101
|
Chang M, Wei Y, Liu D, Wang JX, Chen JF. A General Strategy for Instantaneous and Continuous Synthesis of Ultrasmall Metal-Organic Framework Nanoparticles. Angew Chem Int Ed Engl 2021; 60:26390-26396. [PMID: 34590398 DOI: 10.1002/anie.202112250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Ultrasmall metal-organic frameworks (MOFs) may generate unique properties to expand the scope of applications. However, the synthesis is still a great challenge. Herein, we propose a strategy to synthesize ultrasmall MOFs by high gravity technology. With the aid of tremendous intensification of molecular mixing and mass transfer in high-gravity field, six typical MOFs were obtained instantaneously in a continuous way. These samples are monodispersed with sub-5 nm in size, smaller than the previously reported values and even close to the length of one crystal unit cell. As a proof-of-concept, catalytic activity for Knoevenagel reaction can be significantly enhanced using ultrasmall ZIF-8. Conversion time of benzaldehyde was decreased by 94 % or 75 % compared to those using conventional or hierarchically porous ZIF-8. More importantly, this approach is readily scalable with the highest space-time yield for nano-MOFs, which may promote the convenient synthesis and practical applications of ultrasmall MOFs in large-scale.
Collapse
Affiliation(s)
- Miao Chang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
102
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
103
|
Zhao GQ, Long X, Hu J, Zou J, Jiao FP. NiFe-Layered Double Hydroxides as a Novel Hole Repository Layer for Reinforced Visible-Light Photocatalytic Activity for Degradation of Refractory Pollutants. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| |
Collapse
|
104
|
Hang X, Xue Y, Cheng Y, Du M, Du L, Pang H. From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorg Chem 2021; 60:13168-13176. [PMID: 34410123 DOI: 10.1021/acs.inorgchem.1c01561] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling the growth of metal-organic frameworks (MOFs) at the micro-/nanoscopic scale will result in new physical properties and novel functions into the materials without changing the chemical identities and the characteristic features of the MOFs themselves. Herein, we report a facile approach to synthesize a series of MOFs [Co-MOF, CoxNiy-MOFs (x and y represent the molar ratio of Co2+ and Ni2+ and x/y = 1:1, 1:5, 1:10, 1:15, and 1:20), and Ni-MOF] with a one-dimensional micro-/nanoscaled rod-like architecture. From Co-MOF to CoxNiy-MOFs to Ni-MOF, the diameters of the rods turn to be spindly with the increase of Ni2+ content which will facilitate the supercapacitor performances. Interestingly, Co1Ni20-MOF exhibits a highest specific capacity of 597 F g-1 at 0.5 A g-1 and excellent cycle performance (retained 93.59% after 4000 cycles) among these MOF materials owing to its micro-/nanorod structure with a smaller diameter and the synergy effect between the optimum molar ratio of Co2+ and Ni2+.
Collapse
Affiliation(s)
- Xinxin Hang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Yadan Xue
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Yan Cheng
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
105
|
Younes HA, Taha M, Mahmoud R, Mahmoud HM, Abdelhameed RM. High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: Experimental and theoretical studies. J Colloid Interface Sci 2021; 607:334-346. [PMID: 34509108 DOI: 10.1016/j.jcis.2021.08.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023]
Abstract
Water pollution by pharmaceuticals is currently a great concern due to their ecological risks. In this study, zirconium-based metal-organic frameworks (UiO-66-(COOH)2) were used for removal of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DCF). They have been synthesized using a hydrothermal method. Copper and iron metal ions were incorporated in the framework using post-synthetic modification techniques to produce UiO-66-(COOCu)2 and UiO-66-(COOFe)2. The resulted MOFs were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning/transmission electron microscopy, and Brunauer-Emmett-Teller. The effects of the pH, initial concentration, and adsorption time on the adsorption process of diclofenac were studied. The maximum adsorption capacities obtained on UiO-66-(COOH)2, UiO-66-(COOCu)2, and UiO-66-(COOFe)2 were 480.5, 624.3, and 769.1 mg/g, respectively. The adsorption of diclofenac was found to be better fitted with Langmuir isotherm and pseudo-second-order kinetic models. The adsorption mechanism was investigated using XRD, FT-IR, density functional theory and Monte Carlo simulation, in which the latter method was used to calculate the adsorption energies and determine the possible interactions between diclofenac and the adsorbents. UiO-66-(COOH)2, UiO-66-(COOCu)2, and UiO-66-(COOFe)2 exhibited good recyclability for diclofenac removal, which confirms the sustainability of these materials.
