101
|
Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Rep 2019; 22:2236-2245. [PMID: 29490263 DOI: 10.1016/j.celrep.2018.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BRD4 plays a major role in the transcription networks orchestrated by androgen receptor (AR) in castration-resistant prostate cancer (CRPC). Several BET inhibitors (BETi) that displace BRD4 from chromatin are being evaluated in clinical trials for CRPC. Here, we describe mechanisms of acquired resistance to BETi that are amenable to targeted therapies in CRPC. BETi-resistant CRPC cells displayed cross-resistance to a variety of BETi in the absence of gatekeeper mutations, exhibited reduced chromatin-bound BRD4, and were less sensitive to BRD4 degraders/knockdown, suggesting a BRD4-independent transcription program. Transcriptomic analysis revealed reactivation of AR signaling due to CDK9-mediated phosphorylation of AR, resulting in sensitivity to CDK9 inhibitors and enzalutamide. Additionally, increased DNA damage associated with PRC2-mediated transcriptional silencing of DDR genes was observed, leading to PARP inhibitor sensitivity. Collectively, our results identify the therapeutic limitation of BETi as a monotherapy; however, our BETi resistance data suggest unique opportunities for combination therapies in treating CRPC.
Collapse
Affiliation(s)
- Aishwarya Pawar
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paradesi Naidu Gollavilli
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA.
| |
Collapse
|
102
|
Da Costa EM, Armaos G, McInnes G, Beaudry A, Moquin-Beaudry G, Bertrand-Lehouillier V, Caron M, Richer C, St-Onge P, Johnson JR, Krogan N, Sai Y, Downey M, Rafei M, Boileau M, Eppert K, Flores-Díaz E, Haman A, Hoang T, Sinnett D, Beauséjour C, McGraw S, Raynal NJM. Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:251. [PMID: 31196146 PMCID: PMC6563382 DOI: 10.1186/s13046-019-1242-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Background Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. Methods Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. Results At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. Conclusion Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia. Electronic supplementary material The online version of this article (10.1186/s13046-019-1242-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie M Da Costa
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gregory Armaos
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gabrielle McInnes
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Annie Beaudry
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gaël Moquin-Beaudry
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de biochimie et biologie moléculaire, Université de Montréal, Montréal, (Québec), Canada
| | - Maxime Caron
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Chantal Richer
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Pascal St-Onge
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | - Yuka Sai
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, Ottawa, (Ontario), Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, Ottawa, (Ontario), Canada
| | - Moutih Rafei
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, (Québec), Canada.,Department of Microbiology and Immunology, McGill University, Montreal, (Québec), Canada
| | - Meaghan Boileau
- Department of Pediatrics, McGill University, Montreal, (Québec), Canada
| | - Kolja Eppert
- Department of Pediatrics, McGill University, Montreal, (Québec), Canada
| | - Ema Flores-Díaz
- Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - André Haman
- Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - Trang Hoang
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - Daniel Sinnett
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de pédiatrie, Université de Montréal, Montréal, (Québec), Canada
| | - Christian Beauséjour
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Serge McGraw
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de biochimie et biologie moléculaire, Université de Montréal, Montréal, (Québec), Canada.,Département Obstétrique-Gynécologie, Université de Montréal, Montréal, (Québec), Canada
| | - Noël J-M Raynal
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada. .,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.
| |
Collapse
|
103
|
Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia 2019; 34:138-150. [PMID: 31171817 PMCID: PMC6895415 DOI: 10.1038/s41375-019-0503-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
MYC-driven lymphomas, especially those with concurrent MYC and BCL2 dysregulation, are currently a challenge in clinical practice due to rapid disease progression, resistance to standard chemotherapy and high risk of refractory disease. MYC plays a central role by coordinating hyperactive protein synthesis with upregulated transcription in order to support rapid proliferation of tumor cells. Translation initiation inhibitor rocaglates have been identified as the most potent drugs in MYC-driven lymphomas as they efficiently inhibit MYC expression and tumor cell viability. We found that this class of compounds can overcome eIF4A abundance by stabilizing target mRNA-eIF4A interaction that directly prevents translation. Proteome-wide quantification demonstrated selective repression of multiple critical oncoproteins in addition to MYC in B cell lymphoma including NEK2, MCL1, AURKA, PLK1, and several transcription factors that are generally considered undruggable. Finally, (−)-SDS-1–021, the most promising synthetic rocaglate, was confirmed to be highly potent as a single agent, and displayed significant synergy with the BCL2 inhibitor ABT199 in inhibiting tumor growth and survival in primary lymphoma cells in vitro and in patient-derived xenograft mouse models. Overall, our findings support the strategy of using rocaglates to target oncoprotein synthesis in MYC-driven lymphomas.
Collapse
|
104
|
Abstract
L. Altucci and R. Benedetti discuss the study by Chua et al (in this issue of EMBO Molecular Medicine), in which co‐targeting of FGFR signaling increases the responses of metastatic uveal melanoma to BET inhibitors.
![]()
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
105
|
Kurimchak AM, Shelton C, Herrera-Montávez C, Duncan KE, Chernoff J, Duncan JS. Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer. Mol Cancer Res 2019; 17:1721-1734. [PMID: 31043489 DOI: 10.1158/1541-7786.mcr-18-1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
Mutation or deletion of Neurofibromin 1 (NF1), an inhibitor of RAS signaling, frequently occurs in epithelial ovarian cancer (EOC), supporting therapies that target downstream RAS effectors, such as the RAF-MEK-ERK pathway. However, no comprehensive studies have been carried out testing the efficacy of MEK inhibition in NF1-deficient EOC. Here, we performed a detailed characterization of MEK inhibition in NF1-deficient EOC cell lines using kinome profiling and RNA sequencing. Our studies showed MEK inhibitors (MEKi) were ineffective at providing durable growth inhibition in NF1-deficient cells due to kinome reprogramming. MEKi-mediated destabilization of FOSL1 resulted in induced expression of receptor tyrosine kinases (RTK) and their downstream RAF and PI3K signaling, thus overcoming MEKi therapy. MEKi synthetic enhancement screens identified BRD2 and BRD4 as integral mediators of the MEKi-induced RTK signatures. Inhibition of bromo and extra terminal (BET) proteins using BET bromodomain inhibitors blocked MEKi-induced RTK reprogramming, indicating that BRD2 and BRD4 represent promising therapeutic targets in combination with MEKi to block resistance due to kinome reprogramming in NF1-deficient EOC. IMPLICATIONS: Our findings suggest MEK inhibitors will likely not be effective as single-agent therapies in NF1-deficient EOC due to kinome reprogramming. Cotargeting BET proteins in combination with MEKis to block reprogramming at the transcriptional level may provide an epigenetic strategy to overcome MEKi resistance in NF1-deficient EOC.
Collapse
Affiliation(s)
- Alison M Kurimchak
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Claude Shelton
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Kelly E Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
106
|
Behera V, Stonestrom AJ, Hamagami N, Hsiung CC, Keller CA, Giardine B, Sidoli S, Yuan ZF, Bhanu NV, Werner MT, Wang H, Garcia BA, Hardison RC, Blobel GA. Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription. Cell Rep 2019; 27:400-415.e5. [PMID: 30970245 PMCID: PMC6664437 DOI: 10.1016/j.celrep.2019.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Global changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional "bookmark" on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin. However, removal of BRD4 from mitotic chromatin does not impair post-mitotic activation of transcription. Additionally, histone mass spectrometry reveals global preservation of most posttranslational modifications (PTMs) during mitosis. In particular, H3K14ac, H3K27ac, H3K122ac, and H4K16ac widely mark mitotic chromatin, especially at lineage-specific genes, and predict BRD4 mitotic binding genome wide. Therefore, BRD4 is likely not a mitotic bookmark but only a "passenger." Instead, mitotic histone acetylation patterns may constitute the actual bookmarks that restore lineage-specific transcription patterns after mitosis.
