101
|
Ruan GT, Deng L, Xie HL, Shi JY, Liu XY, Zheng X, Chen Y, Lin SQ, Zhang HY, Liu CA, Ge YZ, Song MM, Hu CL, Zhang XW, Yang M, Hu W, Cong MH, Zhu LC, Wang KH, Shi HP. Systemic inflammation and insulin resistance-related indicator predicts poor outcome in patients with cancer cachexia. Cancer Metab 2024; 12:3. [PMID: 38273418 PMCID: PMC10809764 DOI: 10.1186/s40170-024-00332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The C-reactive protein (CRP)-triglyceride-glucose (TyG) index (CTI), which is a measure representing the level of inflammation and insulin resistance (IR), is related to poor cancer prognosis; however, the CTI has not been validated in patients with cancer cachexia. Thus, this study aimed to explore the potential clinical value of the CTI in patients with cancer cachexia. METHODS In this study, our prospective multicenter cohort included 1411 patients with cancer cachexia (mean age 59.45 ± 11.38, 63.3% male), which was a combined analysis of multiple cancer types. We randomly selected 30% of the patients for the internal test cohort (mean age 58.90 ± 11.22% 61.4% male). Additionally, we included 307 patients with cancer cachexia in the external validation cohort (mean age 61.16 ± 11, 58.5% male). Receiver operating characteristic (ROC) and calibration curves were performed to investigate the prognostic value of CTI. The prognostic value of the CTI was also investigated performing univariate and multivariate survival analyses. RESULTS The survival curve indicated that the CTI showed a significant prognostic value in the total, internal, and external validation cohorts. Prognostic ROC curves and calibration curves revealed that the CTI showed good consistency in predicting the survival of patients with cancer cachexia. Multivariate survival analysis showed that an elevated CTI increased the risk of death by 22% (total cohort, 95% confidence interval [CI] = 1.13-1.33), 34% (internal test cohort, 95%CI = 1.11-1.62), and 35% (external validation cohort, 95%CI = 1.14-1.59) for each increase in the standard deviation of CTI. High CTI reliably predicted shorter survival (total cohort, hazard ratio [HR] = 1.45, 95%CI = 1.22-1.71; internal test cohort, HR = 1.62, 95%CI = 1.12-2.36; external validation cohort, HR = 1.61, 95%CI = 1.15-2.26). High CTI significantly predicted shorter survival in different tumor subgroups, such as esophageal [HR = 2.11, 95%CI = 1.05-4.21] and colorectal cancer [HR = 2.29, 95%CI = 1.42-3.71]. The mediating effects analysis found that the mediating proportions of PGSGA, ECOG PS, and EORTC QLQ-C30 on the direct effects of CTI were 21.72%, 19.63%, and 11.61%, respectively We found that there was a significant positive correlation between the CTI and 90-day [HR = 2.48, 95%CI = 1.52-4.14] and 180-day mortality [HR = 1.77,95%CI = 1.24-2.55] in patients with cancer cachexia. CONCLUSION The CTI can predict the short- and long-term survival of patients with cancer cachexia and provide a useful prognostic tool for clinical practice.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Jin-Yu Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yue Chen
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chun-Lei Hu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Wen Hu
- Clinical Nutrition Department, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100038, China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Kun-Hua Wang
- Yunnan University, Kunming, 650091, China
- General Surgery Clinical Medical Center of Yunnan Province, Kunming, 650032, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China.
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
| |
Collapse
|
102
|
Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, Ibrahim M, Gomez M, Guo GL, Liu H, Zong WX, Wondisford FE, Su X, White E, Feng Z, Hu W. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat Commun 2024; 15:627. [PMID: 38245529 PMCID: PMC10799847 DOI: 10.1038/s41467-024-44924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
Collapse
Affiliation(s)
- Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Biostatistics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Metabolomics Core Facility, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
103
|
Staxen CS, Andersen SE, Pedersen LM, Poulsen CB, Andersen JR. Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients. Nutrients 2024; 16:283. [PMID: 38257176 PMCID: PMC10819894 DOI: 10.3390/nu16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cancer and side effects from cytostatic treatment commonly affect nutritional status manifested as a decrease in muscle mass. We aimed to investigate the impact of nutrition and lifestyle-related factors on muscle mass in patients with hematological cancer. METHODS Dietary intake, food preferences, quality of life (QoL), and physical activity level (PAL) were monitored during 1-2 cytostatic treatment series. Body composition was estimated using bioelectrical impedance analysis (BIA). RESULTS 61 patients were included. Weight loss and loss of muscle mass were detected in 64% and 59% of the patients, respectively. Muscle mass was significantly positively correlated to increasing PAL (p = 0.003), while negatively correlated to increasing age (p = 0.03), physical QoL (p = 0.007), functional QoL (p = 0.05), self-perceived health (p = 0.004), and self-perceived QoL (p = 0.007). Weight was significantly positively correlated to increased intake of soft drinks (p = 0.02) as well as the favoring of bitter grain and cereal products (p = 0.03), while negatively correlated to increasing age (p = 0.03) and increasing meat intake (p = 0.009) Conclusions: Several nutritional and lifestyle-related factors affected change in body composition. The clinical significance of these changes should be investigated in controlled, interventional studies.
