101
|
Lawlor KE, Murphy JM, Vince JE. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases. Immunity 2024; 57:429-445. [PMID: 38479360 DOI: 10.1016/j.immuni.2024.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 02/14/2024] [Indexed: 01/22/2025]
Abstract
Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.
Collapse
Affiliation(s)
- Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
102
|
Xiang Q, Yi X, Zhu XH, Wei X, Jiang DS. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab 2024; 35:219-234. [PMID: 37981501 DOI: 10.1016/j.tem.2023.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
103
|
Denus M, Fargues W, Filaquier A, Néel É, Marin P, Parmentier ML, Villeneuve J. [Unconventional protein secretion - new perspectives in protein trafficking]. Med Sci (Paris) 2024; 40:267-274. [PMID: 38520102 DOI: 10.1051/medsci/2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.
Collapse
Affiliation(s)
- Morgane Denus
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - William Fargues
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Aurore Filaquier
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Éloïse Néel
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Philippe Marin
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Marie-Laure Parmentier
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| | - Julien Villeneuve
- Institut de génomique fonctionnelle,Université de Montpellier, CNRS UMR 5 203. Inserm U1191, Montpellier, France
| |
Collapse
|
104
|
Barreda D, Grinstein S, Freeman SA. Target lysis by cholesterol extraction is a rate limiting step in the resolution of phagolysosomes. Eur J Cell Biol 2024; 103:151382. [PMID: 38171214 DOI: 10.1016/j.ejcb.2023.151382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.
Collapse
Affiliation(s)
- Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
105
|
Zhao L, Gao N, Peng X, Chen L, Meng T, Jiang C, Jin J, Zhang J, Duan Q, Tian H, Weng L, Wang X, Tan X, Li Y, Qin H, Yuan J, Ge X, Deng L, Wang P. TRAF4-Mediated LAMTOR1 Ubiquitination Promotes mTORC1 Activation and Inhibits the Inflammation-Induced Colorectal Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2301164. [PMID: 38229144 DOI: 10.1002/advs.202301164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear. In this study, that LAMTOR1, an essential component of Ragulator, is dynamically ubiquitinated depending on amino acid abundance is reported. It is found that the E3 ligase TRAF4 directly interacts with LAMTOR1 and catalyzes the K63-linked polyubiquitination of LAMTOR1 at K151. Ubiquitination of LAMTOR1 by TRAF4 promoted its binding to Rag GTPases and enhanced mTORC1 activation, K151R knock-in or TRAF4 knock-out blocks amino acid-induced mTORC1 activation and accelerates the development of inflammation-induced colon cancer. This study revealed that TRAF4-mediated LAMTOR1 ubiquitination is a regulatory mechanism for mTORC1 activation and provides a therapeutic target for diseases involving mTORC1 dysregulation.
Collapse
Affiliation(s)
- Linlin Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Ni Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaoping Peng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lei Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200940, P. R. China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jiawen Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Qiuhui Duan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Hongling Tian
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xinbo Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yaxu Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, P. R. China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, P. R. China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
106
|
Imre G. Pyroptosis in health and disease. Am J Physiol Cell Physiol 2024; 326:C784-C794. [PMID: 38189134 PMCID: PMC11193485 DOI: 10.1152/ajpcell.00503.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The field of cell death has witnessed significant advancements since the initial discovery of apoptosis in the 1970s. This review delves into the intricacies of pyroptosis, a more recently identified form of regulated, lytic cell death, and explores the roles of pyroptotic effector molecules, with a strong emphasis on their mechanisms and relevance in various diseases. Pyroptosis, characterized by its proinflammatory nature, is driven by the accumulation of large plasma membrane pores comprised of gasdermin family protein subunits. In different contexts of cellular homeostatic perturbations, infections, and tissue damage, proteases, such as caspase-1 and caspase-4/5, play pivotal roles in pyroptosis by cleaving gasdermins. Gasdermin-D (GSDMD), the most extensively studied member of the gasdermin protein family, is expressed in various immune cells and certain epithelial cells. Upon cleavage by caspases, GSDMD oligomerizes and forms transmembrane pores in the cell membrane, leading to the release of proinflammatory cytokines. GSDMD-N, the NH2-terminal fragment, displays an affinity for specific lipids, contributing to its role in pore formation in pyroptosis. While GSDMD is the primary focus, other gasdermin family members are also discussed in detail. These proteins exhibit distinct tissue-specific functions and contribute to different facets of cell death regulation. Additionally, genetic variations in some gasdermins have been linked to diseases, underscoring their clinical relevance. Furthermore, the interplay between GSDM pores and the activation of other effectors, such as ninjurin-1, is elucidated, providing insights into the complexity of pyroptosis regulation. The findings underscore the molecular mechanisms that govern pyroptosis and its implications for various physiological and pathological processes.
