101
|
Kumar D, Embers M, Mather TN, Karim S. Is selenoprotein K required for Borrelia burgdorferi infection within the tick vector Ixodes scapularis? Parasit Vectors 2019; 12:289. [PMID: 31174589 PMCID: PMC6555942 DOI: 10.1186/s13071-019-3548-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tick selenoproteins are involved in regulating oxidative and endoplasmic reticulum stress during prolonged tick feeding on mammalian hosts. How selenoproteins are activated upon tick-borne pathogen infection is yet to be defined. Methods To examine the functional role of selenoprotein K in Borrelia burgdorferi infection within the tick host Ixodes scapularis, RNA interference (RNAi)-based gene silencing was performed. Results Selenoprotein K is an endoplasmic reticulum (ER)-resident protein and a component of the ERAD complex involved in ER homeostasis. A qRT-PCR assay revealed the significant upregulation of selenogene K (selenoK) expression in B. burgdorferi-infected tick tissues. Silencing of the selenoK transcript significantly depleted B. burgdorferi copies within the infected tick tissues. Upon selenoK knockdown, another component of the ERAD complex, selenoprotein S (selenoS), was significantly upregulated, suggesting a compensatory mechanism to maintain ER homeostasis within the tick tissues. Knockdown of selenoK also upregulated ER stress-related unfolded protein response (UPR) pathway components, ATF6 and EIF2. Conclusions The exact mechanisms that contribute to depletion of B. burgdorferi upon selenoK knockdown is yet to be determined, but this study suggests that selenoK may play a vital role in the survival of B. burgdorferi within the tick host. Electronic supplementary material The online version of this article (10.1186/s13071-019-3548-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Monica Embers
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, 70455, USA
| | - Thomas N Mather
- Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shahid Karim
- Department of of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
102
|
Fedirko V, Jenab M, Méplan C, Jones JS, Zhu W, Schomburg L, Siddiq A, Hybsier S, Overvad K, Tjønneland A, Omichessan H, Perduca V, Boutron-Ruault MC, Kühn T, Katzke V, Aleksandrova K, Trichopoulou A, Karakatsani A, Kotanidou A, Tumino R, Panico S, Masala G, Agnoli C, Naccarati A, Bueno-de-Mesquita B, Vermeulen RCH, Weiderpass E, Skeie G, Nøst TH, Lujan-Barroso L, Quirós JR, Huerta JM, Rodríguez-Barranco M, Barricarte A, Gylling B, Harlid S, Bradbury KE, Wareham N, Khaw KT, Gunter M, Murphy N, Freisling H, Tsilidis K, Aune D, Riboli E, Hesketh JE, Hughes DJ. Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status. Nutrients 2019; 11:E935. [PMID: 31027226 PMCID: PMC6520820 DOI: 10.3390/nu11040935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.
Collapse
Affiliation(s)
- Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Catherine Méplan
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Jeb S Jones
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Wanzhe Zhu
- Department of Epidemiology, Rollins School of Public Health & Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, University Medical School, D-13353 Berlin, Germany.
| | - Afshan Siddiq
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
| | - Sandra Hybsier
- Institute for Experimental Endocrinology, University Medical School, D-13353 Berlin, Germany.
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, 8000 Aarhus, Denmark.
| | - Anne Tjønneland
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, DK 2100 Copenhagen, Denmark.
| | - Hanane Omichessan
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
| | - Vittorio Perduca
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
- Laboratory of Applied Mathematics, MAP5 (UMR CNRS 8145), University of Paris Descartes, 75270 Paris, France.
| | - Marie-Christine Boutron-Ruault
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, 94805 Villejuif, France.
- Centre for Research in Epidemiology and Population Health (CESP), F-94805 Gustave Roussy, Villejuif, France.
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany.
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany.
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | | | - Anna Karakatsani
- Hellenic Health Foundation, 115 27 Athens, Greece.
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, 106 79 Haidari, Greece.
| | - Anastasia Kotanidou
- Hellenic Health Foundation, 115 27 Athens, Greece.
- 1st Department of Critical Care Medicine and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, 106 76 Athens, Greece.
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Civic M.P. Arezzo Hospital, 97100 Ragusa, Italy.
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, 80138 Naples, Italy.
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, 50141 Florence, Italy.
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, IRCCS Foundation National Cancer Institute, 20133 Milan, Italy.
| | - Alessio Naccarati
- Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) Torino, 10126 Torino, Italy.
| | - Bas Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands.
