101
|
da Silva RA, Sammartino Mariano F, Planello AC, Line SRP, de Souza AP. HaCaT anchorage blockade leads to oxidative stress, DNA damage and DNA methylation changes. Biochem Biophys Rep 2015; 2:94-102. [PMID: 29124149 PMCID: PMC5668640 DOI: 10.1016/j.bbrep.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.
Collapse
Affiliation(s)
- Rodrigo A da Silva
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Flavia Sammartino Mariano
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Aline C Planello
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Sergio R P Line
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| | - Ana Paula de Souza
- Department of Morphology, School of Dentistry of Piracicaba, University of Campinas - UNICAMP, Av. Limeira, 901, 13414-018 Piracicaba, SP, Brazil
| |
Collapse
|
102
|
Zhang Z, Zhang R. Epigenetics in autoimmune diseases: Pathogenesis and prospects for therapy. Autoimmun Rev 2015; 14:854-63. [PMID: 26026695 DOI: 10.1016/j.autrev.2015.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Epigenetics is the study of heritable changes in genome function without underlying modifications in their nucleotide sequence. Disorders of epigenetic processes, which involve DNA methylation, histone modification, non-coding RNA and nucleosome remodeling, may influence chromosomal stability and gene expression, resulting in complicated syndromes. In the past few years, it has been disclosed that identified epigenetic alterations give rise to several typical human autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and multiple sclerosis (MS). These emerging epigenetic studies provide new insights into autoimmune diseases. The identification of specific epigenetic dysregulation may inspire more discoveries of other uncharacterized mechanisms. Further elucidation of the biological functions and clinical significance of these epigenetic alterations may be exploited for diagnostic biomarkers and therapeutic benefits.
Collapse
Affiliation(s)
- Zimu Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironments and Diseases of Educational Ministry of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology,Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironments and Diseases of Educational Ministry of China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology,Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
103
|
Yu XD, Guo ZS. Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomol Concepts 2015; 1:239-51. [PMID: 25962000 DOI: 10.1515/bmc.2010.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review provides a brief overview of the basic principles of epigenetic gene regulation and then focuses on recent development of epigenetic drugs for cancer treatment and prevention with an emphasis on the molecular mechanisms of action. The approved epigenetic drugs are either inhibitors of DNA methyltransferases or histone deacetylases (HDACs). Future epigenetic drugs could include inhibitors for histone methyltransferases and histone demethylases and other epigenetic enzymes. Epigenetic drugs often function in two separate yet interrelated ways. First, as epigenetic drugs per se, they modulate the epigenomes of premalignant and malignant cells to reverse deregulated epigenetic mechanisms, leading to an effective therapeutic strategy (epigenetic therapy). Second, HDACs and other epigenetic enzymes also target non-histone proteins that have regulatory roles in cell proliferation, migration and cell death. Through these processes, these drugs induce cancer cell growth arrest, cell differentiation, inhibition of tumor angiogenesis, or cell death via apoptosis, necrosis, autophagy or mitotic catastrophe (chemotherapy). As they modulate genes which lead to enhanced chemosensitivity, immunogenicity or dampened innate antiviral response of cancer cells, epigenetic drugs often show better efficacy when combined with chemotherapy, immunotherapy or oncolytic virotherapy. In chemoprevention, dietary phytochemicals such as epigallocatechin-3-gallate and sulforaphane act as epigenetic agents and show efficacy by targeting both cancer cells and the tumor microenvironment. Further understanding of how epigenetic mechanisms function in carcinogenesis and cancer progression as well as in normal physiology will enable us to establish a new paradigm for intelligent drug design in the treatment and prevention of cancer.
Collapse
|
104
|
Abstract
In multicellular organisms differentiated cells must maintain their cellular memory, which will be faithfully inherited and maintained by their progeny. In addition, these specialized cells are exposed to specific environmental and cell-intrinsic signals and will have to appropriately respond to them. Some of these stimuli lead to changes in a subset of genes or to a genome-wide reprogramming of the cells that will remain after stimuli removal and, in some instances, will be inherited by the daughter cells. The molecular substrate that integrates cellular memory and plasticity is the chromatin, a complex of DNA and histones unique to eukaryotes. The nucleosome is the fundamental unit of the chromatin and nucleosomal organization defines different chromatin conformations. Chromatin regulators affect chromatin conformation and accessibility by covalently modifying the DNA or the histones, substituting histone variants, remodeling the nucleosome position or modulating chromatin looping and folding. These regulators frequently act in multiprotein complexes and highly specific interplays among chromatin marks and different chromatin regulators allow a remarkable array of possibilities. Therefore, chromatin regulator nets act to propagate the conformation of different chromatin regions through DNA replication and mitosis, and to remodel the chromatin fiber to regulate the accessibility of the DNA to transcription factors and to the transcription and repair machineries. Here, the state-of-the-art of the best-known chromatin regulators is reviewed.
Collapse
|
105
|
Vaissière T, Miller CA. DNA methylation: dynamic and stable regulation of memory. Biomol Concepts 2015; 2:459-67. [PMID: 25962048 DOI: 10.1515/bmc.2011.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/17/2011] [Indexed: 12/26/2022] Open
Abstract
Epigenetic mechanisms have emerged as a central process in learning and memory. Histone modifications and DNA methy-lation are epigenetic events that can mediate gene transcription. Interesting features of these epigenetic changes are their transient and long lasting potential. Recent advances in neuroscience suggest that DNA methylation is both dynamic and stable, mediating the formation and maintenance of memory. In this review, we will further illustrate the recent hypothesis that DNA methylation participates in the transcriptional regulation necessary for memory.
Collapse
|
106
|
Aravind L, Zhang D, Iyer LM. The TET/JBP Family of Nucleic Acid Base-Modifying 2-Oxoglutarate and Iron-Dependent Dioxygenases. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The TET/JBP family of enzymes includes 2-oxoglutarate- and Fe(ii)-dependent dioxygenases that oxidize 5-methylpyrimidines in nucleic acids. They include euglenozoan JBP enzymes that catalyse the first step in the biosynthesis of the hypermodified thymine, base J, and metazoan TET enzymes that generate oxidized 5-methylcytosines (hydroxy-, formyl- and carboxymethylcytosine) in DNA. Recent studies suggest that these modified bases function as epigenetic marks and/or as potential intermediates for DNA demethylation during resetting of epigenetic 5mC marks upon zygote formation and in primordial germ cell development. Studies in mammalian models also point to an important role for these enzymes in haematopoiesis, tumour suppression, cell differentiation and neural behavioural adaptation. The TET/JBP family has undergone extensive gene expansion in fungi, such as mushrooms, in conjunction with a novel class of transposons and might play a role in genomic plasticity and speciation. Certain versions from stramenopiles and chlorophytes are likely to modify RNA and often show fusions to other RNA-modifying enzymatic domains. The ultimate origin of the TET/JBP family lies in bacteriophages where the enzymes are likely to catalyse formation of modified bases with key roles in DNA packaging and evasion of host restriction.