Collapse
Affiliation(s)
- Gergely Imre
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States
| |
Collapse
|
107
|
Zhang N, Zeng W, Xu Y, Li R, Wang M, Liu Y, Qu S, Ferrara KW, Dai Z. Pyroptosis Induction with Nanosonosensitizer-Augmented Sonodynamic Therapy Combined with PD-L1 Blockade Boosts Efficacy against Liver Cancer. Adv Healthc Mater 2024; 13:e2302606. [PMID: 37987462 PMCID: PMC10939858 DOI: 10.1002/adhm.202302606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Induction of pyroptosis can promote anti-PD-L1 therapeutic efficacy due to the release of pro-inflammatory cytokines, but current approaches can cause off target toxicity. Herein, a phthalocyanine-conjugated mesoporous silicate nanoparticle (PMSN) is designed for amplifying sonodynamic therapy (SDT) to augment oxidative stress and induce robust pyroptosis in tumors. The sub-10 nm diameter structure and c(RGDyC)-PEGylated modification enhance tumor targeting and renal clearance. The unique porous architecture of PMSN doubles ROS yield and enhances pyroptotic cell populations in tumors (25.0%) via a cavitation effect. PMSN-mediated SDT treatment efficiently reduces tumor mass and suppressed residual tumors in treated and distant sites by synergizing with PD-L1 blockade (85.93% and 77.09%, respectively). Furthermore, loading the chemotherapeutic, doxorubicin, into PMSN intensifies SDT-pyroptotic effects and increased efficacy. This is the first report of the use of SDT regimens to induce pyroptosis in liver cancer. This noninvasive and effective strategy has potential for clinical translation.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Wenlong Zeng
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Mengxuan Wang
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Yijia Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| | | | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
108
|
Yu B, Wang Y, Bing T, Tang Y, Huang J, Xiao H, Liu C, Yu Y. Platinum Prodrug Nanoparticles with COX-2 Inhibition Amplify Pyroptosis for Enhanced Chemotherapy and Immune Activation of Pancreatic Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310456. [PMID: 38092007 DOI: 10.1002/adma.202310456] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum-based chemotherapeutic agents can induce pyroptosis via caspase-3 activation. However, these agents also enhance cyclooxygenase-2 (COX-2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy-induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT-Pt-In) containing both indomethacin (In, a COX-2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self-assemble into nanoparticles (denoted as Pt-In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX-2 expression, hence overcoming the chemoresistance and amplifying cisplatin-induced pyroptosis. In a pancreatic cancer mouse model, Pt-In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti-programmed death ligand (α-PD-L1) treatment, Pt-In NP demonstrate the ability to completely suppress metastatic tumors, transforming "cold tumors" into "hot tumors". Overall, the sustained release of Pt(IV) and In from Pt-In NP amplifies platinum-drug-induced pyroptosis to elicit long-term immune responses, hence presenting a generalizable strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Bingzheng Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yushu Wang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing, 100176, China
| | - Yujing Tang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd, Beijing, 100013, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
109
|
Wang J, Chen P, Han G, Zhou Y, Xiang X, Bian M, Huang L, Wang X, He B, Lu S. Rab32 facilitates Schwann cell pyroptosis in rats following peripheral nerve injury by elevating ROS levels. J Transl Med 2024; 22:194. [PMID: 38388913 PMCID: PMC10885539 DOI: 10.1186/s12967-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) is commonly observed in clinical practice, yet the underlying mechanisms remain unclear. This study investigated the correlation between the expression of a Ras-related protein Rab32 and pyroptosis in rats following PNI, and potential mechanisms have been explored by which Rab32 may influence Schwann cells pyroptosis and ultimately peripheral nerve regeneration (PNR) through the regulation of Reactive oxygen species (ROS) levels. METHODS The authors investigated the induction of Schwann cell pyroptosis and the elevated expression of Rab32 in a rat model of PNI. In vitro experiments revealed an upregulation of Rab32 during Schwann cell pyroptosis. Furthermore, the effect of Rab32 on the level of ROS in mitochondria in pyroptosis model has also been studied. Finally, the effects of knocking down the Rab32 gene on PNR were assessed, morphology, sensory and motor functions of sciatic nerves, electrophysiology and immunohistochemical analysis were conducted to assess the therapeutic efficacy. RESULTS Silencing Rab32 attenuated PNI-induced Schwann cell pyroptosis and promoted peripheral nerve regeneration. Furthermore, our findings demonstrated that Rab32 induces significant oxidative stress by damaging the mitochondria of Schwann cells in the pyroptosis model in vitro. CONCLUSION Rab32 exacerbated Schwann cell pyroptosis in PNI model, leading to delayed peripheral nerve regeneration. Rab32 can be a potential target for future therapeutic strategy in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingdong Xiang
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Binfeng He
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Genel Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
110
|
Lu W, Yan J, Wang C, Qin W, Han X, Qin Z, Wei Y, Xu H, Gao J, Gao C, Ye T, Tay FR, Niu L, Jiao K. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res 2024; 12:11. [PMID: 38383487 PMCID: PMC10881583 DOI: 10.1038/s41413-023-00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024] Open
Abstract
Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zixuan Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wei
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
111
|
Jiang X, Zhang X, Cai X, Li N, Zheng H, Tang M, Zhu J, Su K, Zhang R, Ye N, Peng J, Zhao M, Wu W, Yang J, Ye H. NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation. SCIENCE ADVANCES 2024; 10:eadi9284. [PMID: 38324683 PMCID: PMC10849585 DOI: 10.1126/sciadv.adi9284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangli Zhu
- Department of Urology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
112
|
Adamiec-Organisciok M, Wegrzyn M, Cienciala L, Magate N, Skonieczna M, Nackiewicz J. Resistance to death pathway induction as a potential targeted therapy in CRISPR/Cas-9 knock-out colorectal cancer cell lines. PRZEGLAD GASTROENTEROLOGICZNY 2024; 19:112-120. [PMID: 38939059 PMCID: PMC11200076 DOI: 10.5114/pg.2024.134872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 06/29/2024]
Abstract
Regulated cell death is a fundamental biological process that plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. Ferroptosis is an iron-dependent process, characterized by the accumulation of oxidized and damaged lipids, which leads to programmed cell death. Among the ferroptotic pathway genes regulating this process, GPX4, TFRC, ACSL4, FSP1, SLC7A11, and PROM2 could be considered. There are many well-known ferroptotic pathway regulators, which are discussed in this compact review. Cells with tissues of different origin display sensitive or resistant phenotypes to such regulators. In some cases, unexpected changes during cell treatment occurred, suggesting the possibility of regulating the death pathway. We assumed that possible changing of ferro-sensitivity to ferro-resistance in cells, especially in colorectal cancer cell lines, is responded for induced chemoresistance. Using novel techniques, such as CRISPR/Cas-9 genome editing, an induced phenotype "switching" is possible.
Collapse
Affiliation(s)
- Malgorzata Adamiec-Organisciok
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Magdalena Wegrzyn
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Lukasz Cienciala
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Ngoni Magate
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | | |
Collapse
|
113
|
Zhong C, Xie Y, Wang H, Chen W, Yang Z, Zhang L, Deng Q, Cheng T, Li M, Ju J, Liu Y, Liang H. Berberine inhibits NLRP3 inflammasome activation by regulating mTOR/mtROS axis to alleviate diabetic cardiomyopathy. Eur J Pharmacol 2024; 964:176253. [PMID: 38096968 DOI: 10.1016/j.ejphar.2023.176253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Diabetes cardiomyopathy (DCM) refers to myocardial dysfunction and disorganization resulting from diabetes. In this study, we investigated the effects of berberine on cardiac function in male db/db mice with metformin as a positive control. After treatment for 8 weeks, significant improvements in cardiac function and a reduction in collagen deposition were observed in db/db mice. Furthermore, inflammation and pyroptosis were seen to decrease in these mice, as evidenced by decreased expressions of p-mTOR, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), IL-1β, IL-18, caspase-1, and gasdermin D (GSDMD). In vitro experiments on H9C2 cells showed that glucose exposure at 33 mmol/L induced pyroptosis, whereas berberine treatment reduced the expression of p-mTOR and NLRP3 inflammasome components. Moreover, berberine treatment was seen to inhibit the generation of mitochondrial reactive oxygen species (mtROS) and effectively improve cell damage in high glucose-induced H9C2 cells. The mTOR inhibitor, Torin-1, showed a therapeutic effect similar to that of berberine, by reducing the expression of NLRP3 inflammasome components and inhibiting mtROS generation. However, the activation of mTOR by MHY1485 partially nullified berberine's protective effects during high glucose stress. Collectively, our study reveals the mechanism that berberine regulates the mTOR/mtROS axis to inhibit pyroptosis induced by NLRP3 inflammasome activation, thereby alleviating DCM.
