101
|
Lin M, Tang SCW. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant 2013; 29:746-54. [PMID: 24203812 DOI: 10.1093/ndt/gft446] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that immunologic and inflammatory elements play an important role in initiating and orchestrating the development of diabetic nephropathy (DN), but until recently, the identity of specific innate immune pattern recognition receptors or sensors that recognize diverse diabetic 'danger signals' to trigger the proinflammatory cascade during DN remains unknown. Toll-like receptors (TLRs) are an emerging family of receptors that recognize pathogen-associated molecular patterns as well as damage-associated molecular patterns to promote the activation of leukocytes and intrinsic renal cells in non-immune kidney disease. Recent data from in vitro and in vivo studies have highlighted the critical role of TLRs, mainly TLR2 and TLR4, in the pathogenesis of DN. This review focuses on emerging findings elucidating how TLR signaling could sense and react to the metabolic stress and endogenous ligands activated by the diabetic state, thereby initiating and perpetuating renal inflammation and fibrogenesis in diabetic kidney disease. Novel strategies potentially targeting TLR signaling that could have therapeutic implications in DN are also discussed.
Collapse
Affiliation(s)
- Miao Lin
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
102
|
Park SY, Park TG, Lee SJ, Bae YS, Ko MJ, Choi YW. α-Iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1-42 fibril-induced microglial activation. ACTA ACUST UNITED AC 2013; 66:93-105. [PMID: 24138316 DOI: 10.1111/jphp.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/16/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To examine the antineuroinflammatory and neuroprotective activity of α-iso-cubebenol and its molecular mechanism of action in amyloid β (Aβ) 1-42 fibril-stimulated microglia. METHODS Aβ 1-42 fibrils were used to induce a neuroinflammatory response in murine primary microglia and BV-2 murine microglia cell lines. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, protein expression and phosphorylation were determined by Western blot analysis, and matrix metalloproteinase-9 (MMP-9) activity was determined by gelatin zymography assay. In addition, prostaglandin E2 (PGE2), pro-inflammatory cytokines and chemokines were measured by ELISA, and the transactivity of nuclear factor (NF)-κB was determined by a reporter assay. KEY FINDINGS α-Iso-cubebenol significantly inhibited Aβ 1-42 fibril-induced MMP-9, inducible nitric oxide synthase and cyclooxygenase-2 expressions and activity, without affecting cell viability. α-Iso-cubebenol also suppressed the production of tumour necrosis factor-α, IL-1β, IL-6, monocyte chemoattractant protein-1 and reactive oxygen species in a dose-dependent manner, while decreasing the nuclear translocation and transactivity of NF-κB by inhibiting the phosphorylation and degradation of the inhibitor of κB (IκB)α. α-Iso-cubebenol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK) in Aβ 1-42 fibril-stimulated microglia. Primary cortical neurons were protected by the inhibitory effect of α-iso-cubebenol on Aβ 1-42 fibril-induced neuroinflammatory response. CONCLUSIONS α-Iso-cubebenol suppresses Aβ 1-42 fibril-induced neuroinflammatory molecules in primary microglia via the suppression of NF-κB/inhibitor of κBα and MAPK. Importantly, the antineuroinflammatory potential of α-iso-cubebenol is critical for neuroprotection.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
103
|
Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert JM, Lonez C. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci 2013; 70:2999-3012. [PMID: 23334185 PMCID: PMC11113201 DOI: 10.1007/s00018-012-1245-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/24/2022]
Abstract
Inflammation occurs in many amyloidoses, but its underlying mechanisms remain enigmatic. Here we show that amyloid fibrils of human lysozyme, which are associated with severe systemic amyloidoses, induce the secretion of pro-inflammatory cytokines through activation of the NLRP3 (NLR, pyrin domain containing 3) inflammasome and the Toll-like receptor 2, two innate immune receptors that may be involved in immune responses associated to amyloidoses. More importantly, our data clearly suggest that the induction of inflammatory responses by amyloid fibrils is linked to their intrinsic structure, because the monomeric form and a non-fibrillar type of lysozyme aggregates are both unable to trigger cytokine secretion. These lysozyme species lack the so-called cross-β structure, a characteristic structural motif common to all amyloid fibrils irrespective of their origin. Since fibrils of other bacterial and endogenous proteins have been shown to trigger immunological responses, our observations suggest that the cross-β structural signature might be recognized as a generic danger signal by the immune system.
