101
|
Blencowe M, Arneson D, Ding J, Chen YW, Saleem Z, Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg Top Life Sci 2019; 3:379-398. [PMID: 32270049 PMCID: PMC7141415 DOI: 10.1042/etls20180176] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Single-cell multi-omics technologies are rapidly evolving, prompting both methodological advances and biological discoveries at an unprecedented speed. Gene regulatory network modeling has been used as a powerful approach to elucidate the complex molecular interactions underlying biological processes and systems, yet its application in single-cell omics data modeling has been met with unique challenges and opportunities. In this review, we discuss these challenges and opportunities, and offer an overview of the recent development of network modeling approaches designed to capture dynamic networks, within-cell networks, and cell-cell interaction or communication networks. Finally, we outline the remaining gaps in single-cell gene network modeling and the outlooks of the field moving forward.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Molecular Toxicology Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Molecular Toxicology Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
102
|
Watanabe T, Yamazaki S, Yoneda N, Shinohara H, Tomioka I, Higuchi Y, Yagoto M, Ema M, Suemizu H, Kawai K, Sasaki E. Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds. Genes Cells 2019; 24:473-484. [PMID: 31099158 PMCID: PMC6852476 DOI: 10.1111/gtc.12702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
Induced pluripotent stem (iPS) cells hold great promise for regenerative medicine and the treatment of various diseases. Before proceeding to clinical trials, it is important to test the efficacy and safety of iPS cell‐based treatments using experimental animals. The common marmoset is a new world monkey widely used in biomedical studies. However, efficient methods that could generate iPS cells from a variety of cells have not been established. Here, we report that marmoset cells are efficiently reprogrammed into iPS cells by combining RNA transfection and chemical compounds. Using this novel combination, we generate transgene integration‐free marmoset iPS cells from a variety of cells that are difficult to reprogram using conventional RNA transfection method. Furthermore, we show this is similarly effective for human and cynomolgus monkey iPS cell generation. Thus, the addition of chemical compounds during RNA transfection greatly facilitates reprogramming and efficient generation of completely integration‐free safe iPS cells in primates, particularly from difficult‐to‐reprogram cells.
Collapse
Affiliation(s)
| | - Shun Yamazaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Matsumoto, Japan
| | | | - Mika Yagoto
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | | | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| |
Collapse
|
103
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|