Collapse
Affiliation(s)
- Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chris C Hsiung
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
107
|
Loganathan SN, Tang N, Holler AE, Wang N, Wang J. Targeting the IGF1R/PI3K/AKT Pathway Sensitizes Ewing Sarcoma to BET Bromodomain Inhibitors. Mol Cancer Ther 2019; 18:929-936. [PMID: 30926641 DOI: 10.1158/1535-7163.mct-18-1151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/20/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Inhibitors of the bromodomain and extra-terminal domain (BET) family proteins modulate EWS-FLI1 activities in Ewing sarcoma. However, the efficacy of BET inhibitors as a monotherapy was moderate and transient in preclinical models. The objective of this study was to identify the mechanisms mediating intrinsic resistance to BET inhibitors and develop more effective combination treatments for Ewing sarcoma. Using a panel of Ewing sarcoma cell lines and patient-derived xenograft lines (PDX), we demonstrated that IGF1R inhibitors synergistically increased sensitivities to BET inhibitors and induced potent apoptosis when combined with BET inhibitors. Constitutively activated AKT significantly protected Ewing sarcoma cells against BET inhibitors, suggesting that IGF1R regulates responsiveness to BET inhibitors mainly through the PI3K/AKT pathway. Although two Ewing sarcoma cell lines were resistant to IGF1R inhibitors, they retained synergistic response to a combination of BET inhibitors and mTOR inhibitors, suggesting that BET proteins, when IGF1R is not functional, cross-talk with its downstream molecules. Furthermore, the combination of a BET inhibitor and an IGF1R inhibitor induced potent and durable response in xenograft tumors, whereas either agent alone was less effective. Taken together, our results suggest that IGF1R and the downstream PI3K/AKT/mTOR kinase cascade mediate intrinsic resistance to BET inhibitors in Ewing sarcoma. These results provide the proof-of-concept for combining BET inhibitors with agents targeting the IGF1R pathway for treating advanced Ewing sarcoma.
Collapse
Affiliation(s)
- Sudan N Loganathan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Nan Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Albert E Holler
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nenghui Wang
- Ningbo Wenda Pharmaceutical Technology Co., Ninghai, Zhejiang, China
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee. .,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Cullgen Inc., San Diego, California
| |
Collapse
|
108
|
Kregel S, Malik R, Asangani IA, Wilder-Romans K, Rajendiran T, Xiao L, Vo JN, Soni T, Cieslik M, Fernadez-Salas E, Zhou B, Cao X, Speers C, Wang S, Chinnaiyan AM. Functional and Mechanistic Interrogation of BET Bromodomain Degraders for the Treatment of Metastatic Castration-resistant Prostate Cancer. Clin Cancer Res 2019; 25:4038-4048. [PMID: 30918020 DOI: 10.1158/1078-0432.ccr-18-3776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/14/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE The bromodomain and extraterminal (BET)-containing proteins (BRD2/3/4) are essential epigenetic coregulators for prostate cancer growth. BRD inhibitors have shown promise for treatment of metastatic castration-resistant prostate cancer (mCRPC), and have been shown to function even in the context of resistance to next-generation AR-targeted therapies such as enzalutamide and abiraterone. Their clinical translation, however, has been limited by off-target effects, toxicity, and rapid resistance. EXPERIMENTAL DESIGN We have developed a series of molecules that target BET bromodomain proteins through their proteasomal degradation, improving efficacy and specificity of standard inhibitors. We tested their efficacy by utilizing prostate cancer cell lines and patient-derived xenografts, as well as several techniques including RNA-sequencing, mass spectroscopic proteomics, and lipidomics. RESULTS BET degraders function in vitro and in vivo to suppress prostate cancer growth. These drugs preferentially affect AR-positive prostate cancer cells (22Rv1, LNCaP, VCaP) over AR-negative cells (PC3 and DU145), and proteomic and genomic mechanistic studies confirm disruption of oncogenic AR and MYC signaling at lower concentrations than BET inhibitors. We also identified increases in polyunsaturated fatty acids (PUFA) and thioredoxin-interacting protein (TXNIP) as potential pharmacodynamics biomarkers for targeting BET proteins. CONCLUSIONS Compounds inducing the pharmacologic degradation of BET proteins effectively target the major oncogenic drivers of prostate cancer, and ultimately present a potential advance in the treatment of mCRPC. In particular, our compound dBET-3, is most suited for further clinical development.
Collapse
Affiliation(s)
- Steven Kregel
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rohit Malik
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Irfan A Asangani
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Thekkelnaycke Rajendiran
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Josh N Vo
- Michigan Center for Translational Pathology, University of Michigan
| | - Tanu Soni
- Division of Bioinformatics, Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Ester Fernadez-Salas
- Michigan Center for Translational Pathology, University of Michigan.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan.,Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Bing Zhou
- Michigan Center for Translational Pathology, University of Michigan.,Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan
| | - Corey Speers
- Michigan Center for Translational Pathology, University of Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shaomeng Wang
- Michigan Center for Translational Pathology, University of Michigan.,Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan. .,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Urology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
109
|
Fuse MA, Dinh CT, Vitte J, Kirkpatrick J, Mindos T, Plati SK, Young JI, Huang J, Carlstedt A, Franco MC, Brnjos K, Nagamoto J, Petrilli AM, Copik AJ, Soulakova JN, Bracho O, Yan D, Mittal R, Shen R, Telischi FF, Morrison H, Giovannini M, Liu XZ, Chang LS, Fernandez-Valle C. Preclinical assessment of MEK1/2 inhibitors for neurofibromatosis type 2-associated schwannomas reveals differences in efficacy and drug resistance development. Neuro Oncol 2019; 21:486-497. [PMID: 30615146 PMCID: PMC6422635 DOI: 10.1093/neuonc/noz002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 2 (NF2) is a genetic tumor-predisposition disorder caused by NF2/merlin tumor suppressor gene inactivation. The hallmark of NF2 is formation of bilateral vestibular schwannomas (VS). Because merlin modulates activity of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, we investigated repurposing drugs targeting MEK1 and/or MEK2 as a treatment for NF2-associated schwannomas. METHODS Mouse and human merlin-deficient Schwann cell lines (MD-MSC/HSC) were screened against 6 MEK1/2 inhibitors. Efficacious drugs were tested in orthotopic allograft and NF2 transgenic mouse models. Pathway and proteome analyses were conducted. Drug efficacy was examined in primary human VS cells with NF2 mutations and correlated with DNA methylation patterns. RESULTS Trametinib, PD0325901, and cobimetinib were most effective in reducing MD-MSC/HSC viability. Each decreased phosphorylated pERK1/2 and cyclin D1, increased p27, and induced caspase-3 cleavage in MD-MSCs. Proteomic analysis confirmed cell cycle arrest and activation of pro-apoptotic pathways in trametinib-treated MD-MSCs. The 3 inhibitors slowed allograft growth; however, decreased pERK1/2, cyclin D1, and Ki-67 levels were observed only in PD0325901 and cobimetinib-treated grafts. Tumor burden and average tumor size were reduced in trametinib-treated NF2 transgenic mice; however, tumors did not exhibit reduced pERK1/2 levels. Trametinib and PD0325901 modestly reduced viability of several primary human VS cell cultures with NF2 mutations. DNA methylation analysis of PD0325901-resistant versus -susceptible VS identified genes that could contribute to drug resistance. CONCLUSION MEK inhibitors exhibited differences in antitumor efficacy resistance in schwannoma models with possible emergence of trametinib resistance. The results support further investigation of MEK inhibitors in combination with other targeted drugs for NF2 schwannomas.
Collapse
Affiliation(s)
- Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | | | - Thomas Mindos
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Stephani Klingeman Plati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Juan I Young
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jie Huang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | | | - Maria Clara Franco
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Konstantin Brnjos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Jackson Nagamoto
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Alejandra M Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Julia N Soulakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rulong Shen
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Fred F Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida, USA
| |
Collapse
|
110
|
Shorstova T, Marques M, Su J, Johnston J, Kleinman CL, Hamel N, Huang S, Alaoui-Jamali MA, Foulkes WD, Witcher M. SWI/SNF-Compromised Cancers Are Susceptible to Bromodomain Inhibitors. Cancer Res 2019; 79:2761-2774. [PMID: 30877105 DOI: 10.1158/0008-5472.can-18-1545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
The antitumor activity of bromodomain and extraterminal motif protein inhibitors (BETi) has been demonstrated across numerous types of cancer. As such, these inhibitors are currently undergoing widespread clinical evaluation. However, predictive biomarkers allowing the stratification of tumors into responders and nonresponders to BETi are lacking. Here, we showed significant antiproliferative effects of low dosage BETi in vitro and in vivo against aggressive ovarian and lung cancer models lacking SMARCA4 and SMARCA2, key components of SWI/SNF chromatin remodeling complexes. Restoration of SMARCA4 or SMARCA2 promoted resistance to BETi in these models and, conversely, knockdown of SMARCA4 sensitized resistant cells to BETi. Transcriptomic analysis revealed that exposure to BETi potently downregulated a network of genes involved in receptor tyrosine kinase (RTK) signaling in SMARCA4/A2-deficient cells, including the oncogenic RTK HER3. Repression of signaling downstream of HER3 was found to be an important determinant of response to BETi in SMARCA4/A2-deficient cells. Overall, we propose that BETi represent a rational therapeutic strategy in poor-prognosis, SMARCA4/A2-deficient cancers. SIGNIFICANCE: These findings address an unmet clinical need by identifying loss of SMARCA4/A2 as biomarkers of hypersensitivity to BETi.
