Science and Technology, Laboratory for Bio-feed and Molecular Nutrition, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
130
|
Jane EP, Premkumar DR, Rajasundaram D, Thambireddy S, Reslink MC, Agnihotri S, Pollack IF. Reversing tozasertib resistance in glioma through inhibition of pyruvate dehydrogenase kinases. Mol Oncol 2022; 16:219-249. [PMID: 34058053 PMCID: PMC8732347 DOI: 10.1002/1878-0261.13025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acquired resistance to conventional chemotherapeutic agents limits their effectiveness and can cause cancer treatment to fail. Because enzymes in the aurora kinase family are vital regulators of several mitotic events, we reasoned that targeting these kinases with tozasertib, a pan-aurora kinase inhibitor, would not only cause cytokinesis defects, but also induce cell death in high-grade pediatric and adult glioma cell lines. We found that tozasertib induced cell cycle arrest, increased mitochondrial permeability and reactive oxygen species generation, inhibited cell growth and migration, and promoted cellular senescence and pro-apoptotic activity. However, sustained exposure to tozasertib at clinically relevant concentrations conferred resistance, which led us to examine the mechanistic basis for the emergence of drug resistance. RNA-sequence analysis revealed a significant upregulation of the gene encoding pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), a pyruvate dehydrogenase (PDH) inhibitory kinase that plays a crucial role in the control of metabolic flexibility under various physiological conditions. Upregulation of PDK1, PDK2, PDK3, or PDK4 protein levels was positively correlated with tozasertib-induced resistance through inhibition of PDH activity. Tozasertib-resistant cells exhibited increased mitochondrial mass as measured by 10-N-nonyl-Acridine Orange. Inhibition of PDK with dichloroacetate resulted in increased mitochondrial permeability and cell death in tozasertib-resistant glioma cell lines. Based on these results, we believe that PDK is a selective target for the tozasertib resistance phenotype and should be considered for further preclinical evaluations.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | | | - Swetha Thambireddy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Matthew C Reslink
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
- Department of Neurosurgery, UPMC Hillman Cancer Center, PA, USA
| |
Collapse
|
131
|
Duarte-Hospital C, Tête A, Brial F, Benoit L, Koual M, Tomkiewicz C, Kim MJ, Blanc EB, Coumoul X, Bortoli S. Mitochondrial Dysfunction as a Hallmark of Environmental Injury. Cells 2021; 11:cells11010110. [PMID: 35011671 PMCID: PMC8750015 DOI: 10.3390/cells11010110] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental factors including diet, sedentary lifestyle and exposure to pollutants largely influence human health throughout life. Cellular and molecular events triggered by an exposure to environmental pollutants are extremely variable and depend on the age, the chronicity and the doses of exposure. Only a fraction of all relevant mechanisms involved in the onset and progression of pathologies in response to toxicants has probably been identified. Mitochondria are central hubs of metabolic and cell signaling responsible for a large variety of biochemical processes, including oxidative stress, metabolite production, energy transduction, hormone synthesis, and apoptosis. Growing evidence highlights mitochondrial dysfunction as a major hallmark of environmental insults. Here, we present mitochondria as crucial organelles for healthy metabolic homeostasis and whose dysfunction induces critical adverse effects. Then, we review the multiple mechanisms of action of pollutants causing mitochondrial toxicity in link with chronic diseases. We propose the Aryl hydrocarbon Receptor (AhR) as a model of “exposome receptor”, whose activation by environmental pollutants leads to various toxic events through mitochondrial dysfunction. Finally, we provide some remarks related to mitotoxicity and risk assessment.
Collapse
Affiliation(s)
- Carolina Duarte-Hospital
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Arnaud Tête
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - François Brial
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
| | - Louise Benoit
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Meriem Koual
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Céline Tomkiewicz
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Min Ji Kim
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Université Sorbonne Paris Nord, F-93000 Bobigny, France
| | - Etienne B. Blanc
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
| | - Xavier Coumoul
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| | - Sylvie Bortoli
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, T3S, INSERM UMR-S 1124, F-75006 Paris, France; (C.D.-H.); (A.T.); (F.B.); (L.B.); (M.K.); (C.T.); (M.J.K.); (E.B.B.)