Collapse
Affiliation(s)
- Christiane S. Staxen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Sara E. Andersen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Lars M. Pedersen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian B. Poulsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens R. Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
104
|
Ojeda J, Vergara M, Ávila A, Henríquez JP, Fehlings M, Vidal PM. Impaired communication at the neuromotor axis during Degenerative Cervical Myelopathy. Front Cell Neurosci 2024; 17:1316432. [PMID: 38269114 PMCID: PMC10806149 DOI: 10.3389/fncel.2023.1316432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Degenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio-a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mayra Vergara
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Michael Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| | - Pia M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
105
|
Wang Y, Dong Z, An Z, Jin W. Cancer cachexia: Focus on cachexia factors and inter-organ communication. Chin Med J (Engl) 2024; 137:44-62. [PMID: 37968131 PMCID: PMC10766315 DOI: 10.1097/cm9.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Cancer cachexia is a multi-organ syndrome and closely related to changes in signal communication between organs, which is mediated by cancer cachexia factors. Cancer cachexia factors, being the general name of inflammatory factors, circulating proteins, metabolites, and microRNA secreted by tumor or host cells, play a role in secretory or other organs and mediate complex signal communication between organs during cancer cachexia. Cancer cachexia factors are also a potential target for the diagnosis and treatment. The pathogenesis of cachexia is unclear and no clear effective treatment is available. Thus, the treatment of cancer cachexia from the perspective of the tumor ecosystem rather than from the perspective of a single molecule and a single organ is urgently needed. From the point of signal communication between organs mediated by cancer cachexia factors, finding a deeper understanding of the pathogenesis, diagnosis, and treatment of cancer cachexia is of great significance to improve the level of diagnosis and treatment. This review begins with cancer cachexia factors released during the interaction between tumor and host cells, and provides a comprehensive summary of the pathogenesis, diagnosis, and treatment for cancer cachexia, along with a particular sight on multi-organ signal communication mediated by cancer cachexia factors. This summary aims to deepen medical community's understanding of cancer cachexia and may conduce to the discovery of new diagnostic and therapeutic targets for cancer cachexia.
Collapse
Affiliation(s)
- Yongfei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zikai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ziyi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weilin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
106
|
Bgatova N, Obanina N, Taskaeva I, Makarova V, Rakhmetova A, Shatskaya S, Khotskin N, Zavjalov E. Accumulation and neuroprotective effects of lithium on hepatocellular carcinoma mice model. Behav Brain Res 2024; 456:114679. [PMID: 37739227 DOI: 10.1016/j.bbr.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM The peripheral tumor growth is accompanied by the accumulation of inflammatory mediators in the blood that can negatively influence blood-brain barrier function and neuronal structure and develop the cancer-associated depression. The aim of the study was to evaluate the neurobiological effects of lithium on hepatocellular carcinoma mice model. METHODS In this study we analyzed the locomotor activity of lithium-treated tumor-bearing mice using the Phenomaster instrument. Inductively coupled plasma mass-spectral analysis was used to determine lithium levels in blood, brain, liver, kidneys, tumors and muscle tissues. The prefrontal cortex neurons ultrastructure was assessed by transmission electron microscopy. Expression of BDNF, GRP78, EEA1, LAMP1, and LC3 beta in neurons was determined by immunohistochemical analysis. RESULTS A decrease in locomotor activity was found in animals with tumors. At the same time, the low expression levels of the neurotrophic factor BDNF and early endosomal marker EEA1 were revealed, as well as the decreased amount of synaptic vesicles and synapses was shown. Signs of endoplasmic reticulum stress and autophagy development in neurons of animals with tumors were noted. Lithium carbonate administration had a corrective effect on animal's behavior and the prefrontal cortex neurons structure. CONCLUSIONS In summary, lithium can restore the neuronal homeostasis in tumor-bearing mice.
Collapse
Affiliation(s)
- Nataliya Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Obanina
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Viktoriia Makarova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Svetlana Shatskaya
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita Khotskin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
107
|
Muthamil S, Muthuramalingam P, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Shin H, Park JH. Unlocking Prognostic Genes and Multi-Targeted Therapeutic Bioactives from Herbal Medicines to Combat Cancer-Associated Cachexia: A Transcriptomics and Network Pharmacology Approach. Int J Mol Sci 2023; 25:156. [PMID: 38203330 PMCID: PMC10778733 DOI: 10.3390/ijms25010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea;
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon 34054, Republic of Korea
| |
Collapse
|
108
|
Kwon YJ, Yoon YC, Kim HS, Cha MJ, Park S, Lee JH. Prognostic significance of body mass index in small-cell lung cancer: Exploring the relationship with skeletal muscle status. J Cachexia Sarcopenia Muscle 2023; 14:2939-2947. [PMID: 37986687 PMCID: PMC10751438 DOI: 10.1002/jcsm.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND We investigated the prognostic significance of body mass index in small-cell lung cancer and explored whether skeletal muscle status affects the body mass index-survival relationship. METHODS This retrospective study evaluated data from patients who underwent platinum-etoposide chemotherapy for small-cell lung cancer between March 2010 and December 2021. Skeletal muscle status was assessed using non-contrast computed tomography images of baseline positron-emission tomography-computed tomography, with the skeletal muscle index defined as the cross-sectional area of skeletal muscle divided by height squared, and the average attenuation values of skeletal muscle. Cox proportional hazards regression analysis was used to determine the correlations of body mass index, skeletal muscle metrics, and overall survival. RESULTS We analysed the data of 1146 Asian patients (1006 men and 140 women, with a median age of 67 years [interquartile range: 61-72 years]), including 507 and 639 patients with limited and extensive disease, respectively. Being underweight, defined as a body mass index <18.5 kg/m2 , was associated with shorter overall survival, independent of clinical covariates in both the limited-disease (hazard ratio, 1.77; 95% confidence interval, 1.01-3.09) and extensive-disease (hazard ratio, 1.71; 95% confidence interval, 1.18-2.48) groups. The prognostic value of being underweight remained significant after additional adjustment for skeletal muscle index and attenuation in both limited-disease (hazard ratio, 1.96; 95% confidence interval, 1.09-3.51) and extensive-disease (hazard ratio, 1.75; 95% confidence interval, 1.17-2.61) groups. CONCLUSIONS Being underweight is an independent poor prognostic factor for shorter overall survival in Asian patients with small-cell lung cancer, regardless of skeletal muscle status.