Collapse
Affiliation(s)
- Heba A Younes
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Hamada M Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, 33 EL Buhouth St, Dokki, Giza 12622, Egypt
| |
Collapse
|
106
|
Liu Y, Wang J, Imaz I, Maspoch D. Assembly of Colloidal Clusters Driven by the Polyhedral Shape of Metal-Organic Framework Particles. J Am Chem Soc 2021; 143:12943-12947. [PMID: 34383504 PMCID: PMC8391935 DOI: 10.1021/jacs.1c05363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Control of the assembly
of colloidal particles into discrete or
higher-dimensional architectures is important for the design of myriad
materials, including plasmonic sensing systems and photonic crystals.
Here, we report a new approach that uses the polyhedral shape of metal–organic-framework
(MOF) particles to direct the assembly of colloidal clusters. This
approach is based on controlling the attachment of a single spherical
polystyrene particle on each face of a polyhedral particle via colloidal
fusion synthesis, so that the polyhedral shape defines the final coordination
number, which is equal to the number of faces, and geometry of the
assembled colloidal cluster. As a proof of concept, we assembled six-coordinated
(6-c) octahedral and 8-c cubic clusters using cubic ZIF-8 and octahedral
UiO-66 core particles. Moreover, we extended this approach to synthesize
a highly coordinated 12-c cuboctahedral cluster from a rhombic dodecahedral
ZIF-8 particle. We anticipate that the synthesized colloidal clusters
could be further evolved into spherical core–shell MOF@polystyrene
particles under conditions that promote a higher fusion degree, thus
expanding the methods available for the synthesis of MOF–polymer
composites.
Collapse
Affiliation(s)
- Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jiemin Wang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
107
|
Almáši M. A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1965130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, Košice, 041 54, Slovak Republic
| |
Collapse
|
108
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
109
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
110
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Jahre retikuläre Chemie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ralph Freund
- Lehrstuhl für Festkörperchemie Universität Augsburg Deutschland
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University Stanford USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
111
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Years of Reticular Chemistry. Angew Chem Int Ed Engl 2021; 60:23946-23974. [DOI: 10.1002/anie.202101644] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg 86159 Augsburg Germany
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
112
|
Stanley PM, Parkulab M, Rieger B, Warnan J, Fischer RA. Understanding entrapped molecular photosystem and metal-organic framework synergy for improved solar fuel production. Faraday Discuss 2021; 231:281-297. [PMID: 34240093 DOI: 10.1039/d1fd00009h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial photosystems assembled from molecular complexes, such as the photocatalyst fac-ReBr(CO)3(4,4'-dcbpy) (dcbpy = dicarboxy-2,2'-bipyridine) and the photosensitiser Ru(bpy)2(5,5'-dcbpy)Cl2 (bpy = 2,2'-bipyridine), are a wide-spread approach for solar fuel production. Recently metal-organic framework (MOF) entrapping of such complexes was demonstrated as a promising concept for catalyst stabilisation and reaction environment optimisation in colloidal-based CO2 reduction. Building on this strategy, here we examined the influence of MIL-101-NH2(Al) MOF particle size, the electron donor source, and the presence of an organic base on the photocatalytic CO2-to-CO reduction performance, and the differences to homogeneous systems. A linear relation between smaller scaffold particle size and higher photocatalytic activity, longer system lifetimes for benign electron donors, and increased turnover numbers (TONs) with certain additive organic bases, were determined. This enabled understanding of key molecular catalysis phenomena and synergies in the nanoreactor-like host-guest assembly, and yielded TONs of ∼4300 over 96 h of photocatalysis under optimised conditions, surpassing homogeneous TON values and lifetimes.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany. and WACKER-Chair of Macromolecular Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany
| | - Mykhaylo Parkulab
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany.