- Faculty of Sciences, Université de Paris, F-75006 Paris, France
- Correspondence: (X.C.); (S.B.); Tel.: +33-1-76-53-43-70 (S.B.)
| |
Collapse
|
132
|
Mitchel J, Bajaj P, Patil K, Gunnarson A, Pourchet E, Kim YN, Skolnick J, Pai SB. Computational Identification of Stearic Acid as a Potential PDK1 Inhibitor and In Vitro Validation of Stearic Acid as Colon Cancer Therapeutic in Combination with 5-Fluorouracil. Cancer Inform 2021; 20:11769351211065979. [PMID: 34924752 PMCID: PMC8679029 DOI: 10.1177/11769351211065979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Colorectal cancer is the third largest cause of cancer-related mortality
worldwide. Although current treatments with chemotherapeutics have allowed
for management of colorectal cancer, additional novel treatments are
essential. Intervening with the metabolic reprogramming observed in cancers
called “Warburg Effect,” is one of the novel strategies considered to combat
cancers. In the metabolic reprogramming pathway, pyruvate dehydrogenase
kinase (PDK1) plays a pivotal role. Identification and characterization of a
PDK1 inhibitor is of paramount importance. Further, for efficacious
treatment of colorectal cancers, combinatorial regimens are essential. To
this end, we opted to identify a PDK1 inhibitor using computational
structure-based drug design FINDSITEcomb and perform
combinatorial studies with 5-FU for efficacious treatment of colorectal
cancers. Methods: Using computational structure-based drug design FINDSITEcomb,
stearic acid (SA) was identified as a possible PDK1 inhibitor. Elucidation
of the mechanism of action of SA was performed using flow cytometry,
clonogenic assays. Results: When the growth inhibitory potential of SA was tested on colorectal
adenocarcinoma (DLD-1) cells, a 50% inhibitory concentration
(IC50) of 60 µM was recorded. Moreover, SA inhibited the
proliferation potential of DLD-1 cells as shown by the clonogenic assay and
there was a sustained response even after withdrawal of the compound.
Elucidation of the mechanism of action revealed, that the inhibitory effect
of SA was through the programmed cell death pathway. There was increase in
the number of apoptotic and multicaspase positive cells. SA also impacted
the levels of the cell survival protein Bcl-2. With the aim of achieving
improved treatment for colorectal cancer, we opted to combine 5-fluorouracil
(5-FU), the currently used drug in the clinic, with SA. Combining SA with
5-FU, revealed a synergistic effect in which the IC50 of 5-FU
decreased from 25 to 6 µM upon combination with 60 µM SA. Further, SA did
not inhibit non-tumorigenic NIH-3T3 proliferation. Conclusions: We envision that this significant decrease in the IC50 of 5-FU
could translate into less side effects of 5-FU and increase the efficacy of
the treatment due to the multifaceted action of SA. The data generated from
the current studies on the inhibition of colorectal adenocarcinoma by SA
discovered by the use of the computational program as well as synergistic
action with 5-FU should open up novel therapeutic options for the management
of colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Jonathan Mitchel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pratima Bajaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Austin Gunnarson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Emilie Pourchet
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jeffrey Skolnick
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
133
|
Bazanov DR, Maximova NA, Seliverstov MY, Zefirov NA, Sosonyuk SE, Lozinskaya NA. Synthesis of Covalent Conjugates of Dichloroacetic Acid with Polyfunctional Compounds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s107042802111004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
134
|
Bessho Y, Akaki T, Hara Y, Yamakawa M, Obika S, Mori G, Ubukata M, Yasue K, Nakane Y, Terasako Y, Orita T, Doi S, Iwanaga T, Fujishima A, Adachi T, Ueno H, Motomura T. Structure-based drug design of novel and highly potent pyruvate dehydrogenase kinase inhibitors. Bioorg Med Chem 2021; 52:116514. [PMID: 34808405 DOI: 10.1016/j.bmc.2021.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Pyruvate dehydrogenase kinases (PDHKs) are fascinating drug targets for numerous diseases, including diabetes and cancers. In this report, we describe the result of our structure-based drug design from tricyclic lead compounds that led to the discovery of highly potent PDHK2 and PDHK4 dual inhibitors in enzymatic assay. The C3-position of the tricyclic core was explored, and the PDHK2 X-ray structure with a representative compound revealed a novel ATP lid conformation in which the phenyl ring of Phe326 mediated the interaction of the Arg258 sidechain and the compound. Compounds with amide linkers were designed to release the ATP lid by forming an intramolecular pi-pi interaction, and these compounds showed single-digit nM IC50 values in an enzymatic assay. We also explored the C4-position of the tricyclic core to reproduce the interaction observed with the C3-position substitution, and the pyrrolidine compound showed the same level of IC50 values. By optimizing an interaction with the Asn255 sidechain through a docking simulation, compounds with 2-carboxy pyrrole moiety also showed single-digit nM IC50 values without having a cation-pi interaction with the Arg258 sidechain.