Collapse
Affiliation(s)
- Tatiana Shorstova
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maud Marques
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jie Su
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jake Johnston
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nancy Hamel
- Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Moulay A Alaoui-Jamali
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
111
|
Guerra S, Cichowski K. Targeting Cancer at the Intersection of Signaling and Epigenetics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030617-050400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While mutations resulting in the chronic activation of signaling pathways drive human cancer, the epigenetic state of a cell ultimately dictates the biological response to any given oncogenic signal. Moreover, large-scale genomic sequencing efforts have now identified a plethora of mutations in chromatin regulatory genes in human tumors, which can amplify, modify, or complement traditional oncogenic events. Nevertheless, the co-occurrence of oncogenic and epigenetic defects appears to create novel therapeutic vulnerabilities, which can be targeted by specific drug combinations. Here we discuss general mechanisms by which oncogenic and epigenetic alterations cooperate in human cancer and synthesize the field's early efforts in developing promising therapeutic combinations. Collectively, these studies reveal common themes underlying potential chemical synthetic lethal interactions and support both the expansion and refinement of this type of therapeutic approach.
Collapse
Affiliation(s)
- Stephanie Guerra
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
112
|
Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J, Wang Y, Le LQ. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2019; 25:3404-3416. [PMID: 30796033 DOI: 10.1158/1078-0432.ccr-18-2437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE BET bromodomain inhibitors have emerged as a promising therapy for numerous cancer types in preclinical studies, including neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumor (MPNST). However, potential mechanisms underlying resistance to these inhibitors in different cancers are not completely understood. In this study, we explore new strategy to overcome BET inhibitor resistance in MPNST.Experimental Design: Through modeling tumor evolution by studying genetic changes underlying the development of MPNST, a lethal sarcoma with no effective medical treatment, we identified a targetable addiction to BET bromodomain family member BRD4 in MPNST. This served as a controlled model system to delineate mechanisms of sensitivity and resistance to BET bromodomain inhibitors in this disease. RESULTS Here, we show that a malignant progression-associated increase in BRD4 protein levels corresponds to partial sensitivity to BET inhibition in MPNST. Strikingly, genetic depletion of BRD4 protein levels synergistically sensitized MPNST cells to diverse BET inhibitors in culture and in vivo. CONCLUSIONS Collectively, MPNST sensitivity to combination genetic and pharmacologic inhibition of BRD4 revealed the presence of a unique addiction to BRD4 in MPNST. Our discovery that a synthetic lethality exists between BET inhibition and reduced BRD4 protein levels nominates MPNST for the investigation of emerging therapeutic interventions such as proteolysis-targeting chimeras (PROTACs) that simultaneously target bromodomain activity and BET protein abundance.
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kun Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
113
|
Yin Y, Sun M, Zhan X, Wu C, Geng P, Sun X, Wu Y, Zhang S, Qin J, Zhuang Z, Liu Y. EGFR signaling confers resistance to BET inhibition in hepatocellular carcinoma through stabilizing oncogenic MYC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:83. [PMID: 30770740 PMCID: PMC6377788 DOI: 10.1186/s13046-019-1082-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
Background The bromodomain and extra-terminal domain (BET) inhibitor is a type of anti-tumor agent, currently being evaluated in phase I and II clinical trials for cancer therapy. It can decrease MYC expression levels and cause effective anti-tumor effects in diverse human cancers. However, its cytotoxic effect and related mechanisms of drug resistance are poorly understood in hepatocellular carcinomas (HCC). Here, we investigated the anti-tumor effects of BET inhibitor on HCC and the molecular mechanisms involved in its associated drug resistance. Methods We assessed the cytotoxicity of BET inhibitor on HCC cells compared with sorafenib by cell viability assay, metastasis assay and reproduced the anti-tumor effect in xenograft mouse model. In addition, the molecular mechanisms involved in drug resistance on JQ1-resistant HCC cells were revealed by western blotting, qRT-PCR, whole exome-sequencing and gene-editing technology. Finally, with specific inhibition of EGFR or ERK activity by interference RNAs or inhibitors, the efficacy of the synergistic treatment was investigated using cell viability assay, colony formation, apoptosis and xenograft mouse model. Results We found that JQ1, a commonly used BET bromo-domain inhibitor, offered a better anti-tumor response than sorafenib in MYC-positive HCC cells by inducing apoptosis in vitro and in vivo. Unlike sorafenib, JQ1 treatment significantly impaired mitochondrial respiration and glycolysis in HCC cells. Importantly, we revealed that MAPK activation by a previously undescribed activating mutation of EGFR-I645L, was critical for JQ1 sensitivity through stabilizing oncogenic MYC protein in JQ1-resistant HCC cells. Inhibition of either EGFR or ERK activity overcame the JQ1 resistance and significantly decreased MYC protein level in vitro and in vivo. Conclusion Since MYC amplification is frequently identified in HCC, co-occurring with EGFR amplification, our findings suggest that targeting EGFR signaling might be essential for JQ1 therapy in advanced HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1082-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yalei Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingju Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xi Zhan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,School of Life Science, Dalian University, Dalian, 116023, China
| | - Changqing Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yunsong Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
114
|
Villar-Prados A, Wu SY, Court KA, Ma S, LaFargue C, Chowdhury MA, Engelhardt MI, Ivan C, Ram PT, Wang Y, Baggerly K, Rodriguez-Aguayo C, Lopez-Berestein G, Ming-Yang S, Maloney DJ, Yoshioka M, Strovel JW, Roszik J, Sood AK. Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Mol Cancer Ther 2019; 18:421-436. [PMID: 30420565 PMCID: PMC6363833 DOI: 10.1158/1535-7163.mct-18-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.
Collapse
Affiliation(s)
- Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sherry Y Wu
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Karem A Court
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher LaFargue
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mamur A Chowdhury
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margaret I Engelhardt
- John P. and Kathrine G. McGovern Medical School, The University of Texas, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad T Ram
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shyh Ming-Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - David J Maloney
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | | | | | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
115
|
Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, Lam BQ, Terai M, Ambrosini G, Carvajal RD, Schwartz G, Sato T, Aplin AE. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med 2019; 11:emmm.201809081. [PMID: 30610113 DOI: 10.1525/emmm.201809081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Alterations in transcriptional programs promote tumor development and progression and are targetable by bromodomain and extraterminal (BET) protein inhibitors. However, in a multi-site clinical trial testing the novel BET inhibitor, PLX51107, in solid cancer patients, liver metastases of uveal melanoma (UM) patients progressed rapidly following treatment. Mechanisms of resistance to BET inhibitors in UM are unknown. We show that fibroblast growth factor 2 (FGF2) rescued UM cells from growth inhibition by BET inhibitors, and FGF2 effects were reversible by FGF receptor (FGFR) inhibitors. BET inhibitors also increased FGFR protein expression in UM cell lines and in patient tumor samples. Hepatic stellate cells (HSCs) secrete FGF2, and HSC-conditioned medium provided resistance of UM cells to BET inhibitors. PLX51107 was ineffective in vivo, but the combination of a FGFR inhibitor, AZD4547, and PLX51107 significantly suppressed the growth of xenograft UM tumors formed from subcutaneous inoculation of UM cells with HSCs and orthotopically in the liver. These results suggest that co-targeting of FGFR signaling is required to increase the responses of metastatic UM to BET inhibitors.
Collapse
Affiliation(s)
- Vivian Chua
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marlana Orloff
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Lf Teh
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takahito Sugase
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Connie Liao
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bao Q Lam
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Gary Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
116
|
Predicting response to BET inhibitors using computational modeling: A BEAT AML project study. Leuk Res 2019; 77:42-50. [PMID: 30642575 PMCID: PMC6442457 DOI: 10.1016/j.leukres.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/26/2018] [Accepted: 11/18/2018] [Indexed: 12/04/2022]
Abstract
Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or −7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.