Collapse
Affiliation(s)
- L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda MD 20894 USA
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda MD 20894 USA
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda MD 20894 USA
| |
Collapse
|
107
|
Shenker NS, Flower KJ, Wilhelm-Benartzi CS, Dai W, Bell E, Gore E, El Bahrawy M, Weaver G, Brown R, Flanagan JM. Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues. BMC Cancer 2015; 15:337. [PMID: 25927974 PMCID: PMC4424887 DOI: 10.1186/s12885-015-1335-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation variability regions (MVRs) across the oestrogen receptor alpha (ESR1) gene have been identified in peripheral blood cells from breast cancer patients and healthy individuals. In contrast to promoter methylation, gene body methylation may be important in maintaining active transcription. This study aimed to assess MVRs in ESR1 in breast cancer cell lines, tumour biopsies and exfoliated epithelial cells from expressed breast milk (EBM), to determine their significance for ESR1 transcription. METHODS DNA methylation levels in eight MVRs across ESR1 were assessed by pyrosequencing bisulphite-converted DNA from three oestrogen receptor (ER)-positive and three ER-negative breast cancer cell lines. DNA methylation and expression were assessed following treatment with DAC (1 μM), or DMSO (controls). ESR1 methylation levels were also assayed in DNA from 155 invasive ductal carcinoma biopsies provided by the Breast Cancer Campaign Tissue Bank, and validated with DNA methylation profiles from the TCGA breast tumours (n = 356 ER-pos, n = 109 ER-neg). DNA methylation was profiled in exfoliated breast epithelial cells from EBM using the Illumina 450 K (n = 36) and pyrosequencing in a further 53 donor samples. ESR1 mRNA levels were measured by qRT-PCR. RESULTS We show that ER-positive cell lines had unmethylated ESR1 promoter regions and highly methylated intragenic regions (median, 80.45%) while ER-negative cells had methylated promoters and lower intragenic methylation levels (median, 38.62%). DAC treatment increased ESR1 expression in ER-negative cells, but significantly reduced methylation and expression of ESR1 in ER-positive cells. The ESR1 promoter was unmethylated in breast tumour biopsies with high levels of intragenic methylation, independent of ER status. However, ESR1 methylation in the strongly ER-positive EBM DNA samples were very similar to ER-positive tumour cell lines. CONCLUSION DAC treatment inhibited ESR1 transcription in cells with an unmethylated ESR1 promoter and reduced intragenic DNA methylation. Intragenic methylation levels correlated with ESR1 expression in homogenous cell populations (cell lines and exfoliated primary breast epithelial cells), but not in heterogeneous tumour biopsies, highlighting the significant differences between the in vivo tumour microenvironment and individual homogenous cell types. These findings emphasise the need for care when choosing material for epigenetic research and highlights the presence of aberrant intragenic methylation levels in tumour tissue.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- DNA Methylation
- Epigenesis, Genetic
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Glands, Human/metabolism
- Milk, Human/cytology
- Promoter Regions, Genetic
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Natalie S Shenker
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Kirsty J Flower
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Charlotte S Wilhelm-Benartzi
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Wei Dai
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
- Current Address: The University of Hong Kong, Pokfulam, Hong Kong, P. R. China.
| | - Emma Bell
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Edmund Gore
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Mona El Bahrawy
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Gillian Weaver
- Queen Charlotte and Chelsea Hospital Milk Bank, Du Cane Road, London, UK.
| | - Robert Brown
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - James M Flanagan
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
108
|
Huan Y, Wang H, Wu Z, Zhang J, Liu Z, He H. The expression patterns of DNA methylation reprogramming related genes are associated with the developmental competence of cloned embryos after zygotic genome activation in pigs. Gene Expr Patterns 2015; 18:1-7. [PMID: 25917378 DOI: 10.1016/j.gep.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022]
Abstract
DNA methylation reprogramming, regulated by DNA methylation and demethylation related genes, is essential for early embryo development; however, it is incomplete in cloned embryos, leading to poor cloning efficiency. Previous studies have shown that DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), could enhance the development of cloned embryos, thus, the genes regulating DNA methylation reprogramming should appropriately express in these embryos. To examine whether there is a correlation between embryo development and the expression patterns of DNA methylation reprogramming related genes, we investigated the developmental progress and transcription levels of candidate genes containing DNA methyltransferases (Dnmt1 and Dnmt3a), ten eleven translocation (Tet) dioxygenases (Tet1, Tet2 and Tet3) and base excision repair related genes including activation induced deamination (Aid), thymine DNA glycosylase (Tdg) and AP endonuclease 1 (Apex1) in porcine early embryos. In this study, our results demonstrated that compared with in vitro fertilized embryos, delayed and reduced development and downregulated transcripts of DNA methylation reprogramming related genes after the 4-cell stage were observed in cloned embryos, showing the significantly (P < 0.05) lower proportions of embryos at the 8-cell, morula and blastocyst stages (19.69% vs 32.64% at 72 h, 16.67% vs 25.49% at 120 h and 19.82% vs 26.29% at 156 h, respectively) and transcription levels of Dnmt3a, Tet1, Tet2, Tet3, Aid, Tdg and Apex1. When cloned embryos were treated with 5-aza-dC, the developmental progress and transcription levels of DNA methylation reprogramming related genes were improved, more similar to those detected in fertilized counterparts. Furthermore, we found that the transcripts of zygotic genome activation and blastocyst quality related genes were also effectively promoted in porcine cloned embryos after 5-aza-dC treatment. In conclusion, our results demonstrated that the disturbed transcripts of DNA methylation reprogramming related genes were observed in porcine cloned embryos, while the enhanced development of porcine cloned embryos induced by 5-aza-dC was accompanied with the improved expression of DNA methylation reprogramming related genes after the 4-cell stage, providing a positive correlation between the expression patterns of DNA methylation reprogramming related genes and the developmental competence of porcine cloned embryos after zygotic genome activation.