Collapse
Affiliation(s)
- Yuki Bessho
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tatsuo Akaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Yoshinori Hara
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Maki Yamakawa
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shingo Obika
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Genki Mori
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Minoru Ubukata
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Katsutaka Yasue
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yoshitomi Nakane
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yasuo Terasako
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Orita
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Satoki Doi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomoko Iwanaga
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Ayumi Fujishima
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hiroshi Ueno
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takahisa Motomura
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| |
Collapse
|
135
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
136
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
137
|
Liu W, Chen G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol Life Sci 2021; 78:8097-8108. [PMID: 34773132 PMCID: PMC11071932 DOI: 10.1007/s00018-021-04016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
All living organisms need energy to carry out their essential functions. The importance of energy metabolism is increasingly recognized in human pluripotent stem cells. Energy production is not only essential for cell survival and proliferation, but also critical for pluripotency and cell fate determination. Thus, energy metabolism is an important target in cellular regulation and stem cell applications. In this review, we will discuss key factors that influence energy metabolism and their association with stem cell functions.
Collapse
Affiliation(s)
- Weiwei Liu
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
138
|
Roayapalley PK, Dimmock JR, Contreras L, Balderrama KS, Aguilera RJ, Sakagami H, Amano S, Sharma RK, Das U. Design, Synthesis and Tumour-Selective Toxicity of Novel 1-[3-{3,5-Bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone Oximes and Related Quaternary Ammonium Salts. Molecules 2021; 26:7132. [PMID: 34885719 PMCID: PMC8659243 DOI: 10.3390/molecules26237132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
A novel series of 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes 3a-h and related quaternary ammonium salts 4a-h were prepared as candidate antineoplastic agents. Evaluation against neoplastic Ca9-22, HSC-2 and HSC-4 cells revealed the compounds in series 3 and 4 to be potent cytotoxins with submicromolar CC50 values in virtually all cases. In contrast, the compounds were less cytocidal towards HGF, HPLF and HPC non-malignant cells revealing their tumour-selective toxicity. Quantitative structure-activity relationships revealed that, in general, both cytotoxic potency and selectivity index figures increased as the magnitude of the Hammett sigma values rose. In addition, 3a-h are cytotoxic towards a number of leukemic and colon cancer cells. 4b,c lowered the mitochondrial membrane potential in CEM cells, and 4d induced transient G2/M accumulation in Ca9-22 cells. Five compounds, namely 3c,d and 4c-e, were identified as lead molecules that have drug-like properties.
Collapse
Affiliation(s)
- Praveen K. Roayapalley
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.R.D.); (U.D.)
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.R.D.); (U.D.)
| | - Lisett Contreras
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (L.C.); (K.S.B.); (R.J.A.)
| | - Karol S. Balderrama
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (L.C.); (K.S.B.); (R.J.A.)
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (L.C.); (K.S.B.); (R.J.A.)
| | - Hiroshi Sakagami
- Research Institute of Odontology, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.) (S.A.)
| | - Shigeru Amano
- Research Institute of Odontology, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.) (S.A.)
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Umashankar Das
- Drug Discovery and Development Research Cluster, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (J.R.D.); (U.D.)
| |
Collapse
|
139
|
Sen S, Sultana N, Shaffer SA, Thompson PR. Proximity-Dependent Labeling of Cysteines. J Am Chem Soc 2021; 143:19257-19261. [PMID: 34762412 DOI: 10.1021/jacs.1c07069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales (≤5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.