Collapse
|
117
|
Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nat Commun 2018; 9:5315. [PMID: 30552330 PMCID: PMC6294341 DOI: 10.1038/s41467-018-07659-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed SynergySeq to identify drug combinations for the treatment of GBM by integrating information from The Cancer Genome Atlas (TCGA) and the Library of Integrated Network-Based Cellular Signatures (LINCS). We identify differentially expressed genes in GBM samples and devise a consensus gene expression signature for each compound using LINCS L1000 transcriptional profiling data. The SynergySeq platform computes disease discordance and drug concordance to identify combinations of FDA-approved drugs that induce a synergistic response in GBM. Collectively, our studies demonstrate that combining disease-specific gene expression signatures with LINCS small molecule perturbagen-response signatures can identify preclinical combinations for GBM, which can potentially be tested in humans. Inherent or acquired resistance to treatment of glioblastoma (GBM) is nearly universal. Here, the authors introduce a platform to identify synergistic drug combinations for patient-specific treatment of GBM based on gene expression signatures and small molecule perturbation-response profiles.
Collapse
|
118
|
Iniguez AB, Alexe G, Wang EJ, Roti G, Patel S, Chen L, Kitara S, Conway A, Robichaud AL, Stolte B, Bandopadhayay P, Goodale A, Pantel S, Lee Y, Cheff DM, Hall MD, Guha R, Davis MI, Menard M, Nasholm N, Weiss WA, Qi J, Beroukhim R, Piccioni F, Johannessen C, Stegmaier K. Resistance to Epigenetic-Targeted Therapy Engenders Tumor Cell Vulnerabilities Associated with Enhancer Remodeling. Cancer Cell 2018; 34:922-938.e7. [PMID: 30537514 PMCID: PMC6352909 DOI: 10.1016/j.ccell.2018.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 09/10/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022]
Abstract
Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.
Collapse
Affiliation(s)
- Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; University of Parma Department of Medicine and Surgery, Hematology and BMT, Parma, Italy
| | - Sarvagna Patel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Liying Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich 80337, Germany
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Goodale
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sasha Pantel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yenarae Lee
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dorian M Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Menard
- Departments of Neurology, Neurosurgery, Pediatrics, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Nicole Nasholm
- Departments of Neurology, Neurosurgery, Pediatrics, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - William A Weiss
- Departments of Neurology, Neurosurgery, Pediatrics, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Jun Qi
- Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rameen Beroukhim
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Cory Johannessen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
119
|
Pham TND, Kumar K, DeCant BT, Shang M, Munshi SZ, Matsangou M, Ebine K, Munshi HG. Induction of MNK Kinase-dependent eIF4E Phosphorylation by Inhibitors Targeting BET Proteins Limits Efficacy of BET Inhibitors. Mol Cancer Ther 2018; 18:235-244. [PMID: 30446586 DOI: 10.1158/1535-7163.mct-18-0768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
BET inhibitors (BETi), which target transcription of key oncogenic genes, are currently being evaluated in early-phase clinical trials. However, because BETis show limited single-agent activity, there is increasing interest in identifying signaling pathways to enhance the efficacy of BETis. Here, we demonstrate increased MNK kinase-dependent eIF4E phosphorylation following treatment with BETis, indicating activation of a prosurvival feedback mechanism in response to BETis. BET PROTACs, which promote degradation of BET proteins, also induced eIF4E phosphorylation in cancer cells. Mechanistically, we show that the effect of BETis on MNK-eIF4E phosphorylation was mediated by p38 MAPKs. We also show that BETis suppressed RacGAP1 to induce Rac signaling-mediated eIF4E phosphorylation. Significantly, MNK inhibitors and MNK1/2 knockdown enhanced the efficacy of BETis in suppressing proliferation of cancer cells in vitro and in a syngeneic mouse model. Together, these results demonstrate a novel prosurvival feedback signaling induced by BETis, providing a mechanistic rationale for combination therapy with BET and MNK inhibitors for synergistic inhibition of cancer cells.
Collapse
Affiliation(s)
- Thao N D Pham
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Krishan Kumar
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Brian T DeCant
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meng Shang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Samad Z Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maria Matsangou
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Kazumi Ebine
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
120
|
Tan Z, Zhang X, Kang T, Zhang L, Chen S. Arsenic sulfide amplifies JQ1 toxicity via mitochondrial pathway in gastric and colon cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3913-3927. [PMID: 30532520 PMCID: PMC6241694 DOI: 10.2147/dddt.s180976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Gastric and colon cancers have been the leading causes of cancer mortality in the world with limited therapy. Small molecules binding to bromodomains of bromodomain-containing protein 4 (BRD4) exert strong antitumor activities against hematological malignancies, while generally have limited efficacy in advanced solid tumors. Here, we found that the bromodomain and extra-terminal (BET)-bromodomain inhibitor JQ1, when combined with arsenic sulfide (As4S4, abbreviated as AS), synergistically decreased the expression of nuclear factor of activated T-cells (NFATs) as well as the downstream oncogene c-Myc and largely induced cell apoptosis via mitochondrial pathway in gastric and colon cancer cell lines. Methods The synergistic cytotoxicity of AS and JQ1 in gastric and colon cancer cells was determined by MTT assay and verified by FACS assay. Western blot analysis and quantitative real-time PCR (qPCR) assay were used to detect the expression of NFATs and downstream apoptotic proteins. The mitochondrial transmembrane potential was determined by FACS assay, and the metastasis of cancer cells was detected by the wound-healing assay. Results AS and JQ1 synergistically induced cell apoptosis in gastric and colon cancer cells by downregulating NFATs and upregulating apoptotic proteins. Combination of AS and JQ1 was associated with the decreased mitochondrial transmembrane potential, the cytochrome c release, and the subsequent caspase-3 activation. Conclusion Thus, our data indicate that AS can effectively enhance the cytotoxicity of BET inhibitors in gastric and colon cancer cells through mitochondrial-mediated apoptosis induction.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| | - Xiuli Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| | - Lian Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| |
Collapse
|
121
|
Liu X, Wu H, Huang P, Zhang F. JQ1 and PI3K inhibition synergistically reduce salivary adenoid cystic carcinoma malignancy by targeting the c-Myc and EGFR signaling pathways. J Oral Pathol Med 2018; 48:43-51. [PMID: 30269363 DOI: 10.1111/jop.12784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Liu
- School of Stomatology; Shandong University; Jinan City China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong university; Jinan City China
| | - Haitao Wu
- Department of Implantology Unit; Dongguan Dental Hospital; Dongguan City China
| | - Ping Huang
- Department of Gynecology; Qilu Hospital; Jinan City China
| | - Fenghe Zhang
- School of Stomatology; Shandong University; Jinan City China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; Shandong university; Jinan City China
| |
Collapse
|
122
|
Bakshi S, McKee C, Walker K, Brown C, Chaudhry GR. Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget 2018; 9:33853-33864. [PMID: 30333915 PMCID: PMC6173460 DOI: 10.18632/oncotarget.26127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including c-MYC, a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated. Previously, we have shown that JQ1 causes human umbilical cord MSCs to undergo cell cycle arrest and neural differentiation. In this study, we determined that JQ1 is more deleterious to neuronal derivatives (NDs) than adipogenic, chondrogenic or osteogenic derivatives of MSCs. NDs treated with JQ1 showed a significant decrease in cell proliferation, viability, and neuronal markers. JQ1 caused cell death through the intrinsic apoptotic pathway in NDs as determined by activation of Caspase 9 and increased expression of Cytochrome C. A comparative analysis showed differential action of JQ1 on MSCs and NDs. The results showed selective neuronal toxicity of JQ1 in NDs but not in the undifferentiated MSCs. These findings suggest a more careful examination of the selection and use of BET inhibitors as therapeutic agents, as they may cause unwanted damage to non-target cells and tissues.