- Department of Gastroenterology and Hepatology, University Medical Centre, 3584 CX Utrecht, The Netherlands.
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Roel C H Vermeulen
- Institute of Risk Assessment Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands.
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, N-0304 Oslo, Norway.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm, Sweden.
- Genetic Epidemiology Group, Folkhälsan Research Center, and Faculty of Medicine, Helsinki University, 00014 Helsinki, Finland.
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Guri Skeie
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Therese Haugdahl Nøst
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - J Ramón Quirós
- EPIC Asturias, Public Health Directorate, 33006 Oviedo, Asturias, Spain.
| | - José María Huerta
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30008 Murcia, Spain.
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
| | - Miguel Rodríguez-Barranco
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
- Andalucia School of Public Health, Institute for Biosanitary Research, University Hospital of Granada, University of Granada, 18011 Granada, Spain.
| | - Aurelio Barricarte
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain.
- Epidemiology, Prevention and Promotion Health Service, Navarra Public Health Institute, 31003 Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain.
| | - Björn Gylling
- Department of Medical Biosciences, Pathology, Umea University, 901 87 Umea, Sweden.
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umea University, 901 87 Umea, Sweden.
| | - Kathryn E Bradbury
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK.
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, CB2 0QQ Cambridge, UK.
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France.
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45110 Ioannina, Greece.
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
- Department of Nutrition, Bjørknes University College, 0456 Oslo, Norway.
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0372 Oslo, Norway.
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London W2 1PG, UK.
| | - John E Hesketh
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
103
|
SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Redox Biol 2019; 24:101176. [PMID: 30921636 PMCID: PMC6438913 DOI: 10.1016/j.redox.2019.101176] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.
Collapse
|
104
|
Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca 2+ signaling in cell survival and death. Cell Calcium 2019; 79:89-97. [PMID: 30889512 DOI: 10.1016/j.ceca.2019.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Physiological signaling by reactive oxygen species (ROS) and their pathophysiological role in cell death are well recognized. This review focuses on two ROS targets that are key to local Ca2+ signaling at the ER/mitochondrial interface - notably, inositol trisphosphate receptors (IP3Rs) and the mitochondrial calcium uniporter (MCU). Both transport systems are central to molecular mechanisms in cell survival and death. Methods for the measurement of the redox state of these proteins and for the detection of ROS nanodomains are described. Recent results on the redox regulation of these proteins are reviewed.
Collapse
Affiliation(s)
- Suresh K Joseph
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - David M Booth
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael P Young
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
105
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
106
|
Rosa M, Alfonsina G, Sandra I, Loubna B, Serena L, Yamine MB, Mariacristina F, Carmine R, Tommaso A, Youssef A, Carmela CM. Selenoprotein T as a new positive inotrope in the goldfish Carassius auratus. J Exp Biol 2019; 222:jeb.201202. [DOI: 10.1242/jeb.201202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Selenoprotein T (SELENOT) is a thioredoxin-like protein, which mediates oxidoreductase functions via its redox active motif Cys-X-X-Sec. In mammals, SELENOT is expressed during ontogenesis and progressively decreases in adult tissues. In the heart, it is re-expressed after ischemia and induces cardioprotection against ischemia/reperfusion (I/R) injury. SELENOT is present in teleost fish, including the goldfish Carassius auratus. This study aimed to evaluate the cardiac expression of SELENOT, and the effects of exogenous PSELT (a 43-52 SELENOT derived-peptide) on the heart function of C. auratus, a hypoxia tolerance fish model. We found that SELENOT was expressed in cardiac extracts of juvenile and adult fish, located in the sarcoplasmic reticulum (SR) together with calsequestrin-2. Expression increased under acute hypoxia. On ex vivo isolated and perfused goldfish heart preparations, under normoxia, PSELT dose-dependently increased Stroke Volume (SV), Cardiac Output (Q̇), and Stroke Work (SW), by involving cAMP, PKA, L-type calcium channels, SERCA2a pumps, and pAkt. Under hypoxia, PSELT did not affect myocardial contractility. Only at higher concentrations (10−8 -10−7 M) an increase of SV and Q̇ was observed. It also reduced the cardiac expression of 3-NT, a tissue marker of nitrosative stress which increases under low oxygen availability. These data are the first to propose SELENOT 43-52, PSELT, as a cardiac modulator in fish, with a potential protective role under hypoxia.