Collapse
Affiliation(s)
- Adelin Gustot
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
104
|
Park SY, Park SJ, Park TG, Rajasekar S, Lee SJ, Choi YW. Schizandrin C exerts anti-neuroinflammatory effects by upregulating phase II detoxifying/antioxidant enzymes in microglia. Int Immunopharmacol 2013; 17:415-26. [PMID: 23859871 DOI: 10.1016/j.intimp.2013.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
We investigated the anti-neuroinflammatory properties of schizandrin C by focusing on its roles in the induction of phase II detoxifying/antioxidant enzymes and in the modulation of upstream signaling pathways. Schizandrin C induced expression of phase II detoxifying/antioxidant enzymes including heme oxygenase-1 (HO-1) and NADPH dehydrogenase quinone-1 (NQO-1). Activation of upstream signaling pathways, such as the cAMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB) and erythroid-specific nuclear factor-regulated factor 2 (Nrf-2) pathways, significantly increased following treatment with schizandrin C. In addition, expressions of schizandrin C-mediated phase II detoxifying/antioxidant enzymes were completely attenuated by adenylyl cyclase inhibitor (ddAdo) and protein kinase A (PKA) inhibitor (H-89). In microglia, schizandrin C significantly inhibited lipoteichoic acid (LTA)-stimulated pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO), and reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metallopeptidase-9 (MMP-9) protein expressions. Moreover, schizandrin C suppressed LTA-induced nuclear factor-kappa B (NF-κB), activator protein-1 (AP-1), janus-kinase/signal transducer and activator of transcription (JAK-STATs), and mitogen-activated protein kinase (MAPK) activation. Schizandrin C also effectively suppressed ROS generation and NO production, as well as iNOS promoter activity in LTA-stimulated microglia. This suppressive effect was reversed by transfection with Nrf-2 and HO-1 siRNA and co-treatment with inhibitors ddAdo and H-89. Our results indicate that schizandrin C isolated from Schisandra chinensis could be used as a natural anti-neuroinflammatory agent, inducing phase II detoxifying/antioxidant enzymes via cAMP/PKA/CREB and Nrf-2 signaling.
Collapse
|
105
|
Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013; 4:1562. [PMID: 23463005 DOI: 10.1038/ncomms2534] [Citation(s) in RCA: 626] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
Abnormal aggregation of α-synuclein and sustained microglial activation are important contributors to the pathogenic processes of Parkinson's disease. However, the relationship between disease-associated protein aggregation and microglia-mediated neuroinflammation remains unknown. Here, using a combination of in silico, in vitro and in vivo approaches, we show that extracellular α-synuclein released from neuronal cells is an endogenous agonist for Toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia. The TLR2 ligand activity of α-synuclein is conformation-sensitive; only specific types of oligomer can interact with and activate TLR2. This paracrine interaction between neuron-released oligomeric α-synuclein and TLR2 in microglia suggests that both of these proteins are novel therapeutic targets for modification of neuroinflammation in Parkinson's disease and related neurological diseases.
Collapse
|
106
|
Golde TE, Borchelt DR, Giasson BI, Lewis J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 2013; 123:1847-55. [PMID: 23635781 DOI: 10.1172/jci66029] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and frontotemporal dementia, are proteinopathies that are associated with the aggregation and accumulation of misfolded proteins. While remarkable progress has been made in understanding the triggers of these conditions, several challenges have hampered the translation of preclinical therapies targeting pathways downstream of the initiating proteinopathies. Clinical trials in symptomatic patients using therapies directed toward initiating trigger events have met with little success, prompting concerns that such therapeutics may be of limited efficacy when used in advanced stages of the disease rather than as prophylactics. Herein, we discuss gaps in our understanding of the pathological processes downstream of the trigger and potential strategies to identify common features of the downstream degenerative cascade in multiple CNS proteinopathies, which could potentially lead to the development of common therapeutic targets for multiple disorders.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
107
|
Rapsinski GJ, Newman TN, Oppong GO, van Putten JPM, Tükel Ç. CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers. J Biol Chem 2013; 288:14178-14188. [PMID: 23548899 DOI: 10.1074/jbc.m112.447060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloids, protein aggregates with a cross β-sheet structure, contribute to inflammation in debilitating disorders, including Alzheimer's disease. Enteric bacteria also produce amyloids, termed curli, contributing to inflammation during infection. It has been demonstrated that curli and β-amyloid are recognized by the immune system via the Toll-like receptor (TLR) 2/TLR1 complex. Here we investigated the role of CD14 in the immune recognition of bacterial amyloids. We used HeLa 57A cells, a human cervical cancer cell line containing a luciferase reporter gene under the control of an NF-κB promoter. When HeLa 57A cells were transiently transfected with combinations of human expression vectors containing genes for TLR2, TLR1, and CD14, membrane-bound CD14 enhanced NF-κB activation through the TLR2/TLR1 complex stimulated with curli fibers or recombinant CsgA, the curli major subunit. Similarly, soluble CD14 augmented the TLR2/TLR1 response to curli fibers in the absence of membrane-bound CD14. We further revealed that IL-6 and nitric oxide production were significantly higher by wild-type (C57BL/6) bone marrow-derived macrophages compared with TLR2-deficient or CD14-deficient bone marrow-derived macrophages when stimulated with curli fibers, recombinant CsgA, or synthetic CsgA peptide, CsgA-R4-5. Binding assays demonstrated that recombinant TLR2, TLR1, and CD14 bound purified curli fibers. Interestingly, CD14-curli interaction was specific to the fibrillar form of the amyloid, as demonstrated by using synthetic CsgA peptides proficient and deficient in fiber formation, respectively. Activation of the TLR2/TLR1/CD14 trimolecular complex by amyloids provides novel insights for innate immunity with implications for amyloid-associated diseases.