Collapse
Affiliation(s)
- Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
123
|
Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev 2018; 32:1188-1200. [PMID: 30135075 PMCID: PMC6120715 DOI: 10.1101/gad.315648.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Using CRISPR and ORF expression screens, Liao et al. systematically examined the ability of cancer drivers to mediate resistance of NUT midline carcinoma (NMC) to bromodomain and extraterminal domain inhibitors (BETis) and uncovered six general classes/pathways mediating resistance. Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Collapse
Affiliation(s)
- Sida Liao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ophélia Maertens
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Karen Cichowski
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
124
|
Wang E, Sorolla A, Cunningham PT, Bogdawa HM, Beck S, Golden E, Dewhurst RE, Florez L, Cruickshank MN, Hoffmann K, Hopkins RM, Kim J, Woo AJ, Watt PM, Blancafort P. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2018; 38:140-150. [PMID: 30076412 PMCID: PMC6318000 DOI: 10.1038/s41388-018-0421-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/24/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Overexpression of MYC oncogene is highly prevalent in many malignancies such as aggressive triple-negative breast cancers (TNBCs) and it is associated with very poor outcome. Despite decades of research, attempts to effectively inhibit MYC, particularly with small molecules, still remain challenging due to the featureless nature of its protein structure. Herein, we describe the engineering of the dominant-negative MYC peptide (OmoMYC) linked to a functional penetrating 'Phylomer' peptide (FPPa) as a therapeutic strategy to inhibit MYC in TNBC. We found FPPa-OmoMYC to be a potent inducer of apoptosis (with IC50 from 1-2 µM) in TNBC cells with negligible effects in non-tumorigenic cells. Transcriptome analysis of FPPa-OmoMYC-treated cells indicated that the fusion protein inhibited MYC-dependent networks, inducing dynamic changes in transcriptional, metabolic, and apoptotic processes. We demonstrated the efficacy of FPPa-OmoMYC in inhibiting breast cancer growth when injected orthotopically in TNBC allografts. Lastly, we identified strong pharmacological synergisms between FPPa-OmoMYC and chemotherapeutic agents. This study highlights a novel therapeutic approach to target highly aggressive and chemoresistant MYC-activated cancers.
Collapse
Affiliation(s)
- Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Paula T Cunningham
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Heique M Bogdawa
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Samuel Beck
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, 04672, USA
| | - Emily Golden
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Robert E Dewhurst
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Laura Florez
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Mark N Cruickshank
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | - Katrin Hoffmann
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia
| | | | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul M Watt
- Phylogica Pty Ltd, Subiaco, WA, 6008, Australia. .,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, 6008, Australia.
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia. .,School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
125
|
Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol 2018; 51:160-169. [PMID: 28782606 PMCID: PMC5976557 DOI: 10.1016/j.semcancer.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is a disease with a poor prognosis and little progress has been made to improve treatment. It is now recognized that there are several histotypes of ovarian cancer, each with distinct epidemiologic and genomic characteristics. Cancer therapy is moving beyond classical chemotherapy to include epigenetic approaches. Epigenetics is the dynamic regulation of gene expression by DNA methylation and histone post translational modification in response to environmental cues. Improvement in technology to study DNA methylation has enabled a more agnostic approach and, with larger samples sets, has begun to unravel how epigenetics contributes to the etiology, response to chemotherapy and prognosis in of ovarian cancer. Investigations into histone modifications in ovarian cancer are more nascent. Much more is needed to be done to fully realize the potential that epigenetics holds for ovarian cancer clinical care.
Collapse
Affiliation(s)
- Yanina Natanzon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
126
|
Liu X, Li Q, Huang P, Tong D, Wu H, Zhang F. EGFR-mediated signaling pathway influences the sensitivity of oral squamous cell carcinoma to JQ1. J Cell Biochem 2018; 119:8368-8377. [PMID: 30687956 DOI: 10.1002/jcb.26920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Inhibiting BRD4 has emerged as a promising anticancer strategy, and inhibitors such as JQ1 can suppress cell growth in oral squamous cell carcinoma (OSCC). However, the mechanism through which JQ1 exerts its anticancer activity has not been reported. Moreover, JQ1 does not markedly inhibit proliferation and increase apoptosis in OSCC when used as a monotherapy. Herein, we explore the mechanism of JQ1 in OSCC and probe ways to increase its therapeutic potential. In this study, we used two cell lines, Cal27, and Scc25. We found that BRD4 was highly expressed in OSCC tissues when compared with adjacent non-tumor tissues, and JQ1 worked through the EGFR-mediated signaling pathway in tumor cells. Furthermore, we demonstrated that JQ1 induced an increased treatment effect in vitro and in vivo when combined with a PI3K inhibitor. Interestingly, subsequent mechanistic analyses indicated that further suppressing EGFR and BRD4 expression was instrumental to this functional synergism. Moreover, we found that upregulating EGFR expression by EGF stimulation protected cells treated with JQ1 from apoptosis, while knockdown of EGFR before addition of JQ1 successfully mimicked the combination treatment results. In summary, our findings revealed that JQ1 can act by inhibiting the EGFR-mediated signaling pathway, and EGFR expression influences the sensitivity of OSCC to JQ1. Regarding clinical use, this study demonstrates that BRD4 is a novel therapeutic target and EGFR can be used as a biomarker to identify the most appropriate anti-BRD4 treatment strategy in OSCC.
Collapse
Affiliation(s)
- Xiaojing Liu
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Qing Li
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Ping Huang
- Department of Stomatology, Qilu hospital, Jinan, Shandong Province, China
| | - Dongdong Tong
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Haitao Wu
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Fenghe Zhang
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong Province, China
| |
Collapse
|
127
|
|
128
|
Xu L, Chen Y, Mayakonda A, Koh L, Chong YK, Buckley DL, Sandanaraj E, Lim SW, Lin RYT, Ke XY, Huang ML, Chen J, Sun W, Wang LZ, Goh BC, Dinh HQ, Kappei D, Winter GE, Ding LW, Ang BT, Berman BP, Bradner JE, Tang C, Koeffler HP. Targetable BET proteins- and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma. Proc Natl Acad Sci U S A 2018; 115:E5086-E5095. [PMID: 29764999 PMCID: PMC5984485 DOI: 10.1073/pnas.1712363115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore;
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Lynnette Koh
- Department of Research, National Neuroscience Institute, 308433 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, 308433 Singapore
| | - Dennis L Buckley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Edwin Sandanaraj
- Department of Research, National Neuroscience Institute, 308433 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, 117609 Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, 308433 Singapore
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Xin-Yu Ke
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Mo-Li Huang
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- School of Biology and Basic Medical Sciences, Soochow University, 215123 Suzhou, China
| | - Jianxiang Chen
- Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610 Singapore
| | - Wendi Sun
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Ling-Zhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
- National University Cancer Institute, National University Hospital, 119074 Singapore
| | - Huy Q Dinh
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90048
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Beng Ti Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, 117609 Singapore
- Department of Neurosurgery, National Neuroscience Institute, 308433 Singapore
- Duke-National University of Singapore Medical School, 169857 Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593 Singapore
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90048
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Carol Tang
- Department of Research, National Neuroscience Institute, 308433 Singapore
- Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610 Singapore
- Duke-National University of Singapore Medical School, 169857 Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- National University Cancer Institute, National University Hospital, 119074 Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048
| |
Collapse
|
129
|
Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 2018; 9:26491-26506. [PMID: 29899872 PMCID: PMC5995173 DOI: 10.18632/oncotarget.25474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
In recent years, numerous new targeted drugs, including multi-kinase inhibitors and epigenetic modulators have been developed for cancer treatment. Ponatinib blocks a variety of tyrosine kinases including ABL and fibroblast growth factor receptor (FGFR), and the BET bromodomain (BRD) antagonists JQ1 and dBET1 impede MYC oncogene expression. Both drugs have demonstrated substantial anti-cancer efficacy against several hematological malignancies. Solid tumors, on the other hand, although frequently driven by FGFR and/or MYC, are often unresponsive to these drugs. This is due, at least in part, to compensatory feedback-loops in the kinome and transcription network of these tumors, which are activated in response to drug exposure. Therefore, we hypothesized that the combination of the multi-kinase inhibitor ponatinib with transcription modulators such as JQ1 or dBET1 might overcome this therapeutic recalcitrance. Using 3H-thymidine uptake, cell cycle analysis, and caspase-3 or Annexin V labeling, we demonstrate that single drugs induce moderate dose-dependent growth-inhibition and/or apoptosis in colon (HCT116, HT29), breast (MCF-7, SKBR3) and ovarian (A2780, SKOV3) cancer cells. Ponatinib elicited primarily apoptosis, while JQ1 and dBET1 caused G0/G1 cell cycle arrest and very mild cell death. Phospho-FGFR and MYC, major targets of ponatinib and BET inhibitors, were downregulated after treatment with single drugs. Remarkably, ponatinib was found to sensitize cells to BET antagonists by enhancing apoptotic cell death, and this effect was associated with downregulation of MYC. In summary, our data shows that ponatinib sensitizes colon, breast, and ovarian cancer cells to BET bromodomain inhibitors. Further studies are warranted to determine the clinical value of this phenomenon.