Collapse
Affiliation(s)
- Sudeshna Sen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nadia Sultana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury,Massachusetts 01545, United States
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury,Massachusetts 01545, United States
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States.,Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
140
|
Al-Azawi A, Sulaiman S, Arafat K, Yasin J, Nemmar A, Attoub S. Impact of Sodium Dichloroacetate Alone and in Combination Therapies on Lung Tumor Growth and Metastasis. Int J Mol Sci 2021; 22:ijms222212553. [PMID: 34830434 PMCID: PMC8624089 DOI: 10.3390/ijms222212553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming has been recognized as an essential emerging cancer hallmark. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been reported to have anti-cancer effects by reversing tumor-associated glycolysis. This study was performed to explore the anti-cancer potential of DCA in lung cancer alone and in combination with chemo- and targeted therapies using two non-small cell lung cancer (NSCLC) cell lines, namely, A549 and LNM35. DCA markedly caused a concentration- and time-dependent decrease in the viability and colony growth of A549 and LNM35 cells in vitro. DCA also reduced the growth of tumor xenografts in both a chick embryo chorioallantoic membrane and nude mice models in vivo. Furthermore, DCA decreased the angiogenic capacity of human umbilical vein endothelial cells in vitro. On the other hand, DCA did not inhibit the in vitro cellular migration and invasion and the in vivo incidence and growth of axillary lymph nodes metastases in nude mice. Treatment with DCA did not show any toxicity in chick embryos and nude mice. Finally, we demonstrated that DCA significantly enhanced the anti-cancer effect of cisplatin in LNM35. In addition, the combination of DCA with gefitinib or erlotinib leads to additive effects on the inhibition of LNM35 colony growth after seven days of treatment and to synergistic effects on the inhibition of A549 colony growth after 14 days of treatment. Collectively, this study demonstrates that DCA is a safe and promising therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Aya Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
| | - Javed Yasin
- Department of Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; (A.A.-A.); (S.S.); (K.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
141
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
142
|
Song H, Xing W, Shi X, Zhang T, Lou H, Fan P. Antitumor and toxicity study of mitochondria-targeted triptolide derivatives using triphenylphosphine (TPP +) as a carrier. Bioorg Med Chem 2021; 50:116466. [PMID: 34700239 DOI: 10.1016/j.bmc.2021.116466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023]
Abstract
Based on the higher mitochondrial membrane potential (Δψm) of tumor cells than normal cells, a mitochondria-targeting strategy using delocalized lipophilic cations as carriers is a promising way to improve the antitumor effect of small molecules and to reduce toxicity. Triptolide (TP) has a strong antitumor effect but is limited in the clinic due to high systemic toxicity. Mitochondria-targeted TP derivatives were designed and synthesized using triphenylphosphine cations as carriers. The optimal derivative not only maintained the antitumor activity of TP but also showed a tumor cell selectivity trend. Moreover, the optimal derivative increased the release of lactate dehydrogenase and the production of ROS, decreased Δψm, and arrested HepG2 cells in G0/G1 phase. In a zebrafish HepG2 xenograft tumor model, the inhibitory effect of the optimal derivative was comparable to that of TP, while it had no obvious toxic effect on multiple indicators in zebrafish at the test concentrations. This work provided some evidence to support the mitochondria-targeting strategy.
Collapse
Affiliation(s)
- Huina Song
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenlan Xing
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaojia Shi
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Tao Zhang
- Shandong Qidu Pharmaceutical Co. Ltd., Neuroprotective Drugs, Zibo 255400, PR China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
143
|
Cai H, Men H, Cao P, Zheng Y. Mechanism and prevention strategy of a bidirectional relationship between heart failure and cancer (Review). Exp Ther Med 2021; 22:1463. [PMID: 34737803 PMCID: PMC8561773 DOI: 10.3892/etm.2021.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and heart failure has been extensively studied in the last decade. These studies have focused on describing heart injury caused by certain cancer treatments, including radiotherapy, chemotherapy and targeted therapy. Previous studies have demonstrated a higher incidence of cancer in patients with heart failure. Heart failure enhances an over-activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, and subsequently promotes cancer development. Other studies have found that heart failure and cancer both have a common pathological origin, flanked by chronic inflammation in certain organs. The present review aims to summarize and describe the recent discoveries, suggested mechanisms and relationships between heart failure and cancer. The current review provides more ideas on clinical prevention strategies according to the pathological mechanism involved.