Collapse
Affiliation(s)
- Yanjun Huan
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China; College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongmei Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| | - Zhanfeng Wu
- Department of Obstetrics and Gynecology, Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, 262700, China
| | - Jiguang Zhang
- Department of Obstetrics and Gynecology, Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, 262700, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China.
| | - Hongbin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China.
| |
Collapse
|
109
|
Abstract
There has been a substantial body of evidence, which has shown that genetic variation is an important determinant of disease risk. However, there is now increasing evidence that alterations in epigenetic processes also play a role in determining susceptibility to disease. Epigenetic processes, which include DNA methylation, histone modifications and non-coding RNAs play a central role in regulating gene expression, determining when and where a gene is expressed as well as the level of gene expression. The epigenome is highly sensitive to a variety of environmental factors, especially in early life. One factor that has been shown consistently to alter the epigenome is maternal diet. This review will focus on how maternal diet can modify the epigenome of the offspring, producing different phenotypes and altered disease susceptibilities.
Collapse
|
110
|
Li Z, Gu TP, Weber AR, Shen JZ, Li BZ, Xie ZG, Yin R, Guo F, Liu X, Tang F, Wang H, Schär P, Xu GL. Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 2015; 43:3986-97. [PMID: 25845601 PMCID: PMC4417182 DOI: 10.1093/nar/gkv283] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathway.
Collapse
Affiliation(s)
- Zheng Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Peng Gu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Jia-Zhen Shen
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin-Zhong Li
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Guo Xie
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruichuan Yin
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaomeng Liu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel 4048, Switzerland
| | - Guo-Liang Xu
- Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
111
|
Wang KY, Chen CC, Shen CKJ. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase? Epigenomics 2015; 6:353-63. [PMID: 25111488 DOI: 10.2217/epi.14.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vertebrate DNA methyltransferases (DNMTs) have been thought to primarily function to covalently add a methyl group to the 5-position of cytosine. However, recent discovery of the DNA demethylation and dehydroxymethylation activities of DNMTs in vitro suggest new routes to complete the dynamic cycle of DNA methylation-demethylation of the vertebrate genomes. The in vitro reaction conditions suggest that vertebrate DNMTs can switch from DNA methylases to DNA dehydroxymethylases under oxidative stress and to DNA demethylases in the presence of calcium ion under nonreducing conditions. These environmental parameters provide clues regarding the choices in vivo of DNMT activities utilized in different physiological systems. In particular, the nature of these parameters suggest that the DNA demethylation and dehydroxymethylation activities of the vertebrate DNMTs play essential roles in multiple biological processes including early embryo development, regulation of neuronal plasticity, tumorigenesis and hormone-regulated transcription.
Collapse
Affiliation(s)
- Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | |
Collapse
|
112
|
Feng J, Shao N, Szulwach KE, Vialou V, Huynh J, Zhong C, Le T, Ferguson D, Cahill ME, Li Y, Koo JW, Ribeiro E, Labonte B, Laitman BM, Estey D, Stockman V, Kennedy P, Couroussé T, Mensah I, Turecki G, Faull KF, Ming GL, Song H, Fan G, Casaccia P, Shen L, Jin P, Nestler EJ. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci 2015; 18:536-44. [PMID: 25774451 DOI: 10.1038/nn.3976] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
Ten-eleven translocation (TET) enzymes mediate the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is enriched in brain, and its ultimate DNA demethylation. However, the influence of TET and 5hmC on gene transcription in brain remains elusive. We found that ten-eleven translocation protein 1 (TET1) was downregulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration, which enhanced behavioral responses to cocaine. We then identified 5hmC induction in putative enhancers and coding regions of genes that have pivotal roles in drug addiction. Such induction of 5hmC, which occurred similarly following TET1 knockdown alone, correlated with increased expression of these genes as well as with their alternative splicing in response to cocaine administration. In addition, 5hmC alterations at certain loci persisted for at least 1 month after cocaine exposure. Together, these reveal a previously unknown epigenetic mechanism of cocaine action and provide new insight into how 5hmC regulates transcription in brain in vivo.
Collapse
Affiliation(s)
- Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ningyi Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keith E Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vincent Vialou
- 1] Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [2] Institut National de la Santé et de la Recherhe Médicale (INSERM) U1130, CNRS UMR8246, UPMC UM18, Neuroscience Paris Seine, Paris, France
| | - Jimmy Huynh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chun Zhong
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thuc Le
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Deveroux Ferguson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael E Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Efrain Ribeiro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benoit Labonte
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin M Laitman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Estey
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Stockman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Kennedy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Couroussé
- Institut National de la Santé et de la Recherhe Médicale (INSERM) U1130, CNRS UMR8246, UPMC UM18, Neuroscience Paris Seine, Paris, France
| | - Isaac Mensah
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gustavo Turecki
- The McGill Group for Suicide Studies, Douglas Hospital Research Centre, McGill University, Montreal, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Patrizia Casaccia
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
113
|
Schübeler D. ESCI award lecture: regulation, function and biomarker potential of DNA methylation. Eur J Clin Invest 2015; 45:288-93. [PMID: 25608229 DOI: 10.1111/eci.12403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Abstract
Methylation of DNA and modifications of histones have emerged as intricately involved in gene regulation as they cross-talk and respond in multiple ways to the activity of transcription factors. Measuring these epigenome components has become a powerful tool to identify regulatory principles and biomarkers that predict cellular state during development or disease. Here, I will focus on DNA methylation as a reversible epigenetic modification of DNA that has been studied in great detail at the level of the genome. Recent advances in sequencing have identified unexpected dynamics of this modification, which are tightly linked to gene regulation. Understanding how DNA methylation patterns are read and how they contribute to regulation will be critical to interpret and utilize genomic maps of DNA methylation. As these patterns are dynamic during cellular differentiation and perturbed in disease, they present an opportunity to use DNA methylation as a biomarker.
Collapse
Affiliation(s)
- Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland
| |
Collapse
|
114
|
Hong K, Kim YJ, Choi Y. Function of TET proteins in germ cell reprogramming. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
115
|
Dormancy activation mechanism of oral cavity cancer stem cells. Tumour Biol 2015; 36:5551-9. [PMID: 25722113 DOI: 10.1007/s13277-015-3225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/04/2015] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.
Collapse
|
116
|
Abstract
It is well established that genotype plays an important role in the ageing process. However, recent studies have suggested that epigenetic mechanisms may also influence the onset of ageing-associated diseases and longevity. Epigenetics is defined as processes that induce heritable changes in gene expression without a change in the DNA nucleotide sequence. The major epigenetic mechanisms are DNA methylation, histone modification and non-coding RNA. Such processes are involved in the regulation of tissue-specific gene expression, cell differentiation and genomic imprinting. However, epigenetic dysregulation is frequently seen with ageing. Relatively little is known about the factors that initiate such changes. However, there is emerging evidence that the early life environment, in particular nutrition, in early life can induce long-term changes in DNA methylation resulting in an altered susceptibility to a range of ageing-associated diseases. In this review, we will focus on the changes in DNA methylation that occur during ageing; their role in the ageing process and how early life nutrition can modulate DNA methylation and influence longevity. Understanding the mechanisms by which diet in early life can influence the epigenome will be crucial for the development of preventative and intervention strategies to increase well-being in later life.