Collapse
Affiliation(s)
- Glenn J Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Tiffanny N Newman
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Gertrude O Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
108
|
Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 2013; 4:e00103-13. [PMID: 23512962 PMCID: PMC3604763 DOI: 10.1128/mbio.00103-13] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms are highly structured multicellular communities whose formation involves flagella and an extracellular matrix of adhesins, amyloid fibers, and exopolysaccharides. Flagella are produced by still-dividing rod-shaped Escherichia coli cells during postexponential growth when nutrients become suboptimal. Upon entry into stationary phase, however, cells stop producing flagella, become ovoid, and generate amyloid curli fibers. These morphological changes, as well as accompanying global changes in gene expression and cellular physiology, depend on the induction of the stationary-phase sigma subunit of RNA polymerase, σS (RpoS), the nucleotide second messengers cyclic AMP (cAMP), ppGpp, and cyclic-di-GMP, and a biofilm-controlling transcription factor, CsgD. Using flagella, curli fibers, a CsgD::GFP reporter, and cell morphology as “anatomical” hallmarks in fluorescence and scanning electron microscopy, different physiological zones in macrocolony biofilms of E. coli K-12 can be distinguished at cellular resolution. Small ovoid cells encased in a network of curli fibers form the outer biofilm layer. Inner regions are characterized by heterogeneous CsgD::GFP and curli expression. The bottom zone of the macrocolonies features elongated dividing cells and a tight mesh of entangled flagella, the formation of which requires flagellar motor function. Also, the cells in the outer-rim growth zone produce flagella, which wrap around and tether cells together. Adjacent to this growth zone, small chains and patches of shorter curli-surrounded cells appear side by side with flagellated curli-free cells before curli coverage finally becomes confluent, with essentially all cells in the surface layer being encased in “curli baskets.” Heterogeneity or cellular differentiation in biofilms is a commonly accepted concept, but direct evidence at the microscale has been difficult to obtain. Our study reveals the microanatomy and microphysiology of an Escherichia coli macrocolony biofilm at an unprecedented cellular resolution, with physiologically different zones and strata forming as a function of known global regulatory networks that respond to biofilm-intrinsic gradients of nutrient supply. In addition, this study identifies zones of heterogeneous and potentially bistable CsgD and curli expression, shows bacterial curli networks to strikingly resemble Alzheimer plaques, and suggests a new role of flagella as an architectural element in biofilms.
Collapse
|
109
|
Hartman K, Brender JR, Monde K, Ono A, Evans M, Popovych N, Chapman MR, Ramamoorthy A. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. PeerJ 2013; 1:e5. [PMID: 23638387 PMCID: PMC3629062 DOI: 10.7717/peerj.5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically increase HIV infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a more general phenomenon than previously supposed.
Collapse
Affiliation(s)
- Kevin Hartman
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Jeffrey R. Brender
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Kazuaki Monde
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Margery L. Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Nataliya Popovych
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| |
Collapse
|
110
|
Mansan-Almeida R, Pereira AL, Giugliano LG. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol 2013; 13:22. [PMID: 23374248 PMCID: PMC3577467 DOI: 10.1186/1471-2180-13-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Background Diffusely adherent Escherichia coli (DAEC) have been considered a diarrheagenic category of E. coli for which several potential virulence factors have been described in the last few years. Despite this, epidemiological studies involving DAEC have shown inconsistent results. In this work, two different collections of DAEC possessing Afa/Dr genes, from children and adults, were studied regarding characteristics potentially associated to virulence. Results DAEC strains were recovered in similar frequencies from diarrheic and asymptomatic children, and more frequently from adults with diarrhea (P < 0.01) than from asymptomatic adults. Association with diarrhea (P < 0.05) was found for SAT-positive strains recovered from children and for curli-positive strains recovered from adults. Mixed biofilms involving DAEC and a Citrobacter freundii strain have shown an improved ability to form biofilms in relation to the monocultures. Control strains have shown a greater diversity of Afa/Dr adhesins and higher frequencies of cellulose, TTSS, biofilm formation and induction of IL-8 secretion than strains from cases of diarrhea in children. Conclusions DAEC strains possessing Afa/Dr genes isolated from children and adults represent two different bacterial populations. DAEC strains carrying genes associated to virulence can be found as part of the normal microbiota present in asymptomatic children.