Collapse
|
130
|
Leonard B, Brand TM, O'Keefe RA, Lee ED, Zeng Y, Kemmer JD, Li H, Grandis JR, Bhola NE. BET Inhibition Overcomes Receptor Tyrosine Kinase-Mediated Cetuximab Resistance in HNSCC. Cancer Res 2018; 78:4331-4343. [PMID: 29792310 DOI: 10.1158/0008-5472.can-18-0459] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023]
Abstract
Cetuximab, the FDA-approved anti-EGFR antibody for head and neck squamous cell carcinoma (HNSCC), has displayed limited efficacy due to the emergence of intrinsic and acquired resistance. We and others have demonstrated that cetuximab resistance in HNSCC is driven by alternative receptor tyrosine kinases (RTK), including HER3, MET, and AXL. In an effort to overcome cetuximab resistance and circumvent toxicities associated with the administration of multiple RTK inhibitors, we sought to identify a common molecular target that regulates expression of multiple RTK. Bromodomain-containing protein-4 (BRD4) has been shown to regulate the transcription of various RTK in the context of resistance to PI3K and HER2 inhibition in breast cancer models. We hypothesized that, in HNSCC, targeting BRD4 could overcome cetuximab resistance by depleting alternative RTK expression. We generated independent models of cetuximab resistance in HNSCC cell lines and interrogated their RTK and BRD4 expression profiles. Cetuximab-resistant clones displayed increased expression and activation of several RTK, such as MET and AXL, as well as an increased percentage of BRD4-expressing cells. Both genetic and pharmacologic inhibition of BRD4 abrogated cell viability in models of acquired and intrinsic cetuximab resistance and was associated with a robust decrease in alternative RTK expression by cetuximab. Combined treatment with cetuximab and bromodomain inhibitor JQ1 significantly delayed acquired resistance and RTK upregulation in patient-derived xenograft models of HNSCC. These findings indicate that the combination of cetuximab and bromodomain inhibition may be a promising therapeutic strategy for patients with HNSCC.Significance: Inhibition of bromodomain protein BRD4 represents a potential therapeutic strategy to circumvent the toxicities and financial burden of targeting the multiple receptor tyrosine kinases that drive cetuximab resistance in HNSCC and NSCLC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4331/F1.large.jpg Cancer Res; 78(15); 4331-43. ©2018 AACR.
Collapse
Affiliation(s)
- Brandon Leonard
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Toni M Brand
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Eliot D Lee
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jacquelyn D Kemmer
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Neil E Bhola
- Department of Otolaryngology and Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
131
|
Wyce A, Matteo JJ, Foley SW, Felitsky DJ, Rajapurkar SR, Zhang XP, Musso MC, Korenchuk S, Karpinich NO, Keenan KM, Stern M, Mathew LK, McHugh CF, McCabe MT, Tummino PJ, Kruger RG, Carpenter C, Barbash O. MEK inhibitors overcome resistance to BET inhibition across a number of solid and hematologic cancers. Oncogenesis 2018; 7:35. [PMID: 29674704 PMCID: PMC5908790 DOI: 10.1038/s41389-018-0043-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
BET inhibitors exhibit broad activity in cancer models, making predictive biomarkers challenging to define. Here we investigate the biomarkers of activity of the clinical BET inhibitor GSK525762 (I-BET; I-BET762) across cancer cell lines and demonstrate that KRAS mutations are novel resistance biomarkers. This finding led us to combine BET with RAS pathway inhibition using MEK inhibitors to overcome resistance, which resulted in synergistic effects on growth and survival in RAS pathway mutant models as well as a subset of cell lines lacking RAS pathway mutations. GSK525762 treatment up-regulated p-ERK1/2 levels in both RAS pathway wild-type and mutant cell lines, suggesting that MEK/ERK pathway activation may also be a mechanism of adaptive BET inhibitor resistance. Importantly, gene expression studies demonstrated that the BET/MEK combination uniquely sustains down-regulation of genes associated with mitosis, leading to prolonged growth arrest that is not observed with either single agent therapy. These studies highlight a potential to enhance the clinical benefit of BET and MEK inhibitors and provide a strong rationale for clinical evaluation of BET/MEK combination therapies in cancer.
Collapse
Affiliation(s)
- Anastasia Wyce
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Jeanne J Matteo
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Shawn W Foley
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | | | | | - Xi-Ping Zhang
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Melissa C Musso
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Susan Korenchuk
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Natalie O Karpinich
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn M Keenan
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Melissa Stern
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Lijoy K Mathew
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Charles F McHugh
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael T McCabe
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter J Tummino
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA.,Janssen Pharmaceuticals, Spring House, Montgomery, PA, USA
| | - Ryan G Kruger
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Olena Barbash
- Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA.
| |
Collapse
|
132
|
Jauset T, Massó-Vallés D, Martínez-Martín S, Beaulieu ME, Foradada L, Fiorentino FP, Yokota J, Haendler B, Siegel S, Whitfield JR, Soucek L. BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC. Oncotarget 2018; 9:18734-18746. [PMID: 29721157 PMCID: PMC5922351 DOI: 10.18632/oncotarget.24648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Effectively treating KRAS-driven tumors remains an unsolved challenge. The inhibition of downstream signaling effectors is a way of overcoming the issue of direct targeting of mutant KRAS, which has shown limited efficacy so far. Bromodomain and Extra-Terminal (BET) protein inhibition has displayed anti-tumor activity in a wide range of cancers, including KRAS-driven malignancies. Here, we preclinically evaluate the effect of BET inhibition making use of a new BET inhibitor, BAY 1238097, against Pancreatic Ductal Adenocarcinoma (PDAC) and Non-Small Cell Lung Cancer (NSCLC) models harboring RAS mutations both in vivo and in vitro. Our results demonstrate that BET inhibition displays significant therapeutic impact in genetic mouse models of KRAS-driven PDAC and NSCLC, reducing both tumor area and tumor grade. The same approach also causes a significant reduction in cell number of a panel of RAS-mutated human cancer cell lines (8 PDAC and 6 NSCLC). In this context, we demonstrate that while BET inhibition by BAY 1238097 decreases MYC expression in some cell lines, at least in PDAC cells its anti-tumorigenic effect is independent of MYC regulation. Together, these studies reinforce the use of BET inhibition and prompt the optimization of more efficient and less toxic BET inhibitors for the treatment of KRAS-driven malignancies, which are in urgent therapeutic need.
Collapse
Affiliation(s)
- Toni Jauset
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain
| | - Daniel Massó-Vallés
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Martínez-Martín
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marie-Eve Beaulieu
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain
| | - Laia Foradada
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain
| | - Francesco Paolo Fiorentino
- Kitos Biotech srls, Porto Conte Ricerche, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Jun Yokota
- Genomics and Epigenomics of Cancer Prediction Program, Institut d'Investigació Germans Trias I Pujol (IGTP), Campus Can Ruti, Barcelona, Spain
| | | | | | - Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Peptomyc S.L., Edifici Cellex, Hospital Vall d'Hebron, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
133
|
Mahe M, Dufour F, Neyret-Kahn H, Moreno-Vega A, Beraud C, Shi M, Hamaidi I, Sanchez-Quiles V, Krucker C, Dorland-Galliot M, Chapeaublanc E, Nicolle R, Lang H, Pouponnot C, Massfelder T, Radvanyi F, Bernard-Pierrot I. An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers. EMBO Mol Med 2018; 10:e8163. [PMID: 29463565 PMCID: PMC5887543 DOI: 10.15252/emmm.201708163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
FGFR3 alterations (mutations or translocation) are among the most frequent genetic events in bladder carcinoma. They lead to an aberrant activation of FGFR3 signaling, conferring an oncogenic dependence, which we studied here. We discovered a positive feedback loop, in which the activation of p38 and AKT downstream from the altered FGFR3 upregulates MYC mRNA levels and stabilizes MYC protein, respectively, leading to the accumulation of MYC, which directly upregulates FGFR3 expression by binding to active enhancers upstream from FGFR3 Disruption of this FGFR3/MYC loop in bladder cancer cell lines by treatment with FGFR3, p38, AKT, or BET bromodomain inhibitors (JQ1) preventing MYC transcription decreased cell viability in vitro and tumor growth in vivo A relevance of this loop to human bladder tumors was supported by the positive correlation between FGFR3 and MYC levels in tumors bearing FGFR3 mutations, and the decrease in FGFR3 and MYC levels following anti-FGFR treatment in a PDX model bearing an FGFR3 mutation. These findings open up new possibilities for the treatment of bladder tumors displaying aberrant FGFR3 activation.