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany.
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, Garching, 85787, Germany.
| |
Collapse
|
113
|
Kong XJ, He T, Zhou J, Zhao C, Li TC, Wu XQ, Wang K, Li JR. In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005357. [PMID: 33615728 DOI: 10.1002/smll.202005357] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Despite numerous inherent merits of metal-organic frameworks (MOFs), structural fragility has imposed great restrictions on their wider involvement in many applications, such as in catalysis. Herein, a strategy for enhancing stability and enabling functionality in a labile Zr(IV)-MOF has been proposed by in situ porphyrin substitution. A size- and geometry-matched robust linear porphyrin ligand 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP2- ) is selected to replace the 4,4'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)dibenzoate (NDIDB2- ) ligand in the synthesis of BUT-109(Zr), affording BUT-110 with varied porphyrin contents. Compared to BUT-109(Zr), the chemical stability of BUT-110 series is greatly improved. Metalloporphyrin incorporation endows BUT-110 MOFs with high catalytic activity in the photoreduction of CO2 , in the absence of photosensitizers. By tuning the metal species and porphyrin contents in BUT-110, the resulting BUT-110-50%-Co is demonstrated to be a good photocatalyst for selective CO2 -to-CO reduction, via balancing the chemical stability, photocatalytic efficiency, and synthetic cost. This work highlights the advantages of in situ ligand substitution for MOF modification, by which uniform distribution and high content of the incoming ligand are accessible in the resulting MOFs. More importantly, it provides a promising approach to convert unstable MOFs, which mainly constitute the vast MOF database but have always been neglected, into robust functional materials.
Collapse
Affiliation(s)
- Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian Zhou
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chen Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tong-Chuan Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xue-Qian Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
114
|
Abramenko N, Deyko G, Abkhalimov E, Isaeva V, Pelgunova L, Krysanov E, Kustov L. Acute Toxicity of Cu-MOF Nanoparticles (nanoHKUST-1) towards Embryos and Adult Zebrafish. Int J Mol Sci 2021; 22:ijms22115568. [PMID: 34070324 PMCID: PMC8197559 DOI: 10.3390/ijms22115568] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Metal-organic frameworks (MOFs) demonstrate unique properties, which are prospective for drug delivery, catalysis, and gas separation, but their biomedical applications might be limited due to their obscure interactions with the environment and humans. It is important to understand their toxic effect on nature before their wide practical application. In this study, HKUST-1 nanoparticles (Cu-nanoMOF, Cu3(btc)2, btc = benzene-1,3,5-tricarboxylate) were synthesized by the microwave (MW)-assisted ionothermal method and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) techniques. The embryotoxicity and acute toxicity of HKUST-1 towards embryos and adult zebrafish were investigated. To gain a better understanding of the effects of Cu-MOF particles towards Danio rerio (D. rerio) embryos were exposed to HKUST-1 nanoparticles (NPs) and Cu2+ ions (CuSO4). Cu2+ ions showed a higher toxic effect towards fish compared with Cu-MOF NPs for D. rerio. Both forms of fish were sensitive to the presence of HKUST-1 NPs. Estimated LC50 values were 2.132 mg/L and 1.500 mg/L for zebrafish embryos and adults, respectively. During 96 h of exposure, the release of copper ions in a stock solution and accumulation of copper after 96 h were measured in the internal organs of adult fishes. Uptake examination of the major internal organs did not show any concentration dependency. An increase in the number of copper ions in the test medium was found on the first day of exposure. Toxicity was largely restricted to copper release from HKUST-1 nanomaterials structure into solution.