Collapse
Affiliation(s)
- Mazza Rosa
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Gattuso Alfonsina
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Imbrogno Sandra
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Boukhzar Loubna
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie, Normandie University, UNIROUEN, INSERM, Rouen, France
| | - Leo Serena
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Mallouki Ben Yamine
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie, Normandie University, UNIROUEN, INSERM, Rouen, France
| | - Filice Mariacristina
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Rocca Carmine
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Angelone Tommaso
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Anouar Youssef
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie, Normandie University, UNIROUEN, INSERM, Rouen, France
| | - Cerra Maria Carmela
- Laboratory of Organ and System Physiology, Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
107
|
Addinsall AB, Martin SD, Collier F, Conlan XA, Foletta VC, Stupka N. Differential regulation of cellular stress responses by the endoplasmic reticulum-resident Selenoprotein S (Seps1) in proliferating myoblasts versus myotubes. Physiol Rep 2018; 6:e13926. [PMID: 30557449 PMCID: PMC6296459 DOI: 10.14814/phy2.13926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
The antioxidant Selenoprotein S (Seps1, Selenos) is an endoplasmic reticulum (ER)-resident protein associated with metabolic and inflammatory disease. While Seps1 is highly expressed in skeletal muscle, its mechanistic role as an antioxidant in skeletal muscle cells is not well characterized. In C2C12 myotubes treated with palmitate for 24 h, endogenous Seps1 protein expression was upregulated twofold. Two different siRNA constructs were used to investigate whether decreased levels of Seps1 exacerbated lipid-induced oxidative and ER stress in C2C12 myotubes and myoblasts, which differ with regards to cell cycle state and metabolic phenotype. In myoblasts, Seps1 protein knockdown of ~50% or ~75% exacerbated cellular stress responses in the presence of palmitate; as indicated by decreased cell viability and proliferation, higher H2 O2 levels, a lower reduced to oxidized glutathione (GSH:GSSG) ratio, and enhanced gene expression of ER and oxidative stress markers. Even in the absence of palmitate, Seps1 knockdown increased oxidative stress in myoblasts. Whereas, in myotubes in the presence of palmitate, a ~50% knockdown of Seps1 was associated with a trend toward a marginal (3-5%) decrease in viability (P = 0.05), decreased cellular ROS levels, and a reduced mRNA transcript abundance of the cellular stress marker thioredoxin inhibitory binding protein (Txnip). Furthermore, no enhancement of gene markers of ER stress was observed in palmitate-treated myotubes in response to Seps1 knockdown. In conclusion, reduced Seps1 levels exacerbate nutrient-induced cellular stress responses to a greater extent in glycolytic, proliferating myoblasts than in oxidative, differentiated myotubes, thus demonstrating the importance of cell phenotype to Seps1 function.
Collapse
Affiliation(s)
- Alex B. Addinsall
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| | - Sheree D. Martin
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| | - Fiona Collier
- GCEID, University HospitalBarwon HealthGeelongAustralia
- School of MedicineDeakin UniversityGeelongAustralia
| | - Xavier A. Conlan
- Centre for Chemistry and BiotechnologySchool of Life and Environmental SciencesFaculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongAustralia
| | - Victoria C. Foletta
- Institute for Physical Activity and Nutrition (IPAN)School of Exercise and Nutrition SciencesDeakin UniversityGeelongAustralia
| | - Nicole Stupka
- Centre for Molecular and Medical ResearchSchool of MedicineDeakin UniversityGeelongAustralia
| |
Collapse
|
108
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
109
|
Abstract
The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system. These two cell populations are anorexigenic neurons expressing proopiomelanocortin (POMC) and orexigenic neurons that express agouti-related peptide (AGRP). Several important studies have demonstrated that reactive oxygen species and endoplasmic reticulum stress significantly impact these hypothalamic neuronal populations that regulate global energy metabolism. Reactive oxygen species and redox homeostasis are influenced by selenoproteins, an essential class of proteins that incorporate selenium co-translationally in the form of the 21st amino acid, selenocysteine. Levels of these proteins are regulated by dietary selenium intake and they are widely expressed in the brain. Of additional relevance, selenium supplementation has been linked to metabolic alterations in both animal and human studies. Recent evidence also indicates that hypothalamic selenoproteins are significant modulators of energy metabolism in both neurons and tanycytes, a population of glial-like cells lining the floor of the 3rd ventricle within the hypothalamus. This review article will summarize current understanding of the regulatory influence of redox status on hypothalamic nutrient sensing and highlight recent work revealing the importance of selenoproteins in the hypothalamus.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