Collapse
|
117
|
Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z, Zhang J. Daily variation in global and local DNA methylation in mouse livers. PLoS One 2015; 10:e0118101. [PMID: 25689298 PMCID: PMC4331433 DOI: 10.1371/journal.pone.0118101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is one of the best-characterized epigenetic modifications and has an important biological relevance. Here we showed that global DNA methylation level in mouse livers displayed a daily variation where the peak phases occurred during the end of the day and the lowest level at the beginning of the day in the light-dark or dark-dark cycles. Typical repeat sequence long interspersed nucleotide element-1 (LINE-1) had a similar methylation rhythm to global DNA. DNA methyltransferase 3A (DNMT3A) and ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) brought a relative forward daily variation to global DNA methylation, and the temporary change in ratio of SAM to SAH had no influence on the DNA methylation level. The rhythm of global DNA methylation was lost and DNA methylation level was increased in Per1-/-Per2-/- double knockout mice, which were in accordance with changes of Dnmt3a mRNA levels and its rhythm. Our results suggest that the daily variation in global DNA methylation was associated with the change of Dnmt3a expression rather than ratio of SAM to SAH.
Collapse
Affiliation(s)
- Lin Xia
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Shihong Ma
- Nanjing Institute for the Comprehensive Utilization of Wild Plant, Nanjing, 210042, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, 212013, China
| | - Tao Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Mengyi Zhou
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhongqiu Wang
- Department of Radiology, Nanjing University of Chinese Medicine, Nanjing, 210000, China
- * E-mail: (JZ); (ZW)
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- * E-mail: (JZ); (ZW)
| |
Collapse
|
118
|
Lu X, Zhao BS, He C. TET family proteins: oxidation activity, interacting molecules, and functions in diseases. Chem Rev 2015; 115:2225-39. [PMID: 25675246 DOI: 10.1021/cr500470n] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xingyu Lu
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Boxuan Simen Zhao
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Chuan He
- †Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.,‡Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
119
|
O'Doherty AM, McGettigan PA. Epigenetic processes in the male germline. Reprod Fertil Dev 2015; 27:725-38. [DOI: 10.1071/rd14167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.
Collapse
|
120
|
Togliatto G, Dentelli P, Brizzi MF. Skewed Epigenetics: An Alternative Therapeutic Option for Diabetes Complications. J Diabetes Res 2015; 2015:373708. [PMID: 26064979 PMCID: PMC4430641 DOI: 10.1155/2015/373708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 12/21/2022] Open
Abstract
Vascular complications are major causes of morbidity and mortality in type 2 diabetes patients. Mitochondrial reactive oxygen species (ROS) generation and a lack of efficient antioxidant machinery, a result of hyperglycaemia, mainly contribute to this problem. Although advances in therapy have significantly reduced both morbidity and mortality in diabetic individuals, diabetes-associated vascular complications are still one of the most challenging health problems worldwide. New healing options are urgently needed as current therapeutics are failing to improve long-term outcomes. Particular effort has recently been devoted to understanding the functional relationship between chromatin structure regulation and the persistent change in gene expression which is driven by hyperglycaemia and which accounts for long-lasting diabetic complications. A detailed investigation into epigenetic chromatin modifications in type 2 diabetes is underway. This will be particularly useful in the design of mechanism-based therapeutics which interfere with long-lasting activating epigenetics and improve patient outcomes. We herein provide an overview of the most relevant mechanisms that account for hyperglycaemia-induced changes in chromatin structure; the most relevant mechanism is called "metabolic memory."
Collapse
Affiliation(s)
- Gabriele Togliatto
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Patrizia Dentelli
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
- *Maria Felice Brizzi:
| |
Collapse
|
121
|
Salvaing J, Li Y, Beaujean N, O'Neill C. Determinants of valid measurements of global changes in 5ʹ-methylcytosine and 5ʹ-hydroxymethylcytosine by immunolocalisation in the early embryo. Reprod Fertil Dev 2015; 27:755-64. [DOI: 10.1071/rd14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
A classical model of epigenetic reprogramming of methyl-cytosine–phosphate–guanine (CpG) dinucleotides within the genome of the early embryo involves a process of active demethylation of the paternally derived genome immediately following fertilisation, creating marked asymmetry in global cytosine methylation levels in male and female pronuclei, followed by passive demethylation of the maternally derived genome over subsequent cell cycles. This model has dominated thinking in developmental epigenetics over recent decades. Recent re-analyses of the model show that demethylation of the paternally derived genome is more modest than formerly thought and results in overall similar levels of methylation of the paternal and maternal pronuclei in presyngamal zygotes, although there is little evidence for a pervasive process of passive demethylation during the cleavage stage of development. In contrast, the inner cell mass of the blastocyst shows some loss of methylation within specific classes of loci. Improved methods of chemical analysis now allow global base-level analysis of modifications to CpG dinucleotides within the cells of the early embryo, yet the low cost and convenience of the immunolocalisation techniques mean that they still have a valuable place in the analysis of the epigenetics of embryo development. In this review we consider the key strengths and weaknesses of this methodology and some factors required for its valid use and interpretation.