Collapse
Affiliation(s)
- Changsheng Zhong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yilin Xie
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| | - Huifang Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wenxian Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhenbo Yang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Lei Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qin Deng
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| | - Ting Cheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Mengyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jin Ju
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| | - Yanyan Liu
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.
| | - Haihai Liang
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
114
|
Zhu G, Zheng P, Wang M, Xie Y, Sun Q, Gao M, Li C. Near-Infrared Light-Triggered Thermoresponsive Pyroptosis System for Synergistic Tumor Immunotherapy. Adv Healthc Mater 2024; 13:e2302095. [PMID: 37975590 DOI: 10.1002/adhm.202302095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Pyroptosis, as an inflammatory cell death, has been widely applied in tumor therapy, but its systemic adverse reactions caused by nonspecific activation still seriously hinder its application. Herein, a near-infrared (NIR) light-triggered thermoresponsive pyroptosis strategy is designed for on-demand initiation of pyroptosis and synergistic tumor immunotherapy. Specifically, glucose oxidase (GOx) loaded and heat-sensitive material p(OEOMA-co-MEMA) (PCM) modified mesoporous Pt nanoparticles (abbreviated as PCM Pt/GOx) are prepared as the mild-temperature triggered pyroptosis inducer. Pt nanoparticles can not only serve as nanozyme with catalase-like activity to promote GOx catalytic reaction, but also act as photothermal agent to achieve mild-temperature photothermal therapy (PTT) and thermoresponsive GOx release on-demand under the irradiation of NIR light, thereby activating and promoting pyroptosis. In vitro and in vivo experiments prove that NIR light-triggered thermoresponsive pyroptosis system exhibits excellent antitumor immunity activity as well as significantly inhibits tumor growth. The precise control of pyroptosis by NIR light as well as pyroptosis cooperated with mild-temperature PTT for synergistically attenuated tumor immunotherapy are reported for the first time. This work provides a new method to initiate pyroptosis on demand, which is of great significance for spatiotemporally controllable pyroptosis and immunotherapy.
Collapse
Affiliation(s)
- Guoqing Zhu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
115
|
Qiao L, Zhu G, Jiang T, Qian Y, Sun Q, Zhao G, Gao H, Li C. Self-Destructive Copper Carriers Induce Pyroptosis and Cuproptosis for Efficient Tumor Immunotherapy Against Dormant and Recurrent Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308241. [PMID: 37820717 DOI: 10.1002/adma.202308241] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Activating the strong immune system is a key initiative to counteract dormant tumors and prevent recurrence. Herein, self-destructive and multienzymatically active copper-quinone-GOx nanoparticles (abbreviated as CQG NPs) have been designed to induce harmonious and balanced pyroptosis and cuproptosis using the "Tai Chi mindset" to awaken the immune response for suppressing dormant and recurrent tumors. This cleverly designed material can disrupt the antioxidant defense mechanism of tumor cells by inhibiting the nuclear factor-erythroid 2-related factor 2 (NRF2)-quinone oxidoreductase 1 (NQO1) signaling pathway. Furthermore, combined with its excellent multienzyme activity, it activates NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis. Meanwhile, cuproptosis can be triggered by copper ions released from the self-destructive disintegration of CQG NPs and the sensitivity of cancer cells to cuproptosis is enhanced through the depletion of endogenous copper chelators via the Michael addition reaction between glutathione (GSH) and quinone ligand, oxygen production from catalase-like reaction, and starvation-induced glucose deficiency. More importantly, CQG NPs-induced pyroptosis and cuproptosis can promote immunosuppressive tumor microenvironment (TME) remodeling, enhance the infiltration of immune cells into the tumor, and activate robust systemic immunity. Collectively, this study provides a new strategy to resist tumor dormancy, prevent tumor recurrence, and improve the clinical prognosis of tumors.
Collapse
Affiliation(s)
- Luying Qiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Guoqing Zhu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Tengfei Jiang
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Guanghui Zhao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Haidong Gao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
116
|
Zhang Z, Hu H, Luo Q, Yang K, Zou Z, Shi M, Liang W. Dihydroxyacetone phosphate accumulation leads to podocyte pyroptosis in diabetic kidney disease. J Cell Mol Med 2024; 28:e18073. [PMID: 38063077 PMCID: PMC10844688 DOI: 10.1111/jcmm.18073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) can lead to accumulation of glucose upstream metabolites due to dysfunctional glycolysis. But the effects of accumulated glycolysis metabolites on podocytes in DKD remain unknown. The present study examined the effect of dihydroxyacetone phosphate (DHAP) on high glucose induced podocyte pyroptosis. By metabolomics, levels of DHAP, GAP, glucose-6-phosphate and fructose 1, 6-bisphosphate were significantly increased in glomeruli of db/db mice. Furthermore, the expression of LDHA and PKM2 were decreased. mRNA sequencing showed upregulation of pyroptosis-related genes (Nlrp3, Casp1, etc.). Targeted metabolomics demonstrated higher level of DHAP in HG-treated podocytes. In vitro, ALDOB expression in HG-treated podocytes was significantly increased. siALDOB-transfected podocytes showed less DHAP level, mTORC1 activation, reactive oxygen species (ROS) production, and pyroptosis, while overexpression of ALDOB had opposite effects. Furthermore, GAP had no effect on mTORC1 activation, and mTORC1 inhibitor rapamycin alleviated ROS production and pyroptosis in HG-stimulated podocytes. Our findings demonstrate that DHAP represents a critical metabolic product for pyroptosis in HG-stimulated podocytes through regulation of mTORC1 pathway. In addition, the results provide evidence that podocyte injury in DKD may be treated by reducing DHAP.