Collapse
Affiliation(s)
- Yong Jae Kwon
- Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Min Jae Cha
- Department of Radiology, Chung‐Ang University HospitalChung‐Ang University College of MedicineSeoulRepublic of Korea
| | - Sehhoon Park
- Department of Medicine, Division of Hematology‐Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Ji Hyun Lee
- Department of Radiology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
109
|
Lipshitz M, Visser J, Anderson R, Nel DG, Smit T, Steel HC, Rapoport B. Emerging markers of cancer cachexia and their relationship to sarcopenia. J Cancer Res Clin Oncol 2023; 149:17511-17527. [PMID: 37906352 PMCID: PMC10657295 DOI: 10.1007/s00432-023-05465-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Emerging biomarkers of cancer cachexia and their roles in sarcopenia and prognosis are poorly understood. Baseline assessments of anthropometrics, sarcopenia, cachexia status and biomarkers of cachexia were measured in patients with advanced cancer and healthy controls. Thereafter, relationships of the biomarkers with cachexia and sarcopenia were explored. METHODS A prospective case-control design was used, including 40 patients with advanced cancer and 40 gender, age-matched controls. Bioelectrical impedance [skeletal muscle index (SMI)] and hand dynamometry [hand grip strength (HGS)] assessed sarcopenia and a validated tool classified cancer cachexia. Albumin, lymphocyte and platelet counts, haemoglobin, C-reactive protein (CRP), pro-inflammatory cytokines/chemokines and citrullinated histone H3 (H3Cit) were measured. RESULTS Patients had significantly lower SMI (6.67 kg/m2 versus 7.67 kg/m2, p = < 0.01) and HGS (24.42 kg versus 29.62 kg) compared to controls, with 43% being sarcopenic. Significant differences were found for albumin, lymphocyte and platelet counts, haemoglobin, CRP, and tumour necrosis factor α (TNFα), (p < 0.01). Interleukin (IL)-6 (p < 0.04), IL-8 (p = 0.02), neutrophil/lymphocyte ratio (NLR), p = 0.02, platelet/lymphocyte (PLR) ratio, p < 0.01 and systemic immune inflammatory index (SII), p < 0.01 differed significantly. No difference was observed for CXC motif chemokine ligand 5 [CXCL5 or epithelial neutrophil-activating peptide 78 (ENA78)] or H3Cit. Albumin and haemoglobin correlated negatively with total protein, skeletal muscle mass and SMI (all p < 0.01). The presence of sarcopenia associated significantly with albumin, haemoglobin and CRP. CONCLUSION Significant relationships and differences of haemoglobin, CRP and albumin supports future use of these biomarkers in cancer cachexia. CXCL5 and H3Cit as valuable biomarkers in cancer cachexia remains to be defined.
Collapse
Affiliation(s)
- Melanie Lipshitz
- Division of Human Nutrition, Stellenbosch University, Stellenbosch, South Africa.
- Melanie Levy Dietician, 1 Mid Way Road, Glenhazel, Johannesburg, South Africa.
| | - J Visser
- Division of Human Nutrition, Stellenbosch University, Stellenbosch, South Africa
| | - R Anderson
- Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - D G Nel
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - T Smit
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - H C Steel
- Department of Immunology, University of Pretoria, Pretoria, South Africa
| | - B Rapoport
- Department of Immunology, University of Pretoria, Pretoria, South Africa
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| |
Collapse
|
110
|
Dave S, Patel BM. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting. Fundam Clin Pharmacol 2023; 37:1079-1091. [PMID: 37474262 DOI: 10.1111/fcp.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Srusti Dave
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
111
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
112
|
Koutake Y, Fujimoto A, Nakahara M, Tsuruyama M, Miyoshi T, Yamaguchi Y, Fukazawa M, Kawamata Y, Hanada K, Hashimoto M. Predictors for the Clinical Efficacy of Tramadol for Cancer Pain. Am J Hosp Palliat Care 2023; 40:1303-1309. [PMID: 36647180 DOI: 10.1177/10499091231152854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
CONTEXT Tramadol is conditionally recommended for cancer pain and is a less expensive drug compared to strong opioids. Thus, tramadol may help reduce health care costs. OBJECTIVES To investigate factors that predict the clinical efficacy of tramadol for cancer pain. METHODS A retrospective study using electronic medical records was conducted on patients who received tramadol for cancer pain from January 2016 to December 2020. Patients who continued tramadol for >28 days or discontinued tramadol before 28 days owing to pain improvement were considered as clinical efficacy cases. RESULTS We identified 183 eligible patients; 104 cases had clinical efficacy. The median starting tramadol daily dose was 100 mg, and the median administration duration was 22 days. Overall, 169 patients (92.3%) discontinued tramadol; pain improvement was the most common reason (34.9%). Age (>70 years), a performance status of 0-1, and an albumin-bilirubin grade of 1 were independent predictors for the clinical efficacy of tramadol. Patients with multiple predictors had significantly higher achievement rates than those without. CONCLUSION Tramadol could have greater clinical efficacy for cancer pain in patients who are elderly, have good performance status, and have good liver function.