110
|
Varlamova EG, Goltyaev MV. The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091805024x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
111
|
Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y, Angelone T. A selenoprotein T-derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol (Oxf) 2018; 223:e13067. [PMID: 29575758 DOI: 10.1111/apha.13067] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
AIM Selenoprotein T (SelT or SELENOT) is a novel thioredoxin-like enzyme whose genetic ablation in mice results in early embryonic lethality. SelT exerts an essential cytoprotective action during development and after injury through its redox-active catalytic site. This study aimed to determine the expression and regulation of SelT in the mammalian heart in normal and pathological conditions and to evaluate the cardioprotective effect of a SelT-derived peptide, SelT43-52(PSELT) encompassing the redox motif which is key to its function, against ischaemia/reperfusion(I/R) injury. METHODS We used the isolated Langendorff rat heart model and different analyses by immunohistochemistry, Western blot and ELISA. RESULTS We found that SelT expression is very abundant in embryo but is undetectable in adult heart. However, SelT expression was tremendously increased after I/R. PSELT (5 nmol/L) was able to induce pharmacological post-conditioning cardioprotection as evidenced by a significant recovery of contractility (dLVP) and reduction of infarct size (IS), without changes in cardiac contracture (LVEDP). In contrast, a control peptide lacking the redox site did not confer cardioprotection. Immunoblot analysis showed that PSELT-dependent cardioprotection is accompanied by a significant increase in phosphorylated Akt, Erk-1/2 and Gsk3α-β, and a decrement of p38MAPK. PSELT inhibited the pro-apoptotic factors Bax, caspase 3 and cytochrome c and stimulated the anti-apoptotic factor Bcl-2. Furthermore, PSELT significantly reduced several markers of I/R-induced oxidative and nitrosative stress. CONCLUSION These results unravel the role of SelT as a cardiac modulator and identify PSELT as an effective pharmacological post-conditioning agent able to protect the heart after ischaemic injury.
Collapse
Affiliation(s)
- C. Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - L. Boukhzar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Granieri
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - I. Alsharif
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - R. Mazza
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
| | - B. Lefranc
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - B. Tota
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - J. Leprince
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - M. C. Cerra
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| | - Y. Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine; Institut de Recherche et d'Innovation Biomédicale de Normandie and Centre Universitaire de Recherche et D'Innovation en Biologie; Normandie University, UNIROUEN, INSERM; Rouen France
| | - T. Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology; Department of Biology, Ecology and E.S.; University of Calabria; Rende Italy
- National Institute of Cardiovascular Research (INRC); Bologna Italy
| |
Collapse
|
112
|
Hawkins CL. A therapeutic role for selenoprotein T in reducing ischaemia/reperfusion injury in the heart? Acta Physiol (Oxf) 2018; 223:e13106. [PMID: 29845735 DOI: 10.1111/apha.13106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C. L. Hawkins
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
113
|
Selenoprotein S silencing triggers mouse hepatoma cells apoptosis and necrosis involving in intracellular calcium imbalance and ROS-mPTP-ATP. Biochim Biophys Acta Gen Subj 2018; 1862:2113-2123. [PMID: 30017912 DOI: 10.1016/j.bbagen.2018.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Abstract
Selenoprotein S (SelenoS) is one of the cellular endoplasmic reticulum (ER) and membrane located selenoproteins, and it has the main functions of anti-oxidation, anti-apoptosis and anti-ER stress. To investigate the effect of SelenoS silencing on mouse hepatoma cell death and the intracellular biological function of SelenoS, we knocked down SelenoS in Hepa1-6 cells, and detected ER stress, intracellular calcium homeostasis, mitochondrial dynamics, apoptosis and necrosis. To further explore whether reactive oxygen species (ROS) has an effect on apoptosis and necrosis under SelenoS silencing, we used NAC (2.5 mM) to pretreat cells, and detected ΔΨm, ATP, and apoptosis and necrosis rates. SelenoS silencing broke the intracellular calcium homeostasis, induced mitochondrial dynamic disorder, ROS accumulation, loss of ΔΨm and ATP, and triggered apoptosis and necrosis in mouse hepatoma cells. The clearance of ROS alleviated the loss of ΔΨm and ATP caused by silencing of SelenoS, reduced cell necrosis and increased apoptosis. However, SelenoS silencing did not cause ER stress in Hepa1-6 cells. These results indicate that SelenoS silencing triggers mouse hepatoma cells apoptosis and necrosis through affecting intracellular calcium homeostasis and ROS-mPTP-ATP participates in cell death transformation from apoptosis to necrosis to rise damage.