Collapse
Affiliation(s)
- Rosane Mansan-Almeida
- Laboratório de Microbiologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | | |
Collapse
|
111
|
Schwartz K, Boles BR. Microbial amyloids--functions and interactions within the host. Curr Opin Microbiol 2013; 16:93-9. [PMID: 23313395 DOI: 10.1016/j.mib.2012.12.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/13/2012] [Accepted: 12/07/2012] [Indexed: 01/08/2023]
Abstract
The aggregation of proteins into amyloid fibers is a common characteristic of many neurodegenerative disorders including Alzheimer's, Parkinson's, and prion diseases. Amyloid formation was originally characterized in these systems and is traditionally viewed as a consequence of protein misfolding and aggregation. An emerging field of study brings functional amyloids, like those produced by bacteria, into the scientific mainstream, and demonstrates a ubiquitous role for amyloids in living systems. This review aims to summarize what is known about the bacterial amyloids and their interactions within various host environments.
Collapse
Affiliation(s)
- Kelly Schwartz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
112
|
Westwell-Roper C, Dunne A, Kim ML, Verchere CB, Masters SL. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol Biol 2013; 1040:9-18. [PMID: 23852593 DOI: 10.1007/978-1-62703-523-1_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to several other extracellular substances, phagocytosis of amyloid-forming peptides can perturb cellular homeostasis, leading to activation of the cytoplasmic innate immune receptor NLRP3. Once triggered, NLRP3 forms an inflammasome complex that ultimately cleaves pro-IL-1β and pro-IL-18 into their mature, secreted forms. Here we describe a protocol by which one type of amyloidogenic peptide, islet amyloid polypeptide (IAPP, otherwise known as amylin) can be prepared and used to stimulate myeloid cells in vitro to engage the NLRP3 inflammasome. Methods for measuring the ensuing inflammasome activation are also described. Although initially soluble, IAPP monomers rapidly aggregate in solution to form oligomers and subsequently insoluble amyloid fibrils. More work is required to examine how this transition influences inflammasome activation for different types of amyloid. The course of amyloid formation and corresponding inflammatory capacity of these pre-fibrillar species following uptake also requires further examination, and we hope that our protocols are useful in these endeavors. While these protocols are restricted to examination of synthetic IAPP, isolation of IAPP aggregates from human and transgenic mouse pancreas will be required to definitively determine the proinflammatory effects of endogenous IAPP oligomers and fibrils.
Collapse
Affiliation(s)
- Clara Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
113
|
Abstract
Curli are proteinaceous fibrous structures produced on the surface of many gram-negative bacteria. As a major constituent of the extracellular matrix, curli mediate interactions between the bacteria and its environment, and as such, curli play a critical role in biofilm formation. Curli fibers share biophysical properties with a growing number of remarkably stable and ordered protein aggregates called amyloid. Here we describe experimental methods to study the biogenesis and assembly of curli by exploiting their amyloid properties. We also present methods to analyze curli-mediated biofilm formation. These approaches are straightforward and can easily be adapted to study other bacterially produced amyloids.
Collapse
|
114
|
Dueholm MS, Albertsen M, Otzen D, Nielsen PH. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 2012; 7:e51274. [PMID: 23251478 PMCID: PMC3521004 DOI: 10.1371/journal.pone.0051274] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli and a few other members of the Enterobacteriales can produce functional amyloids known as curli. These extracellular fibrils are involved in biofilm formation and studies have shown that they may act as virulence factors during infections. It is not known whether curli fibrils are restricted to the Enterobacteriales or if they are phylogenetically widespread. The growing number of genome-sequenced bacteria spanning many phylogenetic groups allows a reliable bioinformatic investigation of the phylogenetic diversity of the curli system. Here we show that the curli system is phylogenetically much more widespread than initially assumed, spanning at least four phyla. Curli fibrils may consequently be encountered frequently in environmental as well as pathogenic biofilms, which was supported by identification of curli genes in public metagenomes from a diverse range of habitats. Identification and comparison of curli subunit (CsgA/B) homologs show that these proteins allow a high degree of freedom in their primary protein structure, although a modular structure of tightly spaced repeat regions containing conserved glutamine, asparagine and glycine residues has to be preserved. In addition, a high degree of variability within the operon structure of curli subunits between bacterial taxa suggests that the curli fibrils might have evolved to fulfill specific functions. Variations in the genetic organization of curli genes are also seen among different bacterial genera. This suggests that some genera may utilize alternative regulatory pathways for curli expression. Comparison of phylogenetic trees of Csg proteins and the 16S rRNA genes of the corresponding bacteria showed remarkably similar overall topography, suggesting that horizontal gene transfer is a minor player in the spreading of the curli system.