Collapse
Affiliation(s)
- Yoshimichi Koutake
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Airi Fujimoto
- Department of Pharmacy, National Hospital Organization Beppu Medical Center, Oita, Japan
| | - Moeko Nakahara
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Moeko Tsuruyama
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takanori Miyoshi
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasuhiro Yamaguchi
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Mami Fukazawa
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yosei Kawamata
- Department of Pharmacy, National Hospital Organization Miyazaki Higashi Hospital, Miyazaki, Japan
| | - Kiyonori Hanada
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masashi Hashimoto
- Department of Pharmacy, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
113
|
Cosentino M, Forcina L, Zouhair M, Apa L, Genovese D, Boccia C, Rizzuto E, Musarò A. Modelling three-dimensional cancer-associated cachexia and therapy: The molecular basis and therapeutic potential of interleukin-6 transignalling blockade. J Cachexia Sarcopenia Muscle 2023; 14:2550-2568. [PMID: 37727078 PMCID: PMC10751446 DOI: 10.1002/jcsm.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.
Collapse
Affiliation(s)
- Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Laura Forcina
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Mariam Zouhair
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Ludovica Apa
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Desirèe Genovese
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
114
|
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology 2023; 165:bqad176. [PMID: 37980602 PMCID: PMC10699881 DOI: 10.1210/endocr/bqad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Cancer-associated cachexia occurs in 50% to 80% of cancer patients and is responsible for 20% to 30% of cancer-related deaths. Cachexia limits survival and treatment outcomes, and is a major contributor to morbidity and mortality during cancer. Ovarian cancer is one of the leading causes of cancer-related deaths in women, and recent studies have begun to highlight the prevalence and clinical impact of cachexia in this population. Here, we review the existing understanding of cachexia pathophysiology and summarize relevant studies assessing ovarian cancer-associated cachexia in clinical and preclinical studies. In clinical studies, there is increased evidence that reduced skeletal muscle mass and quality associate with worse outcomes in subjects with ovarian cancer. Mouse models of ovarian cancer display cachexia, often characterized by muscle and fat wasting alongside inflammation, although they remain underexplored relative to other cachexia-associated cancer types. Certain soluble factors have been identified and successfully targeted in these models, providing novel therapeutic targets for mitigating cachexia during ovarian cancer. However, given the relatively low number of studies, the translational relevance of these findings is yet to be determined and requires more research. Overall, our current understanding of ovarian cancer-associated cachexia is insufficient and this review highlights the need for future research specifically aimed at exploring mechanisms of ovarian cancer-associated cachexia by using unbiased approaches and animal models representative of the clinical landscape of ovarian cancer.
Collapse
Affiliation(s)
- Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lila M Mouchantat
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
115
|
Fu L, Lei C, Chen Y, Xu X, Wu B, Dong L, Ye X, Zheng L, Gong D. Association of the rs3917647 polymorphism of the SELP gene with malnutrition in gastric cancer. Support Care Cancer 2023; 31:708. [PMID: 37978991 DOI: 10.1007/s00520-023-08161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Malnutrition and cachexia are common syndromes in patients with gastric cancer (GC) and are associated with poor quality of life and poor disease prognosis. However, there is still a lack of molecular factors that can predict malnutrition or cachexia in cancer. Studies have shown that among the potential contributors to the development of cancer cachexia, the level of the inflammatory response to P-selectin is regulated by single nucleotide polymorphisms (SNPs) located in the promoter region of the SELP gene. The aim of this study was to evaluate the association between the single nucleotide polymorphism (SNP)-2028 A/G of the SELP gene and malnutrition in patients receiving chemotherapy for gastric cancer (GC). METHODS The study group consisted of 220 GC patients treated with chemotherapy at Jinhua Municipal Central Hospital. DNA was extracted from peripheral leukocytes of whole blood samples using an animal DNA extraction kit. DNA was amplified using a 1.1 × T3 Super PCR mix, and loci corresponding to the peaks were genotyped using SNP1 software. RESULTS Patients carrying the A allele had a reduced risk of developing malnutrition compared to patients with the GG genotype (P < 0.001; OR = 3.411; 95% CI = 1.785-6.516). In addition, multivariate analysis indicated that the AA genotype significantly (more than 16-fold) reduced the risk of developing malnutrition (P < 0.001; OR = 0.062; 95% CI = 0.015-0.255). CONCLUSION SELP -2028A/G SNP may be a useful marker for assessing the risk of malnutrition in GC patients.