Collapse
|
122
|
Sadakierska-Chudy A, Kostrzewa RM, Filip M. A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox Res 2014; 27:84-97. [PMID: 25362550 PMCID: PMC4286137 DOI: 10.1007/s12640-014-9497-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
In multicellular organisms, all the cells are genetically identical but turn genes on or off at the right time to promote differentiation into specific cell types. The regulation of higher-order chromatin structure is essential for genome-wide reprogramming and for tissue-specific patterns of gene expression. The complexity of the genome is regulated by epigenetic mechanisms, which act at the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in many biological processes, including genomic imprinting, X-chromosome inactivation, heterochromatin formation, and transcriptional regulation, as well as DNA damage repair. In this review, we summarize the recent understanding of DNA methylation, cytosine derivatives, active and passive demethylation pathways as well as histone variants. DNA methylation is one of the well-characterized epigenetic signaling tools. Cytosine methylation of promoter regions usually represses transcription but methylation in the gene body may have a positive correlation with gene expression. The attachment of a methyl group to cytosine residue in the DNA sequence is catalyzed by enzymes of the DNA methyltransferase family. Recent studies have shown that the Ten-Eleven translocation family enzymes are involved in stepwise oxidation of 5-methylcytosine, creating new cytosine derivatives including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Additionally, histone variants into nucleosomes create another strategy to regulate the structure and function of chromatin. The replacement of canonical histones with specialized histone variants regulates accessibility of DNA, and thus may affect multiple biological processes, such as replication, transcription, DNA repair, and play a role in various disorders such as cancer.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna Street 12, 31-343, Kraków, Poland,
| | | | | |
Collapse
|
123
|
Laird A, Thomson JP, Harrison DJ, Meehan RR. 5-hydroxymethylcytosine profiling as an indicator of cellular state. Epigenomics 2014; 5:655-69. [PMID: 24283880 DOI: 10.2217/epi.13.69] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is widely studied in the context of cancer. However, the rediscovery of 5-hydroxymethylation of DNA adds a new layer of complexity to understanding the epigenetic basis of development and disease, including carcinogenesis. There have been significant advances in techniques for the detection of 5-hydroxymethylcytosine and, with this, greater insight into the distribution, regulation and function of this mark, which are reviewed here. Better understanding of the associated pathways involved in regulation of, and by, 5-hydroxymethylcytosine may give promise to new therapeutic targets. We discuss evidence to support the view of 5-hydroxymethylcytosine as a unique and dynamic mark of cellular state. These 5-hydroxymethylcytosine profiles may offer optimism for the development of diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Alexander Laird
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | | | | | | |
Collapse
|
124
|
Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 2014; 28:2103-19. [PMID: 25223896 PMCID: PMC4180973 DOI: 10.1101/gad.248005.114] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using CRISPR/Cas9 technology, Lu et al. generated mouse embryonic stem cells (ESCs) that are deficient for all three Tet proteins. Functional characterization of these ESCs revealed a role for Tet proteins in regulating the two-cell embryo (2C)-like state under ESC culture conditions. The knockout ESCs exhibited increased telomere–sister chromatid exchange and elongated telomeres. DNA methylation at the C-5 position of cytosine (5mC) is one of the best-studied epigenetic modifications and plays important roles in diverse biological processes. Iterative oxidation of 5mC by the ten-eleven translocation (Tet) family of proteins generates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are selectively recognized and excised by thymine DNA glycosylase (TDG), leading to DNA demethylation. Functional characterization of Tet proteins has been complicated by the redundancy between the three family members. Using CRISPR/Cas9 technology, we generated mouse embryonic stem cells (ESCs) deficient for all three Tet proteins (Tet triple knockout [TKO]). Whole-genome bisulfite sequencing (WGBS) analysis revealed that Tet-mediated DNA demethylation mainly occurs at distally located enhancers and fine-tunes the transcription of genes associated with these regions. Functional characterization of Tet TKO ESCs revealed a role for Tet proteins in regulating the two-cell embryo (2C)-like state under ESC culture conditions. In addition, Tet TKO ESCs exhibited increased telomere–sister chromatid exchange and elongated telomeres. Collectively, our study reveals a role for Tet proteins in not only DNA demethylation at enhancers but also regulating the 2C-like state and telomere homeostasis.
Collapse
Affiliation(s)
- Falong Lu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yuting Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Lan Jiang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Shinpei Yamaguchi
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
125
|
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, Walsh CP, Li J, Tang F, Xu GL. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 2014; 15:447-459. [PMID: 25220291 DOI: 10.1016/j.stem.2014.08.003] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023]
Abstract
The epigenomes of mammalian sperm and oocytes, characterized by gamete-specific 5-methylcytosine (5mC) patterns, are reprogrammed during early embryogenesis to establish full developmental potential. Previous studies have suggested that the paternal genome is actively demethylated in the zygote while the maternal genome undergoes subsequent passive demethylation via DNA replication during cleavage. Active demethylation is known to depend on 5mC oxidation by Tet dioxygenases and excision of oxidized bases by thymine DNA glycosylase (TDG). Here we show that both maternal and paternal genomes undergo widespread active and passive demethylation in zygotes before the first mitotic division. Passive demethylation was blocked by the replication inhibitor aphidicolin, and active demethylation was abrogated by deletion of Tet3 in both pronuclei. At actively demethylated loci, 5mCs were processed to unmodified cytosines. Surprisingly, the demethylation process was unaffected by the deletion of TDG from the zygote, suggesting the existence of other demethylation mechanisms downstream of Tet3-mediated oxidation.
Collapse
Affiliation(s)
- Fan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianlong Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dan Liang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zhu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongshan Guo
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xinglong Wu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lu Wen
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tian-Peng Gu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Boqiang Hu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Colum P Walsh
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Jinsong Li
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China.
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
126
|
Lewis CR, Olive MF. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness. Behav Pharmacol 2014; 25:341-51. [PMID: 25003947 PMCID: PMC4119485 DOI: 10.1097/fbp.0000000000000057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.
Collapse
Affiliation(s)
- Candace Renee Lewis
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (602) 680 – 8786
| | - Michael Foster Olive
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (480) 727-9557
| |
Collapse
|
127
|
Ficz G, Gribben JG. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics 2014; 104:352-7. [PMID: 25179374 DOI: 10.1016/j.ygeno.2014.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022]
Abstract
Discovery of the enzymatic activity that catalyses oxidation of 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) mediated by the MLL (KMT2A) fusion partner TET1 has sparked intense research to understand the role this new DNA modification has in cancer. An unambiguous picture has emerged where tumours are depleted of 5hmC compared to corresponding normal tissue, but it is not known whether lack of 5hmC is a cause or a consequence of tumourigenesis. Experimental data reveals a dual tumour-suppressive and oncogenic role for TET proteins. Tet2 mutations are drivers in haematological malignancies but Tet1 had an oncogenic role in MLL-rearranged leukaemia, where Tet1 is overexpressed. Overexpression of Tet2 in melanoma cells re-established the 5hmC landscape and suppressed cancer progression but inhibiting Tet1 in non-transformed cells did not initiate cellular transformation. In this review we summarise recent findings that have shaped the current understanding on the role 5hmC plays in cancer.
Collapse
Affiliation(s)
- Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, EC1M 6BQ London, UK.