Collapse
Affiliation(s)
- Morten S. Dueholm
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Per Halkjær Nielsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
115
|
Epithelial cells augment barrier function via activation of the Toll-like receptor 2/phosphatidylinositol 3-kinase pathway upon recognition of Salmonella enterica serovar Typhimurium curli fibrils in the gut. Infect Immun 2012. [PMID: 23208603 DOI: 10.1128/iai.00453-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Curli fibrils, the best-characterized functional bacterial amyloids, are an important component of enterobacterial biofilms. We have previously shown that curli fibrils are recognized by the Toll-like receptor 2 (TLR2)/TLR1 heterodimer complex. Utilizing polarized T-84 cells, an intestinal epithelial cell line derived from colon carcinoma grown on semipermeable tissue culture inserts, we determined that infection with a Salmonella enterica serovar Typhimurium csgBA mutant, which does not express curli, resulted in an increase in intestinal barrier permeability and an increase in bacterial translocation compared to infection with curliated wild-type S. Typhimurium. When the TLR2 downstream signaling molecule phosphatidylinositol 3-kinase (PI3K) was blocked using wortmannin or LY294002, the difference in disruption of the intestinal epithelium and bacterial translocation was no longer observed. Additionally, disruption of polarized T-84 cells treated basolaterally with the TLR5 ligand flagellin was prevented when the polarized cells were simultaneously treated with the synthetic TLR2/TLR1 ligand Pam(3)CSK(4) or with purified curli fibrils in the apical compartment. Similar to in vitro observations, C57BL/6 mice infected with the csgBA mutant suffered increased disruption of the intestinal epithelium and therefore greater dissemination of the bacteria to the mesenteric lymph nodes than mice infected with wild-type S. Typhimurium. The differences in disruption of the intestinal epithelium and bacterial dissemination in the mice infected with csgBA mutant or wild-type S. Typhimurium were not apparent in TLR2-deficient mice. Overall, these studies report for the first time that activation of the TLR2/PI3K pathway by microbial amyloids plays a critical role in regulating the intestinal epithelial barrier as well as monitoring bacterial translocation during infection.
Collapse
|
116
|
Nishimori JH, Newman TN, Oppong GO, Rapsinski GJ, Yen JH, Biesecker SG, Wilson RP, Butler BP, Winter MG, Tsolis RM, Ganea D, Tükel Ç. Microbial amyloids induce interleukin 17A (IL-17A) and IL-22 responses via Toll-like receptor 2 activation in the intestinal mucosa. Infect Immun 2012; 80:4398-408. [PMID: 23027540 PMCID: PMC3497426 DOI: 10.1128/iai.00911-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022] Open
Abstract
The Toll-like receptor 2 (TLR2)/TLR1 receptor complex responds to amyloid fibrils, a common component of biofilm material produced by members of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. To determine whether this TLR2/TLR1 ligand stimulates inflammatory responses when bacteria enter intestinal tissue, we investigated whether expression of curli amyloid fibrils by the invasive enteric pathogen Salmonella enterica serotype Typhimurium contributes to T helper 1 and T helper 17 responses by measuring cytokine production in the mouse colitis model. A csgBA mutant, deficient in curli production, elicited decreased expression of interleukin 17A (IL-17A) and IL-22 in the cecal mucosa compared to the S. Typhimurium wild type. In TLR2-deficient mice, IL-17A and IL-22 expression was blunted during S. Typhimurium infection, suggesting that activation of the TLR2 signaling pathway contributes to the expression of these cytokines. T cells incubated with supernatants from bone marrow-derived dendritic cells (BMDCs) treated with curli fibrils released IL-17A in a TLR2-dependent manner in vitro. Lower levels of IL-6 and IL-23 production were detected in the supernatants of the TLR2-deficient BMDCs treated with curli fibrils. Consistent with this, three distinct T-cell populations-CD4(+) T helper cells, cytotoxic CD8(+) T cells, and γδ T cells-produced IL-17A in response to curli fibrils in the intestinal mucosa during S. Typhimurium infection. Notably, decreased IL-6 expression by the dendritic cells and decreased IL-23 expression by the dendritic cells and macrophages were observed in the cecal mucosa of mice infected with the curli mutant. We conclude that TLR2 recognition of bacterial amyloid fibrils in the intestinal mucosa represents a novel mechanism of immunoregulation, which contributes to the generation of inflammatory responses, including production of IL-17A and IL-22, in response to bacterial entry into the intestinal mucosa.