Collapse
Affiliation(s)
- Liang Fu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Changzhen Lei
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yingxun Chen
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaoqian Xu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Bei Wu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liping Dong
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xianghong Ye
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Lushan Zheng
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| |
Collapse
|
116
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
117
|
Mielnik M, Szudy-Szczyrek A, Homa-Mlak I, Mlak R, Podgajna-Mielnik M, Gorący A, Małecka-Massalska T, Hus M. The Clinical Relevance of Selected Cytokines in Newly Diagnosed Multiple Myeloma Patients. Biomedicines 2023; 11:3012. [PMID: 38002012 PMCID: PMC10669681 DOI: 10.3390/biomedicines11113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological neoplasm. Cytokines, chemokines, and their receptors, induced by the microenvironment of MM, participate in tumor growth, the attraction of leukocytes, cell homing, and bone destruction. This study aimed to assess the correlation between the pretreatment serum concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), angiogenic chemokine monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor (VEGF) and the clinical outcomes and survival of patients newly diagnosed with MM. The study group consisted of 82 individuals. The IL-8 concentration was significantly positively correlated with the age of onset (p = 0.007), the International Staging System (ISS) stage (p = 0.03), the Eastern Cooperative Oncology Group (ECOG) performance status (p < 0.001), the degree of anemia before treatment (p < 0.0001), the degree of kidney disease (p < 0.001), and VEGF (p = 0.0364). Chemotherapy responders had significantly lower concentrations of IL-8 (p < 0.001), IL-6 (p < 0.001), and VEGF (p = 0.04) compared with non-responders. Patients with treatment-induced polyneuropathy had significantly higher levels of IL-8 (p = 0.033). Patients with a high level of IL-6 had a 2-fold higher risk of progression-free survival (PFS) reduction (17 vs. 35 months; HR = 1.89; p = 0.0078), and a more than 2.5-fold higher risk of overall survival (OS) reduction (28 vs. 78 months; HR = 2.62; p < 0.001). High levels of IL-6, IL-8, and VEGF demonstrated significant predictive values for some clinical conditions or outcomes of newly diagnosed MM patients. Patients with an early response to chemotherapy had a significantly lower concentration of these cytokines. A high pretreatment IL-6 concentration was an independent negative prognostic marker for newly diagnosed MM patients.
Collapse
Affiliation(s)
- Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (I.H.-M.)
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Doktora Witolda Chodźki 1 Str., 20-093 Lublin, Poland;
| | - Martyna Podgajna-Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| | - Aneta Gorący
- Department of Hematology and Bone Marrow Transplantation, Saint Jan of Dukla Oncology Centre of the Lublin Region, Doktora Kazimierza Jaczewskiego 7 Str., 20-090 Lublin, Poland
| | | | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
118
|
Bertrand M, Szeremeta F, Hervouet-Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M. An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT 7 receptor as a potential therapeutic target. FASEB J 2023; 37:e23230. [PMID: 37781977 DOI: 10.1096/fj.202300783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Gliomas account for 50% of brain cancers and are therefore the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed, but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Drosophila glioma models established in larvae and adults are useful to identify new genes and signaling pathways involved in glioma progression. Here, we used a Drosophila glioma model in adults, to characterize metabolic disturbances associated with glioma and assess the consequences of 5-HT7 R expression on glioma development. First, by using in vivo magnetic resonance imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induces brain enlargement. Then, we explored altered cellular metabolism by using high-resolution magic angle spinning NMR and 1 H-13 C heteronuclear single quantum coherence solution states. Discriminant metabolites identified highlight the rewiring of metabolic pathways in glioma and associated cachexia phenotypes. Finally, the expression of 5-HT7 R in this adult model attenuates phenotypes associated with glioma development. Collectively, this whole-animal approach in Drosophila allowed us to provide several rapid and robust phenotype readouts, such as enlarged brain volume and glioma-associated cachexia, as well as to determine the metabolic pathways involved in glioma genesis and finally to confirm the interest of the 5-HT7 R in the treatment of glioma.