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, EC1M 6BQ London, UK
| |
Collapse
|
128
|
Hahn MA, Szabó PE, Pfeifer GP. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 2014; 104:314-23. [PMID: 25181633 DOI: 10.1016/j.ygeno.2014.08.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Abstract
The DNA base 5-hydroxymethylcytosine (5hmC) is produced by enzymatic oxidation of 5-methylcytosine (5mC) by 5mC oxidases (the Tet proteins). Since 5hmC is recognized poorly by DNA methyltransferases, DNA methylation may be lost at 5hmC sites during DNA replication. In addition, 5hmC can be oxidized further by Tet proteins and converted to 5-formylcytosine and 5-carboxylcytosine, two bases that can be removed from DNA by base excision repair. The completed pathway represents a replication-independent DNA demethylation cycle. However, the DNA base 5hmC is also known to be rather stable and occurs at substantial levels, for example in the brain, suggesting that it represents an epigenetic mark by itself that may regulate chromatin structure and transcription. Focusing on a few well-studied tissues and developmental stages, we discuss the opposing views of 5hmC as a transient intermediate in DNA demethylation and as a modified DNA base with an instructive role.
Collapse
Affiliation(s)
- Maria A Hahn
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA
| | - Piroska E Szabó
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA
| | - Gerd P Pfeifer
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA.
| |
Collapse
|
129
|
Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, Chen X, Lehn MA, Janssen EM, Ji H. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin 2014; 7:21. [PMID: 25161698 PMCID: PMC4144987 DOI: 10.1186/1756-8935-7-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Background Dendritic cells (DCs) are important mediators of innate and adaptive immune responses, but the gene networks governing their lineage differentiation and maturation are poorly understood. To gain insight into the mechanisms that promote human DC differentiation and contribute to the acquisition of their functional phenotypes, we performed genome-wide base-resolution mapping of 5-methylcytosine in purified monocytes and in monocyte-derived immature and mature DCs. Results DC development and maturation were associated with a great loss of DNA methylation across many regions, most of which occurs at predicted enhancers and binding sites for known transcription factors affiliated with DC lineage specification and response to immune stimuli. In addition, we discovered novel genes that may contribute to DC differentiation and maturation. Interestingly, many genes close to demethylated CG sites were upregulated in expression. We observed dynamic changes in the expression of TET2, DNMT1, DNMT3A and DNMT3B coupled with temporal locus-specific demethylation, providing possible mechanisms accounting for the dramatic loss in DNA methylation. Conclusions Our study is the first to map DNA methylation changes during human DC differentiation and maturation in purified cell populations and will greatly enhance the understanding of DC development and maturation and aid in the development of more efficacious DC-based therapeutic strategies.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Ashley Ulm
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hari K Somineni
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Sunghee Oh
- Division of Human Genetics, Kim Sook Za Children's Hospital Medical Center Research Foundation, 745 JikJi Daero Heung Deok Gu, Cheongju, Chung Buk 361-841, South Korea
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hong-Xuan Zhang
- Procter & Gamble Co., Mason Business Center, 8700 S Mason Montgomery Road, Mason, OH 45040, USA
| | - Xiaoting Chen
- School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| |
Collapse
|
130
|
Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M. Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front Cell Neurosci 2014; 8:217. [PMID: 25152711 PMCID: PMC4126486 DOI: 10.3389/fncel.2014.00217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is associated with hyperexcitability and intrinsic firing of dorsal root ganglia (DRG) neurons. These phenotypical changes can be long lasting, potentially spanning the entire life of animal models, and depend on altered expression of numerous proteins, including many ion channels. Yet, how DRGs maintain long-term changes in protein expression in neuropathic conditions remains unclear. DNA methylation is a well-known mechanism of epigenetic control of gene expression and is achieved by the action of three enzymes: DNA methyltransferase (DNMT) 1, 3a, and 3b, which have been studied primarily during development. We first performed immunohistochemical analysis to assess whether these enzymes are expressed in adult rat DRGs (L4–5) and found that DNMT1 is expressed in both glia and neurons, DNMT3a is preferentially expressed in glia and DNMT3b is preferentially expressed in neurons. A rat model of neuropathic pain was then used to determine whether nerve injury may induce epigenetic changes in DRGs at multiple time points after pain onset. Real-time RT PCR analysis revealed robust and time-dependent changes in DNMT transcript expression in ipsilateral DRGs from spared nerve injury (SNI) but not sham rats. Interestingly, DNMT3b transcript showed a robust upregulation that appeared already 1 week after surgery and persisted at 4 weeks (our endpoint); in contrast, DNMT1 and DNMT3a transcripts showed only moderate upregulation that was transient and did not appear until the second week. We suggest that DNMT regulation in adult DRGs may be a contributor to the pain phenotype and merits further study.
Collapse
Affiliation(s)
- Sarah L Pollema-Mays
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Maria V Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - A V Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Marco Martina
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| |
Collapse
|
131
|
Global DNA hypomethylation: A potential mechanism in King pigeon nerve tissue damage induced by avermectin. Chem Biol Interact 2014; 219:113-22. [DOI: 10.1016/j.cbi.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
|
132
|
Zhou Y, Li B, Wang M, Yang Z, Yin H, Ai S. Enzyme-based electrochemical biosensor for sensitive detection of DNA demethylation and the activity of DNA demethylase. Anal Chim Acta 2014; 840:28-32. [DOI: 10.1016/j.aca.2014.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
133
|
Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105:164-75. [PMID: 24814876 DOI: 10.1016/j.diabres.2014.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 12/24/2022]
Abstract
There is growing evidence that epigenetic regulation of gene expression including post-translational histone modifications (PTHMs), DNA methylation and microRNA (miRNA)-regulation of mRNA translation could play a crucial role in the development of chronic, diabetic complications. Hyperglycemia can induce an abnormal action of PTHMs and DNA methyltransferases as well as alter the levels of numerous miRNAs in endothelial cells, vascular smooth muscle cells, cardiomyocytes, retina, and renal cells. These epigenetic abnormalities result in changes in the expression of numerous genes contributing to effects such as development of chronic inflammation, impaired clearance of reactive oxygen species (ROS), endothelial cell dysfunction and/or the accumulation of extracellular matrix in the kidney, which causing the development of retinopathy, nephropathy or cardiomyopathy. Some epigenetic modifications, for example PTHMs and DNA methylation, become irreversible over time. Therefore, these processes have gained much attention in explaining the long-lasting detrimental consequences of hyperglycaemia causing the development of chronic complications even after improved glycaemic control is achieved. Our review suggests that the treatment of chronic complications should focus on erasing metabolic memory by targeting chromatin modification enzymes and by restoring miRNA levels.
Collapse
Affiliation(s)
- Malgorzata Wegner
- Lipid Metabolism Laboratory, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland.
| | - Daniel Neddermann
- Novartis Pharma AG, Drug Metabolism and Pharmacokinetics, Postfach, 4002 Basel, Switzerland
| | - Maria Piorunska-Stolzmann
- Department of Clinical Biochemistry and Laboratory Medicine, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Pawel P Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
134
|
Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol 2014; 28:1118-35. [PMID: 24877562 DOI: 10.1210/me.2013-1340] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders.