Collapse
|
114
|
Li M, Cheng W, Nie T, Lai H, Hu X, Luo J, Li F, Li H. Selenoprotein K Mediates the Proliferation, Migration, and Invasion of Human Choriocarcinoma Cells by Negatively Regulating Human Chorionic Gonadotropin Expression via ERK, p38 MAPK, and Akt Signaling Pathway. Biol Trace Elem Res 2018; 184:47-59. [PMID: 28983820 DOI: 10.1007/s12011-017-1155-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022]
Abstract
Selenoprotein K (SelK), a member of selenoprotein family, is identified as a single endoplasmic reticulum (ER) transmembrane protein. Although over-expression of SelK inhibits adherence and migration of human gastric cancer BGC-823 cells, the effects of SelK in human choriocarcinoma (CCA) are not well understood. In this study, the expression levels of SelK in three CCA cell lines, BeWo, JEG-3, and JAR, were examined. The effects of silencing or over-expressing SelK on expression of human chorionic gonadotropin beta subunit (β-hCG) were detected by western blotting. The results show that the protein level of β-hCG was reciprocally regulated by down- or up-regulation of SelK (*P < 0.05; #P < 0.05). The proliferative, migratory, and invasive capabilities of JEG-3 cells with reduced or over-expressed SelK were then tested using the cell counting kit-8 (CCK-8), wound healing, and transwell chamber assays. We found that these cellular activities were markedly increased by the loss of SelK in JEG-3 cells. Conversely, over-expressing SelK in JEG-3 cells suppressed these phenotypes. In addition, SelK expression after down- or up-regulation of β-hCG was also measured. Surprisingly, we found that level of SelK was affected by β-hCG (*P < 0.05; #P < 0.05). The proliferation, migration, and invasion were determined in JEG-3 cells after each over-expression and reduction of β-hCG. The results confirmed that β-hCG functions as a promoter of human choriocarcinoma. Furthermore, ERK/p38 MAPK and Akt signaling pathways were found to involve in these cellular functions. This work suggests that SelK may act as a tumor suppressor in human choriocarcinoma cells by negatively regulating β-hCG expression via ERK, p38 MAPK, and Akt signaling pathways. These findings revealed that selenoprotein K may serve as a novel target for human choriocarcinoma therapy in vitro.
Collapse
Affiliation(s)
- Mengdi Li
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wanpeng Cheng
- Department of Clinical Laboratory, Qinhuangdao First Hospital, 258 Wenhua Road, Qinhuangdao, 066000, China
| | - Tingting Nie
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hehuan Lai
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Jincheng Luo
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Basic Medical Science College, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
115
|
Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 2018; 17:183-196. [PMID: 29873029 DOI: 10.1007/s42000-018-0033-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels, underlying or at-risk clinical conditions, and perhaps selenoprotein gene polymorphisms is envisaged.
Collapse
Affiliation(s)
- Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania.
- , Cluj-Napoca, Romania.
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
116
|
Bloise FF, Oliveira TS, Cordeiro A, Ortiga-Carvalho TM. Thyroid Hormones Play Role in Sarcopenia and Myopathies. Front Physiol 2018; 9:560. [PMID: 29910736 PMCID: PMC5992417 DOI: 10.3389/fphys.2018.00560] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle maintains posture and enables movement by converting chemical energy into mechanical energy, further contributing to basal energy metabolism. Thyroid hormones (thyroxine, or T4, and triiodothyronine, or T3) participate in contractile function, metabolic processes, myogenesis and regeneration of skeletal muscle. T3 classically modulates gene expression after binding to thyroid hormone nuclear receptors. Thyroid hormone effects depend on nuclear receptor occupancy, which is directly related to intracellular T3 levels. Sarcolemmal thyroid hormone levels are regulated by their transport across the plasma membrane by specific transporters, as well as by the action of deiodinases types 2 and 3, which can activate or inactivate T4 and T3. Thyroid hormone level oscillations have been associated with the worsening of many myopathies such as myasthenia gravis, Duchenne muscular dystrophy (DMD) and rhabdomyolysis. During aging skeletal muscle show a decrease in mass and quality, known as sarcopenia. There is increasing evidence that thyroid hormones could have a role in the sarcopenic process. Therefore, in this review, we aim to discuss the main effects of thyroid hormones in skeletal muscular aging processes and myopathy-related pathologies.
Collapse
Affiliation(s)
- Flavia F Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamires S Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|