Collapse
Affiliation(s)
- Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanChina
| | - Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanChina
| | - Qiang Luo
- Department of NephrologyThe Central Hospital of WuhanWuhanChina
| | - Keju Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanChina
| | - Zhengping Zou
- Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan UniversityQianjiangChina
- Qianjiang Clinical Medical CollegeHealth Science CenterYangtze UniversityQianjiangChina
| | - Ming Shi
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanChina
| |
Collapse
|
117
|
Buonfiglio F, Korb CA, Stoffelns B, Pfeiffer N, Gericke A. Recent Advances in Our Understanding of Age-Related Macular Degeneration: Mitochondrial Dysfunction, Redox Signaling, and the Complement System. Aging Dis 2024; 16:1535-1575. [PMID: 38421830 PMCID: PMC12096954 DOI: 10.14336/ad.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Age-related macular degeneration (AMD) is a prevalent degenerative disorder of the central retina, which holds global significance as the fourth leading cause of blindness. The condition is characterized by a multifaceted pathophysiology that involves aging, oxidative stress, inflammation, vascular dysfunction, and complement activation. The complex interplay of these factors contributes to the initiation and progression of AMD. Current treatments primarily address choroidal neovascularization (CNV) in neovascular AMD. However, the approval of novel drug therapies for the atrophic and more gradual variant, known as geographic atrophy (GA), has recently occurred. In light of the substantial impact of AMD on affected individuals' quality of life and the strain it places on healthcare systems, there is a pressing need for innovative medications. This paper aims to provide an updated and comprehensive overview of advancements in our understanding of the etiopathogenesis of AMD. Special attention will be given to the influence of aging and altered redox status on mitochondrial dynamics, cell death pathways, and the intricate interplay between oxidative stress and the complement system, specifically in the context of GA. Additionally, this review will shed light on newly approved therapies and explore emerging alternative treatment strategies in the field. The objective is to contribute to the ongoing dialogue surrounding AMD, offering insights into the latest developments that may pave the way for more effective management and intervention approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
118
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
119
|
Akuma DC, Wodzanowski KA, Schwartz Wertman R, Exconde PM, Vázquez Marrero VR, Odunze CE, Grubaugh D, Shin S, Taabazuing C, Brodsky IE. Catalytic activity and autoprocessing of murine caspase-11 mediate noncanonical inflammasome assembly in response to cytosolic LPS. eLife 2024; 13:e83725. [PMID: 38231198 PMCID: PMC10794067 DOI: 10.7554/elife.83725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
Inflammatory caspases are cysteine protease zymogens whose activation following infection or cellular damage occurs within supramolecular organizing centers (SMOCs) known as inflammasomes. Inflammasomes recruit caspases to undergo proximity-induced autoprocessing into an enzymatically active form that cleaves downstream targets. Binding of bacterial LPS to its cytosolic sensor, caspase-11 (Casp11), promotes Casp11 aggregation within a high-molecular-weight complex known as the noncanonical inflammasome, where it is activated to cleave gasdermin D and induce pyroptosis. However, the cellular correlates of Casp11 oligomerization and whether Casp11 forms an LPS-induced SMOC within cells remain unknown. Expression of fluorescently labeled Casp11 in macrophages revealed that cytosolic LPS induced Casp11 speck formation. Unexpectedly, catalytic activity and autoprocessing were required for Casp11 to form LPS-induced specks in macrophages. Furthermore, both catalytic activity and autoprocessing were required for Casp11 speck formation in an ectopic expression system, and processing of Casp11 via ectopically expressed TEV protease was sufficient to induce Casp11 speck formation. These data reveal a previously undescribed role for Casp11 catalytic activity and autoprocessing in noncanonical inflammasome assembly, and shed new light on the molecular requirements for noncanonical inflammasome assembly in response to cytosolic LPS.
Collapse
Affiliation(s)
- Daniel C Akuma
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | | | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Cornelius Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
120
|
Chen W, He Y, Zhou G, Chen X, Ye Y, Zhang G, Liu H. Multiomics characterization of pyroptosis in the tumor microenvironment and therapeutic relevance in metastatic melanoma. BMC Med 2024; 22:24. [PMID: 38229080 PMCID: PMC10792919 DOI: 10.1186/s12916-023-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pyroptosis, mediated by gasdermins with the release of multiple inflammatory cytokines, has emerged as playing an important role in targeted therapy and immunotherapy due to its effectiveness at inhibiting tumor growth. Melanoma is one of the most commonly used models for immunotherapy development, though an inadequate immune response can occur. Moreover, the development of pyroptosis-related therapy and combinations with other therapeutic strategies is limited due to insufficient understanding of the role of pyroptosis in the context of different tumor immune microenvironments (TMEs). METHODS Here, we present a computational model (pyroptosis-related gene score, PScore) to assess the pyroptosis status. We applied PScore to 1388 melanoma samples in our in-house cohort and eight other publicly available independent cohorts and then calculated its prognostic power of and potential as a predictive marker of immunotherapy efficacy. Furthermore, we performed association analysis for PScore and the characteristics of the TME by using bulk, single-cell, and spatial transcriptomics and assessed the association of PScore with mutation status, which contributes to targeted therapy. RESULTS Pyroptosis-related genes (PRGs) showed distinct expression patterns and prognostic predictive ability in melanoma. Most PRGs were associated with better survival in metastatic melanoma. Our PScore model based on genes associated with prognosis exhibits robust performance in survival prediction in multiple metastatic melanoma cohorts. We also found PScore to be associated with BRAF mutation and correlate positively with multiple molecular signatures, such as KRAS signaling and the IFN gamma response pathway. Based on our data, melanoma with an immune-enriched TME had a higher PScore than melanoma with an immune-depleted or fibrotic TME. Additionally, monocytes had the highest PScore and malignant cells and fibroblasts the lowest PScore based on single-cell and spatial transcriptome analyses. Finally, a higher PScore was associated with better therapeutic efficacy of immune checkpoint blockade, suggesting the potential of pyroptosis to serve as a marker of immunotherapy response. CONCLUSIONS Collectively, our findings indicate that pyroptosis is a prognostic factor and is associated with the immune response in metastatic melanoma, as based on multiomics data. Our results provide a theoretical basis for drug combination and reveal potential immunotherapy response markers.