Collapse
Affiliation(s)
- He Cai
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongbo Men
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengyu Cao
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
144
|
Kasami C, Yamaguchi J, Inoue H. Guaiazulene derivative 1,2,3,4-tetrahydroazuleno[1,2-b] tropone reduces the production of ATP by inhibiting electron transfer complex II. FEBS Open Bio 2021; 11:2921-2932. [PMID: 34061471 PMCID: PMC8564332 DOI: 10.1002/2211-5463.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022] Open
Abstract
Molecularly targeted therapy has been used for treatment of various types of cancer. However, cancer cells often acquire resistance to molecularly targeted drugs that inhibit specific molecular abnormalities, such as constitutive activation of kinases. Even in cancer cells that have acquired resistance, enhanced anabolism, including the synthesis of nucleotides, amino acids and lipids, is common to normal cancer cells. Therefore, there is a renewed interest in effectively eliminating cancer cells by specifically targeting their abnormal energy metabolism. Multiple strategies are currently being developed for mitochondrial-targeted cancer therapy, with agents targeting oxidative phosphorylation, glycolysis, the tricarboxylic acid cycle and apoptosis. In this study, we found that one of the guaiazulene derivatives, namely, 1,2,3,4-tetrahydroazuleno[1,2-b] tropone (TAT), inhibited the proliferation of cancer cell lines stronger than that of normal cells. In addition, we showed that TAT inhibited energy production in cancer cell lines, resulting in apoptosis. Analyses done in cancer cell lines and in the animal model Caenorhabditis elegans suggested that TAT acts on the mitochondrial electron transfer complex II and suppresses cellular energy production by inhibiting oxidative phosphorylation across species. These results suggest that TAT could represent a novel anticancer agent that selectively targets mitochondria.
Collapse
Affiliation(s)
- Chieko Kasami
- Department of Applied BioscienceFaculty of Applied BioscienceKanagawa Institute of TechnologyAtsugiJapan
| | - Jun‐ichi Yamaguchi
- Department of Applied ChemistryFaculty of EngineeringKanagawa Institute of TechnologyAtsugiJapan
| | - Hideki Inoue
- Department of Applied BioscienceFaculty of Applied BioscienceKanagawa Institute of TechnologyAtsugiJapan
| |
Collapse
|
145
|
Padda J, Khalid K, Kakani V, Cooper AC, Jean-Charles G. Metabolic Acidosis in Leukemia. Cureus 2021; 13:e17732. [PMID: 34659946 PMCID: PMC8491631 DOI: 10.7759/cureus.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/05/2022] Open
Abstract
In 2020, the incidence of leukemia was 474,519 with 311,594 mortality worldwide. In 2021, the American Cancer Society (ACS) has estimated 61,090 new cases of leukemia to occur within the United States. It has also been reported that the most common cause of death in children from one to fourteen years old is oncological, with leukemia being the most frequent cause. A phenomenon known as the Warburg effect has been affiliated with cancer. The Warburg effect is a metabolic abnormality of lactic acidosis in malignancies, with most cases presenting as hematological malignancies such as leukemia. Although many theories have been formulated to clarify the role of the Warburg effect, the exact role still remains uncertain. Four suggested theories on why the Warburg effect happens to include cell signaling, adenosine triphosphate (ATP) synthesis, biosynthesis, and the tumor microenvironment. The Warburg effect occurs in leukemia with the help of enzymes such as pyruvate kinases M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), and fibroblast growth factor receptor 1 (FGFR1). In this literature, we explain the proposed hypotheses of the Warburg effect, along with the molecular mechanism of how leukemia is able to produce lactic acid, with the intent to better understand this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
146
|
Delineating the Switch between Senescence and Apoptosis in Cervical Cancer Cells under Ciclopirox Treatment. Cancers (Basel) 2021; 13:cancers13194995. [PMID: 34638479 PMCID: PMC8508512 DOI: 10.3390/cancers13194995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Novel treatment options for cervical cancer are urgently required. Ciclopirox (CPX), an iron chelator, has shown promising anti-tumorigenic potential in several preclinical tumor models, including cervical cancer cells. In these cells, CPX can induce apoptosis, a form of cell death, or senescence, an irreversible cellular growth arrest. These different phenotypic outcomes may influence therapy response. Here, we show that the decision of cervical cancer cells to induce apoptosis or senescence is strongly dependent on glucose availability: CPX induces apoptosis under limited glucose availability, whereas under increased glucose supply, CPX treatment results in senescence. Further, we link the pro-apoptotic and pro-senescent activities of CPX to its capacity to block oxidative phosphorylation and to chelate iron, respectively. In addition, we show that the combined treatment of CPX and glycolysis inhibitors blocks the proliferation of cervical cancer cells in a synergistic manner. Collectively, we provide novel insights into the anti-proliferative activities of CPX in cervical cancer cells, elucidate the cellular decision between apoptosis or senescence induction, and provide a rationale to combine CPX with glycolysis inhibitors. Abstract The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, proliferation studies by live-cell imaging and colony formation assays, senescence and apoptosis assays, and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors. Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators. Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator, respectively, and provide a rationale for combining CPX with glycolysis inhibitors.