Collapse
Affiliation(s)
- Marylène Bertrand
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | | | - Vincent Sarou-Kanian
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CEMHTI-CNRS UPR 3079, Orléans, France
| | - Céline Landon
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
| | | | - Martine Decoville
- Centre de Biophysique Moléculaire-CBM, UPR 4301, CNRS, Orléans, France
- UFR Sciences et Techniques, Université d'Orléans, Orléans, France
| |
Collapse
|
119
|
Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y, Wu G. The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol 2023; 124:111001. [PMID: 37804658 DOI: 10.1016/j.intimp.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Cachexia, marked by muscle atrophy, poses substantial challenges for prevention and treatment. This study delves into the unclear role of butyrate, a gut microbiota metabolite, in cachexia by examining gut microbiota and short-chain fatty acid (SCFA) profiles in human and mouse fecal samples. METHODS We analyzed cachexia-associated gut microbiota and SCFA profiles using 16S rRNA sequencing and metabolomic techniques. Mouse cachexia models were developed with C26 cells, and LPS was used to induce muscle cell atrophy in C2C12 cells. We evaluated butyrate's in vivo effects on intestinal health, muscle preservation, inflammation, and macrophage activity. In vitro studies focused on butyrate's influence on macrophage polarization and the subsequent effects on muscle cells. RESULTS Both cachexia patients and mice exhibited gut microbiota imbalances, irregular butyrate concentrations, and a decline in butyrate-producing bacteria. In vivo tests showed that butyrate counteract cachexia-induced muscle atrophy by adjusting the Akt/mTOR/Foxo3a and Fbox32/Trim63 pathways. These butyrate also bolstered intestinal barrier integrity, minimized endotoxin migration, and mitigated oxidative stress. Furthermore, butyrate curtailed inflammation and macrophage penetration in muscles. In vitro experimental results demonstrate that butyrate inhibit macrophage polarization towards the M1 phenotype and promote polarization towards the M2 phenotype. Both M1 and M2 macrophages influence the aforementioned pathways and oxidative stress, participating in the regulation of muscle cell atrophy. CONCLUSION Our study delineates the intricate interplay between gut microbiota dysbiosis, butyrate fluctuations, and cachexia progression. Butyrate not only reinforces the intestinal barrier but also orchestrates macrophage polarization, mitigating muscle atrophy and averting cachexia-induced muscle deterioration. Concurrently, the M1 and M2 macrophages play pivotal roles in modulating skeletal muscle cell atrophy. This highlights the potential of utilizing the gut-derived metabolite butyrate as a promising therapeutic approach for addressing cachexia-related issues.
Collapse
Affiliation(s)
- Hao Liu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yidan Qu
- Department of Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanni Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxi Cheng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
120
|
Zhang FM, Wu HF, Shi HP, Yu Z, Zhuang CL. Sarcopenia and malignancies: epidemiology, clinical classification and implications. Ageing Res Rev 2023; 91:102057. [PMID: 37666432 DOI: 10.1016/j.arr.2023.102057] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sarcopenia is a progressive systemic skeletal muscle disorder characterized by a pathological decline in muscle strength, quantity, and quality, which frequently affects the elderly population. The majority of cancer patients are of advanced age. Patients may already have sarcopenia prior to cancer development, and those with cancer are prone to developing sarcopenia due to hypercatabolism, inflammation, reduced physical fitness, anorexia, adverse effects, and stress associated with anticancer therapy. Based on the timing, sarcopenia in patients with cancer can be categorized into three: pre-existing sarcopenia before the onset of cancer, sarcopenia related to cancer, and sarcopenia related to cancer treatment. Sarcopenia not only changes the body composition of patients with cancer but also increases the incidence of postoperative complications, reduces therapeutic efficacy, impairs quality of life, and results in shortened survival. Different therapeutic strategies are required to match the cancer status and physical condition of patients with different etiologies and stages of sarcopenia. Here, we present a comprehensive review of the epidemiology and diagnosis of sarcopenia in patients with cancer, elucidate the complex interactions between cancer and sarcopenia, and provide evidence-based strategies for sarcopenia management in these patients.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao-Fan Wu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University/ Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhen Yu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
121
|
Ziemons J, Aarnoutse R, Heuft A, Hillege L, Waelen J, de Vos-Geelen J, Valkenburg-van Iersel L, van Hellemond IEG, Creemers GJM, Baars A, Vestjens JHMJ, Penders J, Venema K, Smidt ML. Fecal levels of SCFA and BCFA during capecitabine in patients with metastatic or unresectable colorectal cancer. Clin Exp Med 2023; 23:3919-3933. [PMID: 37027066 PMCID: PMC10618330 DOI: 10.1007/s10238-023-01048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Gut bacteria-derived short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA) are considered to have beneficial metabolic, anti-inflammatory as well as anti-carcinogenic effects. Previous preclinical studies indicated bidirectional interactions between gut bacteria and the chemotherapeutic capecitabine or its metabolite 5-FU. This study investigated the effect of three cycles of capecitabine on fecal SCFA and BCFA levels and their associations with tumor response, nutritional status, physical performance, chemotherapy-induced toxicity, systemic inflammation and bacterial abundances in patients with colorectal cancer (CRC). METHODS Forty-four patients with metastatic or unresectable CRC, scheduled for treatment with capecitabine (± bevacizumab), were prospectively enrolled. Patients collected a fecal sample and completed a questionnaire before (T1), during (T2) and after (T3) three cycles of capecitabine. Tumor response (CT/MRI scans), nutritional status (MUST score), physical performance (Karnofsky Performance Score) and chemotherapy-induced toxicity (CTCAE) were recorded. Additional data on clinical characteristics, treatment regimen, medical history and blood inflammatory parameters were collected. Fecal SCFA and BCFA concentrations were determined by gas chromatography-mass spectrometry (GC-MS). Gut microbiota composition was assessed using 16S rRNA amplicon sequencing. RESULTS Fecal levels of the SCFA valerate and caproate decreased significantly during three cycles of capecitabine. Furthermore, baseline levels of the BCFA iso-butyrate were associated with tumor response. Nutritional status, physical performance and chemotherapy-induced toxicity were not significantly associated with SCFA or BCFA. Baseline SCFA correlated positively with blood neutrophil counts. At all time points, we identified associations between SCFA and BCFA and the relative abundance of bacterial taxa on family level. CONCLUSIONS The present study provided first indications for a potential role of SCFA and BCFA during capecitabine treatment as well as implications for further research. TRIAL REGISTRATION The current study was registered in the Dutch Trial Register (NTR6957) on 17/01/2018 and can be consulted via the International Clinical Trial Registry Platform (ICTRP).