Collapse
Affiliation(s)
- Wenqiong Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yi He
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Guowei Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guanxiong Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Hong Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, China.
- Big Data Institute, Central South University, Changsha, 410083, China.
| |
Collapse
|
121
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
122
|
Wang Q, Guo S, Hu D, Dong X, Meng Z, Jiang Y, Feng Z, Zhou W, Song W. Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease. Neuroscience 2024; 536:1-11. [PMID: 37944579 DOI: 10.1016/j.neuroscience.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Amyloid β protein (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aβ induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aβ treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aβ and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.
Collapse
Affiliation(s)
- Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
123
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
124
|
Zhan F, Zhang J, He P, Chen W, Ouyang Y. Macrophage-derived exosomal miRNA-141 triggers endothelial cell pyroptosis by targeting NLRP3 to accelerate sepsis progression. Int J Immunopathol Pharmacol 2024; 38:3946320241234736. [PMID: 38652556 PMCID: PMC11041538 DOI: 10.1177/03946320241234736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/07/2024] [Indexed: 04/25/2024] Open
Abstract
Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1β, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.
Collapse
Affiliation(s)
| | | | - Ping He
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenteng Chen
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanhong Ouyang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
125
|
Kuang L, Wu Y, Shu J, Yang J, Zhou H, Huang X. Pyroptotic Macrophage-Derived Microvesicles Accelerate Formation of Neutrophil Extracellular Traps via GSDMD-N-expressing Mitochondrial Transfer during Sepsis. Int J Biol Sci 2024; 20:733-750. [PMID: 38169726 PMCID: PMC10758106 DOI: 10.7150/ijbs.87646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophage pyroptosis and neutrophil extracellular traps (NETs) play a critical role in sepsis pathophysiology; however, the role of macrophage pyroptosis in the regulation of NETs formation during sepsis is unknown. Here, we showed that macrophages transfer mitochondria to neutrophils through microvesicles following pyroptosis; this process induces mitochondrial dysfunction and triggers the induction of NETs formation through mitochondrial reactive oxygen species (mtROS)/Gasdermin D (GSDMD) axis. These pyroptotic macrophage-derived microvesicles can induce tissues damage, coagulation, and NETs formation in vivo. Disulfiram partly inhibits these effects in a mouse model of sepsis. Pyroptotic macrophage-derived microvesicles induce NETs formation through mitochondrial transfer, both in vitro and in vivo. Microvesicles-mediated NETs formation depends on the presence of GSDMD-N-expressing mitochondria in the microvesicles. This study elucidates a microvesicles-based pathway for NETs formation during sepsis and proposes a microvesicles-based intervention measure for sepsis management.
Collapse
Affiliation(s)
- Liangjian Kuang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingxian Shu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
| |
Collapse
|
126
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
127
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
128
|
Wang Y, Xiong Z, Zhang Q, Liu M, Zhang J, Qi X, Jiang X, Yu W. Acetyl-11-Keto-β-Boswellic Acid Accelerates the Repair of Spinal Cord Injury in Rats by Resisting Neuronal Pyroptosis with Nrf2. Int J Mol Sci 2023; 25:358. [PMID: 38203528 PMCID: PMC10779011 DOI: 10.3390/ijms25010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The primary aim of this study is to delve into the potential of Acetyl-11-keto-β-boswellic acid (AKBA) in ameliorating neuronal damage induced by acute spinal cord injury, as well as to unravel the intricate underlying mechanisms. A cohort of 40 Sprague-Dawley rats was meticulously categorized into four groups. Following a seven-day oral administration of AKBA, damaged spinal cord samples were meticulously procured for Nissl staining and electron microscopy to assess neuronal demise. Employing ELISA, immunofluorescence, Western blot (WB), and quantitative polymerase chain reaction (qPCR), the modulatory effects of AKBA within the context of spinal cord injury were comprehensively evaluated. Furthermore, employing an ex vivo extraction of spinal cord neurons, an ATP + LPS-induced pyroptotic injury model was established. The model was subsequently subjected to Nrf2 inhibition, followed by a battery of assessments involving ELISA, DCFH-DA staining, flow cytometry, immunofluorescence, and WB to decipher the effects of AKBA on the spinal cord neuron pyroptosis model. By engaging the Nrf2-ROS-NLRP3 pathway, AKBA exerted a repressive influence on the expression of the pyroptotic initiator protein Caspase-1, thereby mitigating the release of GSDMD and alleviating pyroptosis. Additionally, AKBA demonstrated the ability to attenuate the release of IL-18 and IL-1β, curbing neuronal loss and expediting the restorative processes within the context of spinal cord injury. Our study elucidates that AKBA can reduce spinal cord neuronal apoptosis, providing a basis for the development of AKBA as a clinical treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Zongliang Xiong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Qiyuan Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Mengmeng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Jingjing Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xinyue Qi
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
129
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
130
|
Mukhi D, Li L, Liu H, Doke T, Kolligundla LP, Ha E, Kloetzer K, Abedini A, Mukherjee S, Wu J, Dhillon P, Hu H, Guan D, Funai K, Uehara K, Titchenell PM, Baur JA, Wellen KE, Susztak K. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J Clin Invest 2023; 134:e172963. [PMID: 38051585 PMCID: PMC10866669 DOI: 10.1172/jci172963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Lingzhi Li
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Lakshmi P. Kolligundla
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Eunji Ha
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Konstantin Kloetzer
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Amin Abedini
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Sarmistha Mukherjee
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Poonam Dhillon
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Hailong Hu
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
| | - Dongyin Guan
- Division of Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Kahealani Uehara
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Institutes for Diabetes, Obesity and Metabolism
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Wellen
- Department of Cancer Biology
- Abramson Family Cancer Research Institute, and
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division
- Institutes for Diabetes, Obesity and Metabolism
- Department of Genetics, and
- Penn-CHOP Kidney Innovation Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
131
|
Rusetskaya NY, Loginova NY, Pokrovskaya EP, Chesovskikh YS, Titova LE. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. BIOMEDITSINSKAIA KHIMIIA 2023; 69:333-352. [PMID: 38153050 DOI: 10.18097/pbmc20236906333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 μM or 68 μg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 μM or 113 μg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
Collapse
Affiliation(s)
- N Yu Rusetskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - N Yu Loginova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - E P Pokrovskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu S Chesovskikh
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Titova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
132
|
Devant P, Dong Y, Mintseris J, Ma W, Gygi SP, Wu H, Kagan JC. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 2023; 624:451-459. [PMID: 37993712 PMCID: PMC10807405 DOI: 10.1038/s41586-023-06751-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines1,2. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1β and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes3. Here we demonstrate that the lipopolysaccharide receptor caspase-4 from humans and other mammalian species (except rodents) can cleave pro-IL-18 with an efficiency similar to pro-IL-1β and pro-IL-18 cleavage by the prototypical IL-1-converting enzyme caspase-1. This ability of caspase-4 to cleave pro-IL-18, combined with its previously defined ability to cleave and activate the lytic pore-forming protein gasdermin D (GSDMD)4,5, enables human cells to bypass the need for canonical inflammasomes and caspase-1 for IL-18 release. The structure of the caspase-4-pro-IL-18 complex determined using cryogenic electron microscopy reveals that pro-lL-18 interacts with caspase-4 through two distinct interfaces: a protease exosite and an interface at the caspase-4 active site involving residues in the pro-domain of pro-IL-18, including the tetrapeptide caspase-recognition sequence6. The mechanisms revealed for cytokine substrate capture and cleavage differ from those observed for the caspase substrate GSDMD7,8. These findings provide a structural framework for the discussion of caspase activities in health and disease.