Collapse
Affiliation(s)
- Jessalyn H. Nishimori
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Tiffanny N. Newman
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Gertrude O. Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Glenn J. Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Steven G. Biesecker
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - R. Paul Wilson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Brian P. Butler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
117
|
DePas WH, Chapman MR. Microbial manipulation of the amyloid fold. Res Microbiol 2012; 163:592-606. [PMID: 23108148 PMCID: PMC3532741 DOI: 10.1016/j.resmic.2012.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.
Collapse
Affiliation(s)
- William H. DePas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan LSA, 830 North University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
118
|
Clark I, Atwood C, Bowen R, Paz-Filho G, Vissel B. Tumor necrosis factor-induced cerebral insulin resistance in Alzheimer's disease links numerous treatment rationales. Pharmacol Rev 2012; 64:1004-26. [PMID: 22966039 DOI: 10.1124/pr.112.005850] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The evident limitations of the amyloid theory of the pathogenesis of Alzheimer's disease are increasingly putting alternatives in the spotlight. We argue here that a number of independently developing approaches to therapy-including specific and nonspecific anti-tumor necrosis factor (TNF) agents, apolipoprotein E mimetics, leptin, intranasal insulin, the glucagon-like peptide-1 mimetics and glycogen synthase kinase-3 (GSK-3) antagonists-are all part of an interlocking chain of events. All these approaches inform us that inflammation and thence cerebral insulin resistance constitute the pathway on which to focus for a successful clinical outcome in treating this disease. The key link in this chain presently absent is a recognition by Alzheimer's research community of the long-neglected history of TNF induction of insulin resistance. When this is incorporated into the bigger picture, it becomes evident that the interventions we discuss are not competing alternatives but equally valid approaches to correcting different parts of the same pathway to Alzheimer's disease. These treatments can be expected to be at least additive, and conceivably synergistic, in effect. Thus the inflammation, insulin resistance, GSK-3, and mitochondrial dysfunction hypotheses are not opposing ideas but stages of the same fundamental, overarching, pathway of Alzheimer's disease pathogenesis. The insight this provides into progenitor cells, including those involved in adult neurogenesis, is a key part of this approach. This pathway also has therapeutic implications for other circumstances in which brain TNF is pathologically increased, such as stroke, traumatic brain injury, and the infectious disease encephalopathies.
Collapse
Affiliation(s)
- Ian Clark
- Division of Medical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT, Australia.
| | | | | | | | | |
Collapse
|
119
|
Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 2012; 287:35092-35103. [PMID: 22891247 DOI: 10.1074/jbc.m112.383737] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB- mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB- mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.
Collapse
Affiliation(s)
- Yizhou Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Daniel Smith
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | - Bryan J Leong
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| | | | - Fredrik Almqvist
- Department of Chemistry, Chemical Biological Center, Umeå University, 901 87 Umeå, Sweden; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; Umeå Center for Microbial Research, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
120
|
Yuan L, Zhou X, Li D, Ma W, Yu H, Xi Y, Xiao R. Pattern recognition receptors involved in the inflammatory attenuating effects of soybean isoflavone in β-amyloid peptides 1-42 treated rats. Neurosci Lett 2012; 506:266-70. [PMID: 22133809 DOI: 10.1016/j.neulet.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/14/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022]
Abstract
Pattern recognition receptors (PRRs) play important roles in the inflammatory responses to Alzheimer's disease (AD). Our previous study indicated that soybean isoflavone (SIF) exhibited anti-inflammatory effect in rats treated by β-amyloid peptides1-42 (Aβ1-42). In present study, we further detected the effects of SIF against inflammation caused by Aβ1-42 treatment in rats. Serum inflammatory mediators and neurotrophic factors including transforming growth factor-β (TGF-β), inducible nitric oxide synthase (iNOS), brain-derived neurotrophic factor (BDNF) and S100β were detected by enzyme-like immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot methods were applied for detecting mRNA and protein expression of interleukin-1β (IL-1β), iNOS, tumor necrosis factor-α (TNF-α), TGF-β, BDNF, S100β, myeloid differentiation factor88 (Myd88), Toll-like receptor2 (TLR2), formyl peptide receptors (FPRs), inhibitor κB kinase (IKK) and inhibitor κB-α (IκB-α) in rat's brain tissue. Our results indicated that SIF could reduce the production of IL-1β, TNF-α and iNOS induced by Aβ1-42 in serum and brain of rats. SIF also significantly reversed Aβ1-42-induced up-regulation of TLR2, FPR, Myd88, IKK and decreased IκB-α mRNA and protein expressions in rats. These results suggested that TLR2 and FPR might involve in the inflammatory process induced by Aβ1-42 treatment, and SIF was an efficiency compound in reversing the inflammation caused by Aβ1-42 treatment.