Collapse
Affiliation(s)
- Janine Ziemons
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Romy Aarnoutse
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne Heuft
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lars Hillege
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Janneke Waelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Liselot Valkenburg-van Iersel
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | - Arnold Baars
- Department of Medical Oncology, Hospital Gelderse Vallei, Ede, The Netherlands
| | | | - John Penders
- NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Centre, Maastricht, The Netherlands
- Euregional Microbiome Center, Maastricht, The Netherlands
| | - Koen Venema
- Euregional Microbiome Center, Maastricht, The Netherlands
- Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | - Marjolein L Smidt
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
122
|
Chen S, Zhou X, Li W, Yang X, Niu X, Hu Z, Li S, Chen G, Sui X, Liu J, Gao Y. Development of a novel peptide targeting GPR81 to suppress adipocyte-mediated tumor progression. Biochem Pharmacol 2023; 217:115800. [PMID: 37696459 DOI: 10.1016/j.bcp.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
GPR81, initially discovered in adipocytes, has been found to suppress lipolysis when activated. However, the current small molecules that target GPR81 carry the risk of off-target effects, and their impact on tumor progression remains uncertain. Here, we utilized phage display technology to screen a GPR81-targeting peptide named 7w-2 and proceeded to demonstrate its bioactivity. Although 7w-2 did not affect the proliferation of tumor cells, it effectively reduced adipocyte catabolism in vitro, consequently restraining the proliferation of co-cultured tumor cells. Furthermore, our findings revealed that 7w-2 could inhibit lipolysis in vivo, leading to a significant impediment in tumor growth and metastasis in the 4T1 murine tumor model. Additionally, 7w-2 exhibited the ability to significantly elevate the proportion and functionality of CD8+ T cells. Our study introduces 7w-2 as the first peptide targeting GPR81, shedding light on its potential role in adipocytes in suppressing tumor progression.
Collapse
Affiliation(s)
- Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, PR China.
| |
Collapse
|
123
|
Taylor J, Uhl L, Moll I, Hasan SS, Wiedmann L, Morgenstern J, Giaimo BD, Friedrich T, Alsina-Sanchis E, De Angelis Rigotti F, Mülfarth R, Kaltenbach S, Schenk D, Nickel F, Fleming T, Sprinzak D, Mogler C, Korff T, Billeter AT, Müller-Stich BP, Berriel Diaz M, Borggrefe T, Herzig S, Rohm M, Rodriguez-Vita J, Fischer A. Endothelial Notch1 signaling in white adipose tissue promotes cancer cachexia. NATURE CANCER 2023; 4:1544-1560. [PMID: 37749321 PMCID: PMC10663158 DOI: 10.1038/s43018-023-00622-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 09/27/2023]
Abstract
Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.
Collapse
Affiliation(s)
- Jacqueline Taylor
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leonie Uhl
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sana Safatul Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Tobias Friedrich
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Giessen, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Kaltenbach
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Darius Schenk
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adrian T Billeter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Beat P Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Unit, Department of Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
124
|
Cheung C, Boocock E, Grande AJ, Maddocks M. Exercise-based interventions for cancer cachexia: A systematic review of randomised and non-randomised controlled trials. Asia Pac J Oncol Nurs 2023; 10:100335. [PMID: 38197041 PMCID: PMC10772198 DOI: 10.1016/j.apjon.2023.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
Objective Cachexia is a multifactorial syndrome characterised by involuntary weight loss and functional limitation. There is a strong theoretical rationale for the use of exercise in the management of cachexia, and evidence of benefit from exercise in general cancer patients. However, clinical studies of exercise interventions in cancer cachexia are limited. We aimed to synthesise current evidence on the delivery, acceptability, safety and outcomes of exercise interventions for adults with cancer cachexia. Methods We conducted a systematic review. Four databases were searched up to February 2023 for randomised (RCTs) and non-randomised (NRCTs) controlled studies. Eligibility and quality were independently assessed by two authors. Data on intervention components and structure, participant flow and adherence were tabulated. Clinical outcome data on body stature and composition, muscle strength, functional performance, and health-related quality of life were synthesised using effect direction plots. Results Twelve studies (9 RCTs, 3 NRCTs) involving a total of 898 patients (study range 20-374) as part of a multicomponent approach. Median programme completion was 75% (range 43%-100%) and adherence was generally high. Five adverse events were considered possibly related to an intervention, including muscle or joint pain, breathlessness on exertion. Overall, 12/16 (75%) outcomes demonstrated a positive direction of effect on body stature and composition, 8/10 (80%) on muscle strength, 14/22 (64%) on functional performance, and 3/8 (38%) on health-related quality of life. Multicomponent interventions showed more consistent effects on body stature, and resistance training interventions on muscle strength. Conclusions Exercise interventions appear to be safe and acceptable to people with cancer cachexia. Positive effects from exercise are more consistently observed for body stature or composition and muscle strength outcomes, than in functional capacity and health-related quality of life. The synergistic effects of exercise with other cachexia interventions, including drugs, should be examined in future robust studies.