Collapse
Affiliation(s)
- Sahar Houshdaran
- Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143
| | | | | | | |
Collapse
|
135
|
Jin C, Lu Y, Jelinek J, Liang S, Estecio MRH, Barton MC, Issa JPJ. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 2014; 42:6956-71. [PMID: 24875481 PMCID: PMC4066785 DOI: 10.1093/nar/gku372] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.
Collapse
Affiliation(s)
- Chunlei Jin
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Yue Lu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Shoudan Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos R H Estecio
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Pierre J Issa
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
136
|
Levin-Klein R, Kirillov A, Rosenbluh C, Cedar H, Bergman Y. A novel pax5-binding regulatory element in the igκ locus. Front Immunol 2014; 5:240. [PMID: 24904588 PMCID: PMC4033077 DOI: 10.3389/fimmu.2014.00240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022] Open
Abstract
The Igκ locus undergoes a variety of different molecular processes during B cell development, including V(D)J rearrangement and somatic hypermutations (SHM), which are influenced by cis regulatory regions (RRs) within the locus. The Igκ locus includes three characterized RRs termed the intronic (iEκ), 3′Eκ, and Ed enhancers. We had previously noted that a region of DNA upstream of the iEκ and matrix attachment region (MAR) was necessary for demethylation of the locus in cell culture. In this study, we further characterized this region, which we have termed Dm, for demethylation element. Pre-rearranged Igκ transgenes containing a deletion of the entire Dm region, or of a Pax5-binding site within the region, fail to undergo efficient CpG demethylation in mature B cells in vivo. Furthermore, we generated mice with a deletion of the full Dm region at the endogenous Igκ locus. The most prominent phenotype of these mice is reduced SHM in germinal center B cells in Peyer’s patches. In conclusion, we propose the Dm element as a novel Pax5-binding cis regulatory element, which works in concert with the known enhancers, and plays a role in Igκ demethylation and SHM.
Collapse
Affiliation(s)
- Rena Levin-Klein
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Andrei Kirillov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Chaggai Rosenbluh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School , Jerusalem , Israel
| |
Collapse
|
137
|
Pfeifer GP, Xiong W, Hahn MA, Jin SG. The role of 5-hydroxymethylcytosine in human cancer. Cell Tissue Res 2014; 356:631-41. [PMID: 24816989 DOI: 10.1007/s00441-014-1896-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Abstract
The patterns of DNA methylation in human cancer cells are highly abnormal and often involve the acquisition of DNA hypermethylation at hundreds or thousands of CpG islands that are usually unmethylated in normal tissues. The recent discovery of 5-hydroxymethylcytosine (5hmC) as an enzymatic oxidation product of 5-methylcytosine (5mC) has led to models and experimental data in which the hypermethylation and 5mC oxidation pathways seem to be connected. Key discoveries in this setting include the findings that several genes coding for proteins involved in the 5mC oxidation reaction are mutated in human tumors, and that a broad loss of 5hmC occurs across many types of cancer. In this review, we will summarize current knowledge and discuss models of the potential roles of 5hmC in human cancer biology.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Beckman Research Institute, City of Hope Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA,
| | | | | | | |
Collapse
|
138
|
Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, Xu RM. Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol Cell 2014; 54:879-86. [PMID: 24813944 DOI: 10.1016/j.molcel.2014.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 01/22/2023]
Abstract
Methylated cytosine of CpG dinucleotides in vertebrates may be oxidized by Tet proteins, a process that can lead to DNA demethylation. The predominant oxidation product, 5-hydroxymethylcytosine (5hmC), has been implicated in embryogenesis, cell differentiation, and human diseases. Recently, the SRA domain of UHRF2 (UHRF2-SRA) has been reported to specifically recognize 5hmC, but how UHRF2 recognizes this modification is unclear. Here we report the structure of UHRF2-SRA in complex with a 5hmC-containing DNA. The structure reveals that the conformation of a phenylalanine allows the formation of an optimal 5hmC binding pocket, and a hydrogen bond between the hydroxyl group of 5hmC and UHRF2-SRA is critical for their preferential binding. Further structural and biochemical analyses unveiled the role of SRA domains as a versatile reader of modified DNA, and the knowledge should facilitate further understanding of the biological function of UHRF2 and the comprehension of DNA hydroxymethylation in general.
Collapse
Affiliation(s)
- Ting Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Mingzhu Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Zhu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
139
|
Abstract
DNA methylation is one of the best characterized epigenetic modifications. In mammals it is involved in various biological processes including the silencing of transposable elements, regulation of gene expression, genomic imprinting, and X-chromosome inactivation. This article describes how DNA methylation serves as a cellular memory system and how it is dynamically regulated through the action of the DNA methyltransferase (DNMT) and ten eleven translocation (TET) enzymes. Its role in the regulation of gene expression, through its interplay with histone modifications, is also described, and its implication in human diseases discussed. The exciting areas of investigation that will likely become the focus of research in the coming years are outlined in the summary.
Collapse
Affiliation(s)
- En Li
- China Novartis Institutes for BioMedical Research, Pudong New Area, Shanghai 201203, China
| | | |
Collapse
|
140
|
Abstract
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.
Collapse
Affiliation(s)
- Luis M Tuesta
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| |
Collapse
|
141
|
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014; 156:45-68. [PMID: 24439369 DOI: 10.1016/j.cell.2013.12.019] [Citation(s) in RCA: 800] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 12/28/2022]
Abstract
Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes.
Collapse
Affiliation(s)
- Hao Wu
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
142
|
Beckerman P, Ko YA, Susztak K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant 2014; 29:1821-7. [PMID: 24675284 DOI: 10.1093/ndt/gfu026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Only a few percent of the 3 billion pairs of chemical letters in the human genome is responsible for protein-coding sequences. Recent advances in the field of epigenomics have helped us to understand how most of the remaining sequences are responsible for gene regulation at baseline and in disease conditions. Here we discuss recent advances in the area of epigenetics--specifically in cytosine modifications--and its application in the field of nephrology.