Collapse
Affiliation(s)
- Linhong Yuan
- Department of Nutrition and Food Hygiene, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
121
|
Taylor JD, Zhou Y, Salgado PS, Patwardhan A, McGuffie M, Pape T, Grabe G, Ashman E, Constable SC, Simpson PJ, Lee WC, Cota E, Chapman MR, Matthews SJ. Atomic resolution insights into curli fiber biogenesis. Structure 2011; 19:1307-16. [PMID: 21893289 PMCID: PMC3173608 DOI: 10.1016/j.str.2011.05.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
Abstract
Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
123
|
Thiennimitr P, Winter SE, Bäumler AJ. Salmonella, the host and its microbiota. Curr Opin Microbiol 2011; 15:108-14. [PMID: 22030447 DOI: 10.1016/j.mib.2011.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022]
Abstract
The intestine is host to a diverse bacterial community whose structure, at the phylum level, is maintained through unknown mechanisms. Acute inflammation triggered by enteric pathogens, such as Salmonella enterica serotype Typhimurium (S. Typhimurium), is accompanied by changes in the bacterial community structure marked by an outgrowth of the pathogen. Recent studies show that S. Typhimurium can harness benefit from the host response to edge out the beneficial bacterial species that dominate in the healthy gut. The elucidation of how S. Typhimurium alters the bacterial community structure during gastroenteritis is beginning to provide insights into mechanisms that dictate the balance between the host and its microbiota.
Collapse
Affiliation(s)
- Parameth Thiennimitr
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, United States
| | | | | |
Collapse
|
124
|
Westwell-Roper C, Dai DL, Soukhatcheva G, Potter KJ, van Rooijen N, Ehses JA, Verchere CB. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. THE JOURNAL OF IMMUNOLOGY 2011; 187:2755-65. [PMID: 21813778 DOI: 10.4049/jimmunol.1002854] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Islets from patients with type 2 diabetes exhibit β cell dysfunction, amyloid deposition, macrophage infiltration, and increased expression of proinflammatory cytokines and chemokines. We sought to determine whether human islet amyloid polypeptide (hIAPP), the main component of islet amyloid, might contribute to islet inflammation by recruiting and activating macrophages. Early aggregates of hIAPP, but not nonamyloidogenic rodent islet amyloid polypeptide, caused release of CCL2 and CXCL1 by islets and induced secretion of TNF-α, IL-1α, IL-1β, CCL2, CCL3, CXCL1, CXCL2, and CXCL10 by C57BL/6 bone marrow-derived macrophages. hIAPP-induced TNF-α secretion was markedly diminished in MyD88-, but not TLR2- or TLR4-deficient macrophages, and in cells treated with the IL-1R antagonist (IL-1Ra) anakinra. To determine the significance of IL-1 signaling in hIAPP-induced pancreatic islet dysfunction, islets from wild-type or hIAPP-expressing transgenic mice were transplanted into diabetic NOD/SCID recipients implanted with mini-osmotic pumps containing IL-1Ra (50 mg/kg/d) or saline. IL-1Ra significantly improved the impairment in glucose tolerance observed in recipients of transgenic grafts 8 wk following transplantation. Islet grafts expressing hIAPP contained amyloid deposits in close association with F4/80-expressing macrophages. Transgenic grafts contained 50% more macrophages than wild-type grafts, an effect that was inhibited by IL-1Ra. Our results suggest that hIAPP-induced islet chemokine secretion promotes macrophage recruitment and that IL-1R/MyD88, but not TLR2 or TLR4 signaling is required for maximal macrophage responsiveness to prefibrillar hIAPP. These data raise the possibility that islet amyloid-induced inflammation contributes to β cell dysfunction in type 2 diabetes and islet transplantation.
Collapse
Affiliation(s)
- Clara Westwell-Roper
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | |
Collapse
|
125
|
|
126
|
Tükel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM, van Putten JPM, Bäumler AJ. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 2010; 12:1495-505. [PMID: 20497180 DOI: 10.1111/j.1462-5822.2010.01485.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Responses to host amyloids and curli amyloid fibrils of Escherichia coli and Salmonella enterica serotype Typhimurium are mediated through Toll-like receptor (TLR) 2. Here we show that TLR2 alone was not sufficient for mediating responses to curli. Instead, transfection experiments with human cervical cancer (HeLa) cells and antibody-mediated inhibition of TLR signalling in human macrophage-like (THP-1) cells suggested that TLR2 interacts with TLR1 to recognize curli amyloid fibrils. TLR1/TLR2 also serves as a receptor for tri-acylated lipoproteins, which are produced by E. coli and other Gram-negative bacteria. Despite the presence of multiple TLR1/TLR2 ligands on intact bacterial cells, an inability to produce curli amyloid fibrils markedly reduced the ability of E. coli to induce TLR2-dependent responses in vitro and in vivo. Collectively, our data suggest that curli amyloid fibrils from enterobacterial biofilms significantly contribute to TLR1/TLR2-mediated host responses against intact bacterial cells.