Collapse
Affiliation(s)
- Mélanie Mahe
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Florent Dufour
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Hélène Neyret-Kahn
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Aura Moreno-Vega
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | | | - Mingjun Shi
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Imene Hamaidi
- Department of Urology, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Virginia Sanchez-Quiles
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Clementine Krucker
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Marion Dorland-Galliot
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Remy Nicolle
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Hervé Lang
- Department of Urology, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Celio Pouponnot
- Institut Curie, Orsay, France
- CNRS UMR3347 Centre Universitaire, Orsay, France
- INSERM U1021 Centre Universitaire, Orsay, France
| | - Thierry Massfelder
- INSERM UMR_S1113, Section of Cell Signalization and Communication in Kidney and Prostate Cancer, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM and University of Strasbourg, Strasbourg, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
- CNRS, UMR144, Sorbonne Universités UPMC Université Paris 06, Paris, France
| |
Collapse
|
134
|
Wilson AJ, Stubbs M, Liu P, Ruggeri B, Khabele D. The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol Oncol 2018; 149:575-584. [PMID: 29567272 DOI: 10.1016/j.ygyno.2018.03.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Homologous recombination (HR)-proficient ovarian tumors have poorer clinical outcomes and show resistance to poly ADP ribose polymerase inhibitors (PARPi). A subset of HR-proficient ovarian tumors show amplification in bromodomain and extra-terminal (BET) genes such as BRD4. We aimed to test the hypothesis that BRD4 inhibition sensitizes ovarian cancer cells to PARPi by reducing HR efficiency and increasing DNA damage. METHODS HR-proficient ovarian cancer cell lines (OVCAR-3, OVCAR-4, SKOV-3, UWB1.289+BRCA1) were treated with BRD4-targeting siRNA, novel (INB054329, INCB057643) and established (JQ1) BET inhibitors (BETi) and PARPi (olaparib, rucaparib). Cell growth and viability were assessed by sulforhodamine B assays in vitro, and in SKOV-3 and ovarian cancer patient-derived xenografts in vivo. DNA damage and repair (pH2AX, RAD51 and BRCA1 foci formation, and DRGFP HR reporter activity), apoptosis markers (cleaved PARP, cleaved caspase-3, Bax) and proliferation markers (PCNA, Ki67) were assessed by immunofluorescence and western blot. RESULTS In cultured cells, inhibition of BRD4 by siRNA or INCB054329 reduced expression and function of BRCA1 and RAD51, reduced HR reporter activity, and sensitized the cells to olaparib-induced growth inhibition, DNA damage induction and apoptosis. Synergy was observed between all BETi tested and PARPi. INCB054329 and olaparib also co-operatively inhibited xenograft tumor growth, accompanied by reduced BRCA1 expression and proliferation, and increased apoptosis and DNA damage. CONCLUSIONS These results provide strong rationale for using BETi to extend therapeutic efficacy of PARPi to HR-proficient ovarian tumors and could benefit a substantial number of women diagnosed with this devastating disease.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | | | - Phillip Liu
- Incyte Corporation, Wilmington, DE, United States
| | | | - Dineo Khabele
- The University of Kansas Medical Center, Kansas City, KS, United States; The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
135
|
Bailey FP, Clarke K, Kalirai H, Kenyani J, Shahidipour H, Falciani F, Coulson JM, Sacco JJ, Coupland SE, Eyers PA. Kinome-wide transcriptional profiling of uveal melanoma reveals new vulnerabilities to targeted therapeutics. Pigment Cell Melanoma Res 2018; 31:253-266. [PMID: 28972303 DOI: 10.1111/pcmr.12650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients.
Collapse
Affiliation(s)
- Fiona P Bailey
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kim Clarke
- Computational Biology Facility, Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Jenna Kenyani
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Haleh Shahidipour
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Francesco Falciani
- Computational Biology Facility, Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Judy M Coulson
- Cellular and Molecular Physiology, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
136
|
Abstract
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Collapse
Affiliation(s)
- Hugues de Thé
- Collège de France, PSL Research University, 75005 Paris; Université Paris Diderot, Sorbonne Paris Cité (INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer; CNRS UMR 7212), Institut Universitaire d'Hématologie, 75010 Paris; and Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St Louis, 75010 Paris, France
| |
Collapse
|
137
|
Zhang HP, Li GQ, Zhang Y, Guo WZ, Zhang JK, Li J, Lv JF, Zhang SJ. Upregulation of Mcl-1 inhibits JQ1-triggered anticancer activity in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2018; 495:2456-2461. [PMID: 29287727 DOI: 10.1016/j.bbrc.2017.12.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 01/01/2023]
Abstract
Bromodomains and extra-terminal (BET) proteins inhibitors are promising cancer therapeutic agents. However, tumor cells often develop resistance to BET inhibitors, greatly limiting their therapeutic potential. To study the mechanism underlying the resistance of BET inhibitors in hepatocellular carcinoma (HCC) cells, we herein investigated the impact of BET inhibitor JQ1 on the gene expression of Bcl-2 family members by RNA sequencing analysis, and found that acute treatment with JQ1 triggered upregulation of Mcl-1 in HCCLM3 and BEL7402 cell lines. This JQ1-triggered Mcl-1 upregulation was further confirmed by quantitative reverse transcription polymerase chain reaction and western blotting analysis, both at mRNA and protein levels. Inhibition of Mcl-1 by RNA interference dramatically enhanced JQ1-triggered caspase-3 activation, cleavage of poly (ADP-ribose) polymerase and apoptotic cell death induction in multiple HCC cell lines. Moreover, JQ1 in combination with cyclin-dependent kinase inhibitor flavopiridol at a subtoxic concentration that reduced expression of Mcl-1, triggered massive apoptotic cell death in HCCLM3 and BEL7402 cell lines. Together, these data suggest that Mcl-1 is a major contributor to BET inhibitor-resistance in HCC cells, and that combining drugs capable of down-regulating Mcl-1 may promote therapeutic potential in human HCC.
Collapse
Affiliation(s)
- Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Gong-Quan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Yi Zhang
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jian-Feng Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China.
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China; Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
138
|
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 2018; 25:67-77.e3. [PMID: 29129716 PMCID: PMC5831399 DOI: 10.1016/j.chembiol.2017.09.009] [Citation(s) in RCA: 464] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Blake E Smith
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Ashton C Lai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel C McQuaid
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Momar Toure
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Hanqing Dong
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Yimin Qian
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jing Wang
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | | | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA; Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
139
|
Stathis A, Bertoni F. BET Proteins as Targets for Anticancer Treatment. Cancer Discov 2017; 8:24-36. [PMID: 29263030 DOI: 10.1158/2159-8290.cd-17-0605] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Affiliation(s)
| | - Francesco Bertoni
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Università della Svizzera italiana, Istituto Oncologico di Ricerca, Bellinzona, Switzerland
| |
Collapse
|
140
|
|
141
|
Qiao Z, Shiozawa K, Kondo T. Proteomic approach toward determining the molecular background of pazopanib resistance in synovial sarcoma. Oncotarget 2017; 8:109587-109595. [PMID: 29312631 PMCID: PMC5752544 DOI: 10.18632/oncotarget.22730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Pazopanib, a multitarget tyrosine kinase (TK) inhibitor, has been approved for treatment of soft tissue sarcoma. Elucidation of the molecular background of pazopanib resistance should lead to improved clinical outcomes in sarcomas; accordingly, we investigated this in synovial sarcoma using a proteomic approach. Pazopanib sensitivity was examined in four synovial sarcoma cell lines: SYO-1, HS-SYII, 1273/99, and YaFuSS. The 1273/99 cell line showed significantly higher IC50 values than the others for pazopanib. Expression levels of 90 TKs in the cell lines were examined by western blotting. Among these, the levels of PDGFRB, DDR1, AXL, MET, and PYK2 were higher, and those of FGFR1 and VEGFR3 were lower in the 1273/99 cell line than the other cell lines. Gene silencing analysis of the TKs upregulated in 1273/99 cells showed differing effects on cell growth: PDGFRB, MET, and PYK2 knockdown induced cell growth inhibition, whereas DDR1 and AXL knockdown did not influence cell growth. Using the PamChip peptide microarray, we found that 18 peptide substrates were highly phosphorylated in the 1273/99 cell line compared with other cell lines. Using the PhosphoNet database, we found that kinases FGFR3, RET, VEGFR1, EPHA2, EPHA4, TRKA, and SRC phosphorylated these 18 peptide substrates. Moreover, the results for overexpressed and aberrantly activated TKs in pazopanib-resistant cells showed no overlap. Taken together, our study indicates that identification of comprehensive TK profiles represents an essential approach to determining the molecular background of pazopanib resistance in synovial sarcoma.