Collapse
|
147
|
Lu L, Liu G, Lin C, Li K, He T, Zhang J, Luo Z, Cai K. Mitochondrial Metabolism Targeted Nanoplatform for Efficient Triple-Negative Breast Cancer Combination Therapy. Adv Healthc Mater 2021; 10:e2100978. [PMID: 34387391 DOI: 10.1002/adhm.202100978] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Tumor reprogram pathway of mitochondrial metabolism is an emerging approach for malignant tumor treatment, such as triple-negative breast cancer. In this study, a tumor/mitochondria cascaded targeting, adenosine-triphosphate (ATP) responsive nanocarrier of zeolitic imidazolate framework-90 (ZIF-90) for breast cancer combination therapy is reported. Atovaquone (AVO) and hemin are loaded into ZIF-90, then a peptide iRGD with tumor-targeting ability is modified on the ZIF-90 nanoplatform. Hemin can specifically degrade BTB and CNC homology1 (BACH1), resulting in the changes of mitochondrial metabolism, and AVO acts as the inhibitor of the electron transport chain (ETC). The degradation of BACH1 using hemin can effectively improve the anti-tumor efficiency of mitochondrial metabolism inhibitor AVO, by increasing dependency on mitochondrial respiration. This nanoplatform displays both tumor-targeting and mitochondria-targeting capacity with high level of ATP responsive drug release behavior. The specific characteristic of mitochondria-targeting ability of this nanoplatform can increase the accumulation of AVO in the mitochondria, and in turn, can effectively improve the inhibition of the ETC. Both in vitro and in vivo results reveal that this composite nanocarrier has excellent tumor inhibition ability with limited side effects. Accordingly, this study provides an attractive strategy in the mitochondrial metabolism for cancer targeted therapy.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Zhong Luo
- School of Life Science Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
148
|
Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS One 2021; 16:e0257403. [PMID: 34570803 PMCID: PMC8476037 DOI: 10.1371/journal.pone.0257403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
An important approach in tumor therapy is combining substances with different action mechanisms aiming to enhance the antineoplastic effect, decrease the therapeutic dosage, and avoid resistance mechanisms. Moreover, evaluating compounds already approved for the treatment of non-neoplastic diseases is promising for new antineoplastic therapies. Sodium dichloroacetate (DCA) reactivates oxidative phosphorylation in the cancer cell mitochondria, reducing apoptosis resistance in cancer cells. Furthermore, metformin inhibits the proliferation of tumor cells and CD133+ cancer -stem-like cells. In the present study, we evaluated the independent and synergistic effect of metformin and DCA on the metabolic activity, cell proliferation, and apoptosis of a canine prostate adenocarcinoma (Adcarc1258) and a transitional cell carcinoma cell line (TCC1506) in comparison to a primary canine fibroblast culture. Determining metformin uptake in tumor cells was performed by quantitative HPLC. Depending on the dosage, metformin as a single agent inhibited the metabolic activity and cell proliferation of the tumor cells, showing only minor effects on the fibroblasts. Furthermore, 1 mM metformin increased apoptosis over 96 h in the tumor cell lines but not in fibroblasts. Additionally, metformin uptake into the tumor cells in vitro was measurable by quantitative HPLC. Synergistic effects for the combination therapy were observed in both neoplastic cell lines as well as in the fibroblasts. Based on these results, metformin might be a promising therapeutic agent for canine urogenital tumors. Further studies on kinetics, toxicology, bioavailability, and application of metformin in dogs are necessary.
Collapse
|
149
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
150
|
Ruiz LM, Libedinsky A, Elorza AA. Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 2021; 8:711227. [PMID: 34504870 PMCID: PMC8421569 DOI: 10.3389/fmolb.2021.711227] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals, copper homeostasis is tightly regulated by the liver. However, cellular copper levels are tissue specific. Copper imbalances, either overload or deficiency, have been associated with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as tumor development and cancer aggressivity. Consistently, new pharmacological developments have been addressed to reduce or exacerbate copper levels as potential cancer therapies. This review goes over the copper source, distribution, cellular uptake, and its role in mitochondrial function, metabolic reprograming, and cancer biology, linking copper metabolism with the field of regenerative medicine and cancer.
Collapse
Affiliation(s)
- Lina M Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Allan Libedinsky
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|