Collapse
Affiliation(s)
- Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
133
|
Kopp A, Hagelueken G, Jamitzky I, Moecking J, Schiffelers LDJ, Schmidt FI, Geyer M. Pyroptosis inhibiting nanobodies block Gasdermin D pore formation. Nat Commun 2023; 14:7923. [PMID: 38040708 PMCID: PMC10692205 DOI: 10.1038/s41467-023-43707-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Human Gasdermin D (GSDMD) is a key mediator of pyroptosis, a pro-inflammatory form of cell death occurring downstream of inflammasome activation as part of the innate immune defence. Upon cleavage by inflammatory caspases in the cytosol, the N-terminal domain of GSDMD forms pores in the plasma membrane resulting in cytokine release and eventually cell death. Targeting GSDMD is an attractive way to dampen inflammation. In this study, six GSDMD targeting nanobodies are characterized in terms of their binding affinity, stability, and effect on GSDMD pore formation. Three of the nanobodies inhibit GSDMD pore formation in a liposome leakage assay, although caspase cleavage was not perturbed. We determine the crystal structure of human GSDMD in complex with two nanobodies at 1.9 Å resolution, providing detailed insights into the GSDMD-nanobody interactions and epitope binding. The pore formation is sterically blocked by one of the nanobodies that binds to the oligomerization interface of the N-terminal domain in the multi-subunit pore assembly. Our biochemical and structural findings provide tools for studying inflammasome biology and build a framework for the design of GSDMD targeting drugs.
Collapse
Affiliation(s)
- Anja Kopp
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Gregor Hagelueken
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Isabell Jamitzky
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jonas Moecking
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
134
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
135
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|
136
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
137
|
Miao R, Jiang C, Chang WY, Zhang H, An J, Ho F, Chen P, Zhang H, Junqueira C, Amgalan D, Liang FG, Zhang J, Evavold CL, Hafner-Bratkovič I, Zhang Z, Fontana P, Xia S, Waldeck-Weiermair M, Pan Y, Michel T, Bar-Peled L, Wu H, Kagan JC, Kitsis RN, Zhang P, Liu X, Lieberman J. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 2023; 56:2523-2541.e8. [PMID: 37924812 PMCID: PMC10872579 DOI: 10.1016/j.immuni.2023.10.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Winston Y Chang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Haiwei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinsu An
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Felicia Ho
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pengcheng Chen
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caroline Junqueira
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-009, Brazil
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Felix G Liang
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Charles L Evavold
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Iva Hafner-Bratkovič
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Synthetic Biology and Immunology, National Institute of Chemistry and EN-FIST Centre of Excellence and Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pietro Fontana
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiyu Xia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Markus Waldeck-Weiermair
- Brigham and Women's Hospital, Department of Medicine, Cardiovascular Division, Harvard Medical School, Boston, MA 02115, USA
| | - Youdong Pan
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Michel
- Brigham and Women's Hospital, Department of Medicine, Cardiovascular Division, Harvard Medical School, Boston, MA 02115, USA
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02129, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Xing Liu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
138
|
Chakraborty S, Singh A, Wang L, Wang X, Sanborn MA, Ye Z, Maienschein-Cline M, Mukhopadhyay A, Ganesh BB, Malik AB, Rehman J. Trained immunity of alveolar macrophages enhances injury resolution via KLF4-MERTK-mediated efferocytosis. J Exp Med 2023; 220:e20221388. [PMID: 37615937 PMCID: PMC10450795 DOI: 10.1084/jem.20221388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies suggest that training of innate immune cells such as tissue-resident macrophages by repeated noxious stimuli can heighten host defense responses. However, it remains unclear whether trained immunity of tissue-resident macrophages also enhances injury resolution to counterbalance the heightened inflammatory responses. Here, we studied lung-resident alveolar macrophages (AMs) prechallenged with either the bacterial endotoxin or with Pseudomonas aeruginosa and observed that these trained AMs showed greater resilience to pathogen-induced cell death. Transcriptomic analysis and functional assays showed greater capacity of trained AMs for efferocytosis of cellular debris and injury resolution. Single-cell high-dimensional mass cytometry analysis and lineage tracing demonstrated that training induces an expansion of a MERTKhiMarcohiCD163+F4/80low lung-resident AM subset with a proresolving phenotype. Reprogrammed AMs upregulated expression of the efferocytosis receptor MERTK mediated by the transcription factor KLF4. Adoptive transfer of these trained AMs restricted inflammatory lung injury in recipient mice exposed to lethal P. aeruginosa. Thus, our study has identified a subset of tissue-resident trained macrophages that prevent hyperinflammation and restore tissue homeostasis following repeated pathogen challenges.