Collapse
Affiliation(s)
- Natalia Abramenko
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Gregory Deyko
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
| | - Evgeny Abkhalimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninsky Prospect, 31-4, Moscow 119071, Russia;
| | - Vera Isaeva
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- National Science and Technology University MISiS, Leninsky Prospekt 4, Moscow 119071, Russia
| | - Lyubov Pelgunova
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Eugeny Krysanov
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Leonid Kustov
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- National Science and Technology University MISiS, Leninsky Prospekt 4, Moscow 119071, Russia
- Chemistry Department, Moscow State University, Leninskie Gory 1, bldg. 3, Moscow 119991, Russia
- Correspondence: or
| |
Collapse
|
115
|
Guo X, Liu L, Xiao Y, Qi Y, Duan C, Zhang F. Band gap engineering of metal-organic frameworks for solar fuel productions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
116
|
Wu G, Zhou H, Fu Z, Li W, Xiu J, Yao M, Li Q, Xu G. MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo‐Dong Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Hai‐Lun Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Zhi‐Hua Fu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Wen‐Hua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Jing‐Wei Xiu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Ming‐Shui Yao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Qiao‐hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
117
|
Rosales-Vázquez LD, Dorazco-González A, Sánchez-Mendieta V. Efficient chemosensors for toxic pollutants based on photoluminescent Zn(ii) and Cd(ii) metal-organic networks. Dalton Trans 2021; 50:4470-4485. [PMID: 33877166 DOI: 10.1039/d0dt04403b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.
Collapse
Affiliation(s)
- Luis D Rosales-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | | | | |
Collapse
|
118
|
|
119
|
Ehrling S, Miura H, Senkovska I, Kaskel S. From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
120
|
Wu G, Zhou H, Fu Z, Li W, Xiu J, Yao M, Li Q, Xu G. MOF Nanosheet Reconstructed Two‐Dimensional Bionic Nanochannel for Protonic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021; 60:9931-9935. [PMID: 33591574 DOI: 10.1002/anie.202100356] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Guo‐Dong Wu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Hai‐Lun Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Zhi‐Hua Fu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Wen‐Hua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Jing‐Wei Xiu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Ming‐Shui Yao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Qiao‐hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
121
|
Chen J, Zhang Y, Chen X, Dai S, Bao Z, Yang Q, Ren Q, Zhang Z. Cooperative Interplay of Brønsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10845-10854. [PMID: 33648335 DOI: 10.1021/acsami.0c20369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-dehydrogenative coupling (CDC) is an effective tool for carbon-carbon bond formation in chemical synthesis. Herein, we report a metal-organic framework (MOF) possessing dual Lewis acidic Cr sites and sulfonic acid sites (MIL-101(Cr)-SO3H) as an efficient catalytic material for direct cross-coupling of xanthene and different nucleophiles using O2 as the oxidant. The highly porous structure of MIL-101(Cr)-SO3H enables the free access of reactants to the catalytic active sites inside MOF pores. Kinetic studies indicated that the Cr sites of MOF accelerate the rate-limiting autoxidation reaction of xanthene, which synergistically work with the sulfonic acid group on MOF ligands in promoting the CDC reactions. Besides, the catalytic system shows excellent functional group compatibility, and a variety of valuable xanthene derivatives were synthesized with satisfactory yields. Furthermore, MIL-101(Cr)-SO3H can be reused and its catalytic activity and crystal structure remain after six consecutive runs.
Collapse
Affiliation(s)
- Jingwen Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Yuanyuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Xiaoling Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Siyun Dai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| |
Collapse
|
122
|
Li B, Cao H, Zheng J, Ni B, Lu X, Tian X, Tian Y, Li D. Click Modification of a Metal-Organic Framework for Two-Photon Photodynamic Therapy with Near-Infrared Excitation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9739-9747. [PMID: 33617221 DOI: 10.1021/acsami.1c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploitation of effective strategies to develop materials bearing deep tissue focal fluorescence imaging capacity and excellent reactive oxygen species (ROS) generation ability is of great interest to address the high-priority demand of photodynamic therapy (PDT). Therefore, we use a rational strategy to fabricate a two-photon-active metal-organic framework via a click reaction (PCN-58-Ps). Moreover, PCN-58-Ps is capped with hyaluronic acid through coordination to obtain cancer cell-specific targeting properties. As a result, the optimized composite PCN-58-Ps-HA exhibits considerable two-photon activity (upon laser excitation at a wavelength of 910 nm) and excellent light-triggered ROS (1O2 and O2•-) generation ability. In summary, the interplay of these two critical factors within the PCN-58-Ps-HA framework gives rise to near-infrared light-activated two-photon PDT for deep tissue cancer imaging and treatment, which has great potential for future clinical applications.