Collapse
Affiliation(s)
- Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
142
|
Segatto M, Fittipaldi R, Pin F, Sartori R, Dae Ko K, Zare H, Fenizia C, Zanchettin G, Pierobon ES, Hatakeyama S, Sperti C, Merigliano S, Sandri M, Filippakopoulos P, Costelli P, Sartorelli V, Caretti G. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat Commun 2017; 8:1707. [PMID: 29167426 PMCID: PMC5700099 DOI: 10.1038/s41467-017-01645-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Claudio Fenizia
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Elisa Sefora Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Shinji Hatakeyama
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padua, 35122, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Paola Costelli
- Department of Clinical and Biological Sciences, Unit of General and Clinical Pathology, University of Turin, 10124, Torino, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIH/NIAMS, 50 South Drive, Bethesda, MD, USA
| | - Giuseppina Caretti
- Department of Biosciences, Universita' degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
143
|
Johnson N, Liao JB. Novel Therapeutics for Ovarian Cancer: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium. Int J Gynecol Cancer 2017; 27:S14-S19. [PMID: 29040190 DOI: 10.1097/igc.0000000000001115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of this study was to summarize developments in novel therapeutics for ovarian cancer presented at the Ovarian Cancer Research Symposium held at the University of Washington. METHODS A symposium of the leaders in ovarian cancer research was convened to present and discuss current advances and future directions in ovarian cancer research. RESULTS The fourth session was held on September 13, 2016, and focused on Novel Therapeutics for Ovarian Cancer. The session featured a keynote presentation on Novel Immunotherapeutics for Ovarian Cancer from Nora Disis and an invited oral presentation from Scott Kaufmann that discussed poly (ADP-ribose) polymerase (PARP) Inhibitor Combinations for the Treatment of Ovarian Cancer. Eight additional oral presentations were selected from abstract submissions. Thirty-eight abstracts were presented as posters highlighting recent advances in tumor immunology, PARP inhibition, chemoresistance, and novel targets for ovarian cancer therapy. CONCLUSIONS PARP inhibitors, immunotherapies, and targeted therapies are but some of the expanding number of treatment options for ovarian cancer patients. Identification of the subsets of patients who will benefit most from these treatments remains the subject of intense preclinical and clinical research. Evidence presented at this symposium suggests that non-BRCA patients also benefit from PARP inhibitor therapies. Improved understanding of the mechanisms of chemoresistance and encouraging preclinical data presented for combinatorial approaches may soon yield new therapies for ovarian cancers that are resistant and refractory to standard treatments.
Collapse
|
144
|
Zhang HP, Li GQ, Guo WZ, Chen GH, Tang HW, Yan B, Li J, Zhang JK, Wen PH, Wang ZH, Lv JF, Zhang SJ. Oridonin synergistically enhances JQ1-triggered apoptosis in hepatocellular cancer cells through mitochondrial pathway. Oncotarget 2017; 8:106833-106843. [PMID: 29290992 PMCID: PMC5739777 DOI: 10.18632/oncotarget.21880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Bromodomain and Extra-Terminal Domain (BET) inhibitors, such as JQ1 have emerged as novel drug candidates and are being enthusiastically pursued in clinical trials for the treatment of cancer. However, many solid cancers are resistance to BET inhibitors. To explore methods for improving the therapeutic potential of BET inhibitors, we investigated the combinational activity of JQ1 with Oridonin, a bioactive molecules derived from Traditional Chinese Medicine in hepatocellular carcinoma (HCC) cells. Our results showed that Oridonin synergistically enhanced the abilities of JQ1 to inhibit cell viability in HCC cells and, significantly augmented JQ1-triggered apoptosis in HCC cells and in HCC cancer stem-like cells. Moreover, Oridonin dose-dependently inhibited the expression of several anti-apoptotic proteins, such as Bcl-2, Mcl-1, and x-linked inhibitor of apoptosis (xIAP) in HCC cells. Cell fractionation and western blotting analysis showed that the enhancement of apoptosis by Oridonin was associated with cytochrome c release, activation of caspase-9, -3 and cleavage of PARP, indicating the activation of mitochondrial apoptosis pathway. Altogether, our findings demonstrate that Oridonin may be used to effectively enhance the sensitivity of BET inhibitors in HCC therapy via downregulation of the expression of multiple anti-apoptotic proteins.
Collapse
Affiliation(s)
- Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Gong-Quan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Guang-Hui Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Wei Tang
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Bing Yan
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Feng Lv
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| |
Collapse
|
145
|
Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics 2017; 14:905-915. [PMID: 28895440 DOI: 10.1080/14789450.2017.1374860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention. Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states. Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.
Collapse
Affiliation(s)
| | | | - Xingyu Liu
- a Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Michael P Washburn
- a Stowers Institute for Medical Research , Kansas City , MO , USA.,b Departments of Pathology & Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
146
|
Angus SP, Zawistowski JS, Johnson GL. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer. Annu Rev Pharmacol Toxicol 2017; 58:209-229. [PMID: 28934561 DOI: 10.1146/annurev-pharmtox-010617-052954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| |
Collapse
|
147
|
Liefers-Visser JAL, Meijering RAM, Reyners AKL, van der Zee AGJ, de Jong S. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer. Cancer Treat Rev 2017; 60:90-99. [PMID: 28934637 DOI: 10.1016/j.ctrv.2017.08.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential.
Collapse
Affiliation(s)
- J A L Liefers-Visser
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R A M Meijering
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A K L Reyners
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
148
|
Janouskova H, El Tekle G, Bellini E, Udeshi ND, Rinaldi A, Ulbricht A, Bernasocchi T, Civenni G, Losa M, Svinkina T, Bielski CM, Kryukov GV, Cascione L, Napoli S, Enchev RI, Mutch DG, Carney ME, Berchuck A, Winterhoff BJN, Broaddus RR, Schraml P, Moch H, Bertoni F, Catapano CV, Peter M, Carr SA, Garraway LA, Wild PJ, Theurillat JPP. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat Med 2017; 23:1046-1054. [PMID: 28805821 PMCID: PMC5592092 DOI: 10.1038/nm.4372] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations in the substrate recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancer. Their therapeutic implications remain incompletely understood. Here, we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutants impaired degradation of BETs, promoting resistance against their pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations within the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat endometrial but not prostate cancer patients with SPOP mutations.
Collapse
Affiliation(s)
- Hana Janouskova
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Geniver El Tekle
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland.,Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Elisa Bellini
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Namrata D Udeshi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Anna Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Anna Ulbricht
- Department of Biochemistry, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Tiziano Bernasocchi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland.,Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Marco Losa
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Tanya Svinkina
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Craig M Bielski
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Luciano Cascione
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Radoslav I Enchev
- Department of Biochemistry, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - David G Mutch
- Division of Gynecologic Oncology, Washington University, St. Louis, Missouri, USA
| | - Michael E Carney
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Duke Cancer Center, Durham, North Carolina, USA
| | - Boris J N Winterhoff
- Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell R Broaddus
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland.,Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Matthias Peter
- Department of Biochemistry, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Steven A Carr
- Department of Biochemistry, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | - Levi A Garraway
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Philippe P Theurillat
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Science, Università della Svizzera Italiana, Lugano, Switzerland.,Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
149
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170:605-635. [PMID: 28802037 PMCID: PMC5726441 DOI: 10.1016/j.cell.2017.07.029] [Citation(s) in RCA: 1867] [Impact Index Per Article: 233.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Shubha Bagrodia
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
150
|
Amemiya S, Yamaguchi T, Hashimoto Y, Noguchi-Yachide T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem 2017; 25:3677-3684. [DOI: 10.1016/j.bmc.2017.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|