Collapse
Affiliation(s)
- Cagla Tükel
- Temple University, School of Medicine, Department of Microbiology and Immunology, 3400N. Broad St. Kresge 502, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Ye HH, Zhang YM. Advances in understanding the relationship between Toll-like receptors and digestive system injury. Shijie Huaren Xiaohua Zazhi 2010; 18:2339-2345. [DOI: 10.11569/wcjd.v18.i22.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are cell-surface molecules that play an important role in the host immune response. More and more evidence indicates that TLRs can recognize special pattern molecules to activate certain signal transduction pathways and result in the release of numerous inflammatory mediators and active substances to induce digestive system injury, such as Helicobacter pylori infection-induced gastric mucosal injury, alcohol-induced gastritis, alcohol-induced liver injury, acute hemorrhagic necrotizing pancreatitis, hepatic ischemia-reperfusion injury (I/RI), and dextran sodium sulfate (DSS)-induced colitis. Here, we review the advances in understanding the relationship between TLRs and digestive system injury and explore the clinical value of TLRs in the diagnosis and treatment of digestive system diseases.
Collapse
|
129
|
Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A 2010; 107:13046-50. [PMID: 20616033 DOI: 10.1073/pnas.1002396107] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ALS is a fatal motor neuron disease of adult onset. Neuroinflammation contributes to ALS disease progression; however, the inflammatory trigger remains unclear. We report that ALS-linked mutant superoxide dismutase 1 (SOD1) activates caspase-1 and IL-1beta in microglia. Cytoplasmic accumulation of mutant SOD1 was sensed by an ASC containing inflammasome and antagonized by autophagy, limiting caspase-1-mediated inflammation. Notably, mutant SOD1 induced IL-1beta correlated with amyloid-like misfolding and was independent of dismutase activity. Deficiency in caspase-1 or IL-1beta or treatment with recombinant IL-1 receptor antagonist (IL-1RA) extended the lifespan of G93A-SOD1 transgenic mice and attenuated inflammatory pathology. These findings identify microglial IL-1beta as a causative event of neuroinflammation and suggest IL-1 as a potential therapeutic target in ALS.
Collapse
|
130
|
Abstract
The mammalian TLRs serve as key sensors of PAMPs, such as bacterial LPS, lipopeptides, and flagellins, which are present in microbial cells but not host cells. TLRs have therefore been considered to play a central role in the discrimination between "self" and "non-self". However, since the discovery of their microbial ligands, many studies have provided evidence that host-derived molecules may also stimulate TLR2- or TLR4-dependent signaling. To date, more than 20 of these endogenous TLR ligands have been proposed, which have tended to fall into the categories of released intracellular proteins, ECM components, oxidatively modified lipids, and other soluble mediators. This review aims to summarize the evidence supporting the intrinsic TLR-stimulating capacity of each of these proposed endogenous ligands with a particular emphasis on the measures taken to exclude contaminating LPS and lipopeptides from experimental systems. The emerging evidence that many of these molecules may be more accurately described as PAMP-binding molecules (PBMs) or PAMP-sensitizing molecules (PSMs), rather than genuine ligands of TLR2 or TLR4, is also summarized. The relevance of this possibility to the pathogenesis of chronic inflammatory diseases, tumor surveillance, and autoimmunity is discussed.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Cardiovascular Sciences, Glenfield General Hospital, University of Leicester, Leicester, UK, LE3 9QP.
| |
Collapse
|
131
|
Santos RL, Raffatellu M, Bevins CL, Adams LG, Tükel C, Tsolis RM, Bäumler AJ. Life in the inflamed intestine, Salmonella style. Trends Microbiol 2009; 17:498-506. [PMID: 19819699 DOI: 10.1016/j.tim.2009.08.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 12/12/2022]
Abstract
The lower gastrointestinal tract is densely populated with resident microbial communities (microbiota), which do not elicit overt host responses but rather provide benefit to the host, including niche protection from pathogens. However, introduction of bacteria into the underlying tissue evokes acute inflammation. Non-typhoidal Salmonella serotypes (NTS) elicit this stereotypic host response by actively penetrating the intestinal epithelium and surviving in tissue macrophages. Initial responses generated by bacterial host cell interaction are amplified in tissue through the interleukin (IL)-18/interferon-gamma and IL-23/IL-17 axes, resulting in the activation of mucosal barrier functions against NTS dissemination. However, the pathogen is adapted to survive antimicrobial defenses encountered in the lumen of the inflamed intestine. This strategy enables NTS to exploit inflammation to outcompete the intestinal microbiota, and promotes the Salmonella transmission by the fecal/oral route.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|