Collapse
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Bo Ni
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xin Lu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
123
|
Liang Z, Guo H, Zhou G, Guo K, Wang B, Lei H, Zhang W, Zheng H, Apfel U, Cao R. Metal–Organic‐Framework‐Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Energy Division Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
124
|
Liang Z, Guo H, Zhou G, Guo K, Wang B, Lei H, Zhang W, Zheng H, Apfel UP, Cao R. Metal-Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:8472-8476. [PMID: 33484092 DOI: 10.1002/anie.202016024] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Synthesizing molecule@support hybrids is appealing to improve molecular electrocatalysis. We report herein metal-organic framework (MOF)-supported Co porphyrins for the oxygen reduction reaction (ORR) with improved activity and selectivity. Co porphyrins can be grafted on MOF surfaces through ligand exchange. A variety of porphyrin@MOF hybrids were made using this method. Grafted Co porphyrins showed boosted ORR activity with large (>70 mV) anodic shift of the half-wave potential compared to ungrafted porphyrins. By using active MOFs for peroxide reduction, the number of electrons transferred per O2 increased from 2.65 to 3.70, showing significantly improved selectivity for the 4e ORR. It is demonstrated that H2 O2 generated from O2 reduction at Co porphyrins is further reduced at MOF surfaces, leading to improved 4e ORR. As a practical demonstration, these hybrids were used as air electrode catalysts in Zn-air batteries, which exhibited equal performance to that with Pt-based materials.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Energy Division, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
125
|
Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth AJ, Liu Y, Majewski MB, Katz MJ, Mondloch JE, Farha OK. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord Chem Rev 2021; 429:213615. [PMID: 33678810 PMCID: PMC7932473 DOI: 10.1016/j.ccr.2020.213615] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Mohsen Shayan
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Ellan K. Berdichevsky
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Edgar K. Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Paola Marino
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zvart Ajoyan
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Marek B. Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Michael J. Katz
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph E. Mondloch
- Department of Chemistry, University of Wisconsin-Stevens Point, 2100 Main Street, Stevens Point, WI 54481, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
126
|
Yang Z, Zhai X, Zou X, Shi J, Huang X, Li Z, Gong Y, Holmes M, Povey M, Xiao J. Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: Application in monitoring crucian spoilage in smart packaging. Food Chem 2021; 336:127634. [PMID: 32777654 DOI: 10.1016/j.foodchem.2020.127634] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/29/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Bilayer colorimetric films were developed for monitoring fish spoilage by using gelatin (GN) incorporated with ZnO nanoparticles as the upper layer (GN-ZnO), and gellan gum (GG) incorporated with mulberry anthocyanins (MBA) as the lower layer (GG-MBA). The color stability of the bilayer colorimetric films under visible and ultraviolet light was improved with the increase of ZnO nanoparticles content. Meanwhile, the bilayer films had good NH3 sensitivity. The limit of detection of the GG-MBA/GN-2.0% ZnO film to NH3 was 0.01 mM. The electrochemical writing ability of the bilayer films was also identified, indicating the feasibility of inks-free printing on biopolymer films. Finally, the GG-MBA/GN-2.0% ZnO film with an electrochemical writing pattern was used to monitor crucian spoilage. The GG-MBA/GN-2.0% ZnO film with electrochemical writing pattern showed visible color changes with the crucian spoilage. In conclusion, the bilayer colorimetric film was expected to be a good fish spoilage indicator in smart packaging.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu, University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China
| |
Collapse
|
127
|
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01153c] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This comprehensive review systematically summarizes the luminescence response mode and chemical sensing mechanism for lanthanide-functionalized MOF hybrids (abbreviated as LnFMOFH).
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- School of Materials Science and Engineering
| |
Collapse
|
128
|
Yao Y, Huang K, Liu Y, Luo T, Tian G, Li J, Zhang S, Chang G, Yang X. A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00170a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a typical process-intensive strategy, a tandem reaction driven by a multifunctional catalyst is a paragon of the green catalytic process.