Collapse
Affiliation(s)
- Sreeparna Chakraborty
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Abhalaxmi Singh
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Li Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Xinge Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mark A. Sanborn
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zijing Ye
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Balaji B. Ganesh
- Research Resources Center, University of Illinois Chicago, Chicago, Illinois, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois College of Medicine, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
139
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|
140
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
141
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
142
|
Hao W, Feng C. Research progress on pyroptosis and its effect on the central nervous system. Neurobiol Dis 2023; 188:106333. [PMID: 39491175 DOI: 10.1016/j.nbd.2023.106333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Pyroptosis is an inflammatory and lysis type of programmed cell death. In the canonical pyroptosis signaling pathway, the NLRP3 inflammasome activates inflammatory caspase-1, which then shears cut the executor protein GSDMD. The N domains of GSDMD move to heterogeneous membranes, form pores, and release inflammatory cytokines IL-1β and IL-18, causing cell membrane swelling and rupture. Pyroptosis is mainly regulated by the key proteins in the signaling pathway, including inflammasome, caspase-1, GSDMD, IL-1β, and IL-18, as well as their agonists and inhibitors. Appropriate pyroptosis can improve host defense mechanisms, while excessive pyroptosis would derive pathological effects on central nervous system, leding to neuroinflammatory response, blood-brain barrier damage, and cognitive disfunction.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Science Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
143
|
Fredrich I, Halabi EA, Kohler RH, Ge X, Garris CS, Weissleder R. Highly Active Myeloid Therapy for Cancer. ACS NANO 2023; 17:20666-20679. [PMID: 37824733 PMCID: PMC10941024 DOI: 10.1021/acsnano.3c08034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Tumor-associated macrophages (TAM) interact with cancer and stromal cells and are integral to sustaining many cancer-promoting features. Therapeutic manipulation of TAM could therefore improve clinical outcomes and synergize with immunotherapy and other cancer therapies. While different nanocarriers have been used to target TAM, a knowledge gap exists on which TAM pathways to target and what payloads to deliver for optimal antitumor effects. We hypothesized that a multipart combination involving the Janus tyrosine kinase (JAK), noncanonical nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and toll-like receptor (TLR) pathways could lead to a highly active myeloid therapy (HAMT). Thus, we devised a screen to determine drug combinations that yield maximum IL-12 production from myeloid cells to treat the otherwise highly immunosuppressive myeloid environments in tumors. Here we show the extraordinary efficacy of a triple small-molecule combination in a TAM-targeted nanoparticle for eradicating murine tumors, jumpstarting a highly efficient antitumor response by adopting a distinctive antitumor TAM phenotype and synergizing with other immunotherapies. The HAMT therapy represents a recently developed approach in immunotherapy and leads to durable responses in murine cancer models.
Collapse
Affiliation(s)
- Ina Fredrich
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Elias A. Halabi
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Rainer H. Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Christopher S. Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, United States
| |
Collapse
|
144
|
Rius-Pérez S, Pérez S, Toledano MB, Sastre J. Mitochondrial Reactive Oxygen Species and Lytic Programmed Cell Death in Acute Inflammation. Antioxid Redox Signal 2023; 39:708-727. [PMID: 37450339 PMCID: PMC10619893 DOI: 10.1089/ars.2022.0209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Significance: Redox signaling through mitochondrial reactive oxygen species (mtROS) has a key role in several mechanisms of regulated cell death (RCD), necroptosis, ferroptosis, pyroptosis, and apoptosis, thereby decisively contributing to inflammatory disorders. The role of mtROS in apoptosis has been extensively addressed, but their involvement in necrotic-like RCD has just started being elucidated, providing novel insights into the pathophysiology of acute inflammation. Recent Advances: p53 together with mtROS drive necroptosis in acute inflammation through downregulation of sulfiredoxin and peroxiredoxin 3. Mitochondrial hydroorotate dehydrogenase is a key redox system in the regulation of ferroptosis. In addition, a noncanonical pathway, which generates mtROS through the Ragulator-Rag complex and acts via mTORC1 to promote gasdermin D oligomerization, triggers pyroptosis. Critical Issues: mtROS trigger positive feedback loops leading to lytic RCD in conjunction with the necrosome, the inflammasome, glutathione depletion, and glutathione peroxidase 4 deficiency. Future Directions: The precise mechanism of membrane rupture in ferroptosis and the contribution of mtROS to ferroptosis in inflammatory disorders are still unclear, which will need further research. Mitochondrial antioxidants may provide promising therapeutic approaches toward acute inflammatory disorders. However, establishing doses and windows of action will be required to optimize their therapeutic potential, and to avoid potential adverse side effects linked to the blockade of beneficial mtROS adaptive signaling. Antioxid. Redox Signal. 39, 708-727.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | | | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| |
Collapse
|
145
|
Deng Y, Jia F, Jiang P, Chen L, Xing L, Shen X, Li L, Huang Y. Biomimetic nanoparticle synchronizing pyroptosis induction and mitophagy inhibition for anti-tumor therapy. Biomaterials 2023; 301:122293. [PMID: 37639978 DOI: 10.1016/j.biomaterials.2023.122293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Inducing pyroptosis in cancer cells can result in a strong anti-tumor immune response. Our preliminary study indicates that pyroptosis can be temporarily strengthened by disrupting mitochondria, but ultimately diminished by defensive mitophagy. Here, this study reports a nano-system camouflaged with hybrid membranes consisting of homologous cell membrane and corresponding mitochondrial membrane, which is used to deliver a drug complex Ca@GOx consisting of calcium phosphate and glucose oxidase. By taking advantage of the homing effects of cell membrane and the orientated fusion mechanism of subcellular membrane, the nano-system is able to deliver Ca@GOx to mitochondria, induce mitochondrial Ca2+ overload and generate significant levels of ROS, thus leading to pyroptosis. However, it's found that this system exhibits limited anti-tumor effects in vivo due to the compensatory activation of mitophagy serving as negative feedback to pyroptosis. To address this issue, mitophagy-inhibiting chloroquine is loaded into nanoparticles to intensify pyroptosis. As a result, the combination significantly promotes tumor infiltration of CD8+T cells and improves anti-tumor effects. Together, this study establishes a rational combination of targeted mitochondria disruption and mitophagy blockage for effective pyroptosis-based therapy.