Collapse
Affiliation(s)
- Pazit Beckerman
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-An Ko
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
143
|
Leitch HG, Tang WWC, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 2014; 104:149-87. [PMID: 23587241 DOI: 10.1016/b978-0-12-416027-9.00005-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
Collapse
Affiliation(s)
- Harry G Leitch
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
144
|
Kar S, Parbin S, Deb M, Shilpi A, Sengupta D, Rath SK, Rakshit M, Patra A, Patra SK. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell Mol Life Sci 2014; 71:1017-32. [PMID: 24114325 PMCID: PMC11113617 DOI: 10.1007/s00018-013-1482-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022]
Abstract
Reversible DNA methylation is a fundamental epigenetic manipulator of the genomic information in eukaryotes. DNA demethylation plays a very significant role during embryonic development and stands out for its contribution in molecular reconfiguration during cellular differentiation for determining stem cell fate. DNA demethylation arbitrated extensive make-over of the genome via reprogramming in the early embryo results in stem cell plasticity followed by commitment to the principal cell lineages. This article attempts to highlight the sequential phases and hierarchical mode of DNA demethylation events during enactment of the molecular strategy for developmental transition. A comprehensive knowledge regarding the pattern of DNA demethylation during embryogenesis and organogenesis and study of the related lacunae will offer exciting avenues for future biomedical research and stem cell-based regenerative therapy.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip Kumar Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Madhumita Rakshit
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Aditi Patra
- Additional Block Animal Health Centre, Veterinary Office, Oodlabari, Malbazar, Jalpaiguri, West Bengal India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
145
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
146
|
Frycz BA, Murawa D, Borejsza-Wysocki M, Marciniak R, Murawa P, Drews M, Kołodziejczak A, Tomela K, Jagodziński PP. Decreased expression of ten-eleven translocation 1 protein is associated with some clinicopathological features in gastric cancer. Biomed Pharmacother 2014; 68:209-12. [PMID: 24507562 DOI: 10.1016/j.biopha.2013.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022] Open
Abstract
A decrease in ten-eleven translocation 1 (TET1) transcript and 5-Hydroxymethylcytosine (5hmC) levels has recently been demonstrated in primary gastric cancer (GC). However, little is known about TET1 protein levels in gastric tumoral and nontumoral tissue. Therefore, using reverse transcription, real-time quantitative polymerase chain reaction and western blotting analysis, we determined the TET1 transcript and protein levels in tumoral and nontumoral tissue from 38 patients with GC. We also assessed the association between the decrease in TET1 transcript and protein levels and some clinicopathological features in primary GC. We found significantly decreased levels of TET1 transcript (P=0.0023) and protein (P=0.00024) in primary tumoral tissues as compared to nontumoral tissues in patients with GC. Moreover, we also observed significantly lower amounts of TET1 transcript (P=0.03) and protein (P=0.00018) in tumoral tissues in patients aged>60. We also found significant lowered TET1 protein levels in male patients (P=0.0014), stomach (P=0.044) and cardia (P=0.013) tumor localization, T3 depth of invasion (P=0.019), N1 (P=0.012) and N3 lymph node metastasis (P=0.013) and G3 histological grade (P=0.0012). There were also significant decreases in TET1 transcript levels in female patients (P=0.042), intestinal histological types (P=0.0079) and T4 depth of invasion (P=0.037). Our results demonstrated that a decrease in TET1 transcript and protein levels is associated with some clinicopathological features in GC.
Collapse
Affiliation(s)
- Bartosz Adam Frycz
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Dawid Murawa
- First Department of Surgical Oncology and General Surgery, Wielkopolska Cancer Center, Poznań, Poland
| | - Maciej Borejsza-Wysocki
- Department of General Surgery, Oncologic Gastroenterological and Plastic Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Ryszard Marciniak
- Department of General Surgery, Oncologic Gastroenterological and Plastic Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Murawa
- First Department of Surgical Oncology and General Surgery, Wielkopolska Cancer Center, Poznań, Poland
| | - Michał Drews
- Department of General Surgery, Oncologic Gastroenterological and Plastic Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Kołodziejczak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Tomela
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
147
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
148
|
Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, Wong J. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem 2014; 289:5986-96. [PMID: 24394411 DOI: 10.1074/jbc.m113.524140] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ten-eleven translocation (TET) family of dioxygenases (TET1/2/3) converts 5-methylcytosine to 5-hydroxymethylcytosine and provides a vital mechanism for DNA demethylation. However, how TET proteins are regulated is largely unknown. Here we report that the O-linked β-GlcNAc (O-GlcNAc) transferase (OGT) is not only a major TET3-interacting protein but also regulates TET3 subcellular localization and enzymatic activity. OGT catalyzes the O-GlcNAcylation of TET3, promotes TET3 nuclear export, and, consequently, inhibits the formation of 5-hydroxymethylcytosine catalyzed by TET3. Although TET1 and TET2 also interact with and can be O-GlcNAcylated by OGT, neither their subcellular localization nor their enzymatic activity are affected by OGT. Furthermore, we show that the nuclear localization and O-GlcNAcylation of TET3 are regulated by glucose metabolism. Our study reveals the differential regulation of TET family proteins by OGT and a novel link between glucose metabolism and DNA epigenetic modification.
Collapse
Affiliation(s)
- Qiao Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China and
| | | | | | | | | | | | | |
Collapse
|
149
|
Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014; 217:94-101. [DOI: 10.1242/jeb.089995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic marks in mammals are essential to properly control the activity of the genome. They are dynamically regulated during development and adulthood, and can be modulated by environmental factors throughout life. Changes in the epigenetic profile of a cell can be positive and favor the expression of advantageous genes such as those linked to cell signaling and tumor suppression. However, they can also be detrimental and alter the functions of important genes, thereby leading to disease. Recent evidence has further highlighted that some epigenetic marks can be maintained across meiosis and be transmitted to the subsequent generation to reprogram developmental and cellular features. This short review describes current knowledge on the potential impact of epigenetic processes activated by environmental factors on the inheritance of neurobiological disease risk. In addition, the potential adaptive value of epigenetic inheritance, and relevant current and future questions are discussed.
Collapse
Affiliation(s)
- Bechara J. Saab
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
150
|
Gavin DP, Floreani C. Epigenetics of schizophrenia: an open and shut case. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:155-201. [PMID: 25131545 DOI: 10.1016/b978-0-12-801311-3.00005-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last decade and a half, there has been an explosion of data regarding epigenetic changes in schizophrenia. Most initial studies have suggested that schizophrenia is characterized by an overly restrictive chromatin state based on increases in transcription silencing histone modifications and DNA methylation at schizophrenia candidate gene promoters and increases in the expression of enzymes that catalyze their formation. However, recent studies indicate that the pathology is more complex. This complexity may greatly impact pharmacological approaches directed at targeting epigenetic abnormalities in schizophrenia. The current review explores epigenetic studies of schizophrenia and what this can tell us about the underlying pathophysiology. We hypothesize based on recent studies that it is also plausible that drugs that further restrict chromatin may be efficacious.
Collapse
Affiliation(s)
- David P Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.
| | - Christina Floreani
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|