Collapse
Affiliation(s)
- Yao Yao
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Kexin Huang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Yi Liu
- School of Mechanical and Electronic
- Engineering Wuhan Donghu University
- Wuhan 430212
- China
| | - Tingting Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jiaxin Li
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Song Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Ganggang Chang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
129
|
Jiang X, Hu J, Zhang Y, Zeng X, Long Z. Fast synthesis of bimetallic metal-organic frameworks based on dielectric barrier discharge for analytical atomic spectrometry and ratiometric fluorescent sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
130
|
Nesterova OV, Pombeiro AJL, Nesterov DS. Novel H-Bonded Synthons in Copper Supramolecular Frameworks with Aminoethylpiperazine-Based Ligands. Synthesis, Structure and Catalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5435. [PMID: 33260358 PMCID: PMC7731324 DOI: 10.3390/ma13235435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
New Schiff base complexes [Cu2(HL1)(L1)(N3)3]∙2H2O (1) and [Cu2L2(N3)2]∙H2O (2) were synthesized. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction analysis. The HL1 ligand results from the condensation of salicylaldehyde and 1-(2-aminoethyl)piperazine, while a new organic ligand, H2L2, was formed by the dimerization of HL1 via a coupling of two piperazine rings of HL1 on a carbon atom coming from DMF solvent. The dinuclear building units in 1 and 2 are linked into complex supramolecular networks through hydrogen and coordination bondings, resulting in 2D and 1D architectures, respectively. Single-point and broken-symmetry DFT calculations disclosed negligible singlet-triplet splittings within the dinuclear copper fragments in 1 and 2. Catalytic studies showed a remarkable activity of 1 and 2 towards cyclohexane oxidation with H2O2 in the presence of nitric acid and pyridine as promoters and under mild conditions (yield of products up to 21%). Coordination compound 1 also acts as an active catalyst in the intermolecular coupling of cyclohexane with benzamide using di-tert-butyl peroxide (tBuOOtBu) as a terminal oxidant. Conversion of benzamide at 55% was observed after 24 h reaction time. By-product patterns and plausible reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (O.V.N.); (A.J.L.P.)
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., 117198 Moscow, Russia
| |
Collapse
|
131
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
132
|
Quang TT, Truong NX, Minh TH, Tue NN, Ly GTP. Enhanced Photocatalytic Degradation of MB Under Visible Light Using the Modified MIL-53(Fe). Top Catal 2020. [DOI: 10.1007/s11244-020-01364-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
133
|
Li X, Lu S, Tu D, Zheng W, Chen X. Luminescent lanthanide metal-organic framework nanoprobes: from fundamentals to bioapplications. NANOSCALE 2020; 12:15021-15035. [PMID: 32644078 DOI: 10.1039/d0nr03373a] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs), a unique type of porous material characterized by high porosity, large internal surface area and remarkable structural tunability, have emerged as very attractive functional materials for a variety of applications. As a promising subclass of MOFs, lanthanide metal-organic frameworks (Ln-MOFs) integrate the unique advantages of MOFs and the intrinsic features of lanthanide ions, such as sharp emission bands, long luminescent lifetimes, large Stokes shifts, high color purity and high resistance to photobleaching. In this minireview, we provide a brief overview of the most recent advances in luminescent Ln-MOF nanoprobes, which covers from their chemical and physical fundamentals to bioapplications, including their synthetic strategies, optical properties and promising bioapplications in biodetection, bioimaging and therapy. Finally, some of the most important emerging trends and future efforts toward this rapidly evolving field are also envisioned.
Collapse
Affiliation(s)
- Xingjun Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, State Key Laboratory of Structural Chemistry, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
134
|
Qin JH, Zhang H, Sun P, Huang YD, Shen Q, Yang XG, Ma LF. Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Trans 2020; 49:17772-17778. [DOI: 10.1039/d0dt03031g] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile fabrication of porphyrin-integrated MOF nanosheets as efficient photosensitizers for photodynamic therapy (PDT) is presented.
Collapse
Affiliation(s)
- Jian-Hua Qin
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Hua Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ya-Dan Huang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| |
Collapse
|