Collapse
Affiliation(s)
- Yudi Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Fuya Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Peihang Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
146
|
Chen SY, Li YP, You YP, Zhang HR, Shi ZJ, Liang QQ, Yuan T, Xu R, Xu LH, Zha QB, Ou-Yang DY, He XH. Theaflavin mitigates acute gouty peritonitis and septic organ injury in mice by suppressing NLRP3 inflammasome assembly. Acta Pharmacol Sin 2023; 44:2019-2036. [PMID: 37221235 PMCID: PMC10545837 DOI: 10.1038/s41401-023-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays important role in defending against infections, but its aberrant activation is causally linked to many inflammatory diseases, thus being a therapeutic target for these diseases. Theaflavin, one major ingredient of black tea, exhibits potent anti-inflammatory and anti-oxidative activities. In this study, we investigated the therapeutic effects of theaflavin against NLRP3 inflammasome activation in macrophages in vitro and in animal models of related diseases. We showed that theaflavin (50, 100, 200 μM) dose-dependently inhibited NLRP3 inflammasome activation in LPS-primed macrophages stimulated with ATP, nigericin or monosodium urate crystals (MSU), evidenced by reduced release of caspase-1p10 and mature interleukin-1β (IL-1β). Theaflavin treatment also inhibited pyroptosis as shown by decreased generation of N-terminal fragment of gasdermin D (GSDMD-NT) and propidium iodide incorporation. Consistent with these, theaflavin treatment suppressed ASC speck formation and oligomerization in macrophages stimulated with ATP or nigericin, suggesting reduced inflammasome assembly. We revealed that theaflavin-induced inhibition on NLRP3 inflammasome assembly and pyroptosis resulted from ameliorated mitochondrial dysfunction and reduced mitochondrial ROS production, thereby suppressing interaction between NLRP3 and NEK7 downstream of ROS. Moreover, we showed that oral administration of theaflavin significantly attenuated MSU-induced mouse peritonitis and improved the survival of mice with bacterial sepsis. Consistently, theaflavin administration significantly reduced serum levels of inflammatory cytokines including IL-1β and attenuated liver inflammation and renal injury of mice with sepsis, concomitant with reduced generation of caspase-1p10 and GSDMD-NT in the liver and kidney. Together, we demonstrate that theaflavin suppresses NLRP3 inflammasome activation and pyroptosis by protecting mitochondrial function, thus mitigating acute gouty peritonitis and bacterial sepsis in mice, highlighting a potential application in treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Dong-Yun Ou-Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|
147
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
148
|
Jiang H, Liu P, Kang J, Wu J, Gong W, Li X, Li Y, Liu J, Li W, Ni C, Liao B, Wu X, Zhao Y, Ren J. Precise Orchestration of Gasdermins' Pore-Forming Function by Posttranslational Modifications in Health and Disease. Int J Biol Sci 2023; 19:4931-4947. [PMID: 37781519 PMCID: PMC10539709 DOI: 10.7150/ijbs.86869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Gasdermins (GSDMs) serve as pivotal executors of pyroptosis and play crucial roles in host defence, cytokine secretion, innate immunity, and cancer. However, excessive or inappropriate GSDMs activation is invariably accompanied by exaggerated inflammation and results in tissue damage. In contrast, deficient or impaired activation of GSDMs often fails to promptly eliminate pathogens, leading to the increasing severity of infections. The activity of GSDMs requires meticulous regulation. The dynamic modulation of GSDMs involves many aspects, including autoinhibitory structures, proteolytic cleavage, lipid binding and membrane translocation (oligomerization and pre-pore formation), oligomerization (pore formation) and pore removal for membrane repair. As the most comprehensive and efficient regulatory pathway, posttranslational modifications (PTMs) are widely implicated in the regulation of these aspects. In this comprehensive review, we delve into the complex mechanisms through which a variety of proteases cleave GSDMs to enhance or hinder their function. Moreover, we summarize the intricate regulatory mechanisms of PTMs that govern GSDMs-induced pyroptosis.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Peizhao Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Jie Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xuanheng Li
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yangguang Li
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Juanhan Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Weizhen Li
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Chujun Ni
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Bo Liao
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yun Zhao
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jianan Ren
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, China
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
149
|
Loterio RK, Thomas DR, Andrade W, Lee YW, Santos LL, Mascarenhas DPA, Steiner TM, Chiaratto J, Fielden LF, Lopes L, Bird LE, Goldman GH, Stojanovski D, Scott NE, Zamboni DS, Newton HJ. Coxiella co-opts the Glutathione Peroxidase 4 to protect the host cell from oxidative stress-induced cell death. Proc Natl Acad Sci U S A 2023; 120:e2308752120. [PMID: 37639588 PMCID: PMC10483631 DOI: 10.1073/pnas.2308752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - David R. Thomas
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Warrison Andrade
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Yi Wei Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Leonardo L. Santos
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Danielle P. A. Mascarenhas
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Thiago M. Steiner
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Jéssica Chiaratto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14040-903, Brazil
| | - Laura F. Fielden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Leticia Lopes
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Lauren E. Bird
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Gustavo H. Goldman
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14040-903, Brazil
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Hayley J. Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
150
|
Broz P. Unconventional protein secretion by gasdermin pores. Semin Immunol 2023; 69:101811. [PMID: 37473560 DOI: 10.1016/j.smim.2023.101811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Unconventional protein secretion (UPS) allows the release of specific leaderless proteins independently of the classical endoplasmic reticulum (ER)-Golgi secretory pathway. While it remains one of the least understood mechanisms in cell biology, UPS plays an essential role in immunity as it controls the release of the IL-1 family of cytokines, which coordinate host defense and inflammatory responses. The unconventional secretion of IL-1β and IL-18, the two most prominent members of the IL-1 family, is initiated by inflammasome complexes - cytosolic signaling platforms that are assembled in response to infectious or noxious stimuli. Inflammasomes activate inflammatory caspases that proteolytically mature IL-1β/- 18, but also induce pyroptosis, a lytic form of cell death. Pyroptosis is caused by gasdermin-D (GSDMD), a member of the gasdermin protein family, which is activated by caspase cleavage and forms large β-barrel plasma membrane pores. This pore-forming activity is shared with other family members that are activated during infection or upon treatment with chemotherapy drugs. While the induction of cell death was assumed to be the main function of gasdermin pores, accumulating evidence suggests that they have also non-lytic functions, such as in the release of cytokines and alarmins, or in regulating ion fluxes. This has raised the possibility that gasdermin pores are one of the main mediators of UPS. Here, I summarize and discuss new insights into gasdermin activation and pore formation, how gasdermin pores achieve selective cargo release, and how gasdermin pore formation and ninjurin-1-driven plasma membrane rupture are executed and regulated.
Collapse
Affiliation(s)
- Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|