Collapse
Affiliation(s)
| | - Emily Boocock
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, United Kingdom
| | - Antonio J. Grande
- Department of Medicine, Universidade Estadual de Mato Grosso do Sul, Campo Grande, Brazil
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, United Kingdom
| |
Collapse
|
125
|
Yin Y, He M, Huang Y, Xie X. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma. BMC Immunol 2023; 24:37. [PMID: 37817081 PMCID: PMC10565965 DOI: 10.1186/s12865-023-00572-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The association between lipid metabolism disorder and carcinogenesis is well-established, but there is limited research on the connection between lipid metabolism-related genes (LRGs) and lung adenocarcinoma (LUAD). The objective of our research was to identify LRGs as the potential biomarkers for prognosis and assess their impact on immune cell infiltration in LUAD. METHODS We identified novel prognostic LRGs for LUAD patients via the bioinformatics analysis. CYP27A1 expression level was systematically evaluated via various databases, such as TCGA, UALCAN, and TIMER. Subsequently, LinkedOmics was utilized to perform the CYP27A1 co-expression network and GSEA. ssGSEA was conducted to assess the association between infiltration of immune cells and CYP27A1 expression. CYP27A1's expression level was validated by qRT-PCR analysis. RESULTS CYP27A1 expression was decreased in LUAD. Reduced CYP27A1 expression was linked to unfavorable prognosis in LUAD. Univariate and multivariate analyses indicated that CYP27A1 was an independent prognostic biomarker for LUAD patients. GSEA results revealed a positive correlation between CYP27A1 expression and immune-related pathways. Furthermore, CYP27A1 expression was positively correlated with the infiltration levels of most immune cells. CONCLUSION CYP27A1 is a potential biomarker for LUAD patients, and our findings provided a novel perspective to develop the prognostic marker for LUAD patients.
Collapse
Affiliation(s)
- Yi Yin
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Muqun He
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yunjian Huang
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
126
|
Wang L, Li X, Wu J, Tang Q. Pancreatic Cancer-Derived Exosomal miR-Let-7b-5p Stimulates Insulin Resistance in Skeletal Muscle Cells Through RNF20/STAT3/FOXO1 Axis Regulation. Diabetes Metab Syndr Obes 2023; 16:3133-3145. [PMID: 37842335 PMCID: PMC10573399 DOI: 10.2147/dmso.s430443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Background Cancers trigger systemic metabolic disorders usually associated with glucose intolerance, which is an initially apparent phenomenon. One of the features of pancreatic cancer (PC) metabolic reprogramming is the crosstalk between PC and peripheral tissues (skeletal muscle and adipose tissues), emphasized by insulin resistance (IR). Our previous study reported that mice pancreatic cancer-derived exosomes could induce skeletal muscle cells (C2C12) IR, and exosomal microRNAs (miRNAs) may exert an important effect. However, the underlying mechanism remains to be further elucidated. Methods qPCR was used to determine the expression of let-7b-5p in normal pancreatic islet cells and PC cells. Exosomes were purified from PC cell culture medium by ultracentrifugation. The role let-7b-5p on IR-mediated by PC cells-derived exosomes was asses by Oil Red O staining using miRNA inhibitor. Western blot assay was performed to examine the expression of IR-related genes and the activation of signaling pathways. A Luciferase experiment was applied to confirm how let-7b-5p regulated the expression of RNF20. IP/WB analysis further determined whether RNF20 promoted STAT3 ubiquitination. Rescue experiment using RNF20 overexpression plasmid was performed to confirm the role of RNF20 on IR-mediated using PC cell-derived exosomes in C2C12 myotube cells. Results miRNA-let-7b-5p was identified as the key exosomal miRNA, which could promote the IR in C2C12 myotube cells supported the lipid accumulation, the activation of STAT3/FOXO1 axis, and the decreased expression of IRS-1 and GLUT4. RNF20, an E3 ubiquitin ligase, was confirmed as the target gene of let-7b-5p and was found to improve IR by downregulating STAT3 protein expression via ubiquitination-mediated protein degradation. The ectopic expression of RNF20 could effectively attenuate the IR mediated by the pancreatic cancer-derived exosomes in C2C12 myotube cells. Conclusion Our data suggest that exosomal miRNA-let-7b-5p may promote IR in C2C12 myotube cells by targeting RNF20 to activate the STAT3/FOXO1 axis.
Collapse
Affiliation(s)
- Lantian Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiawei Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiang Tang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
127
|
Kojima Y, Mishiro-Sato E, Fujishita T, Satoh K, Kajino-Sakamoto R, Oze I, Nozawa K, Narita Y, Ogata T, Matsuo K, Muro K, Taketo MM, Soga T, Aoki M. Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia. Nat Commun 2023; 14:6246. [PMID: 37803016 PMCID: PMC10558488 DOI: 10.1038/s41467-023-41952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.
Collapse
Affiliation(s)
- Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kiyotoshi Satoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kazuki Nozawa
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takatsugu Ogata
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
- Department of Cancer Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
128
|
Karra P, Hardikar S, Winn M, Anderson GL, Haaland B, Krick B, Thomson CA, Shadyab A, Luo J, Saquib N, Strickler HD, Chlebowski R, Arthur RS, Summers SA, Holland WL, Jalili T, Playdon MC. New-Onset Diabetes after an Obesity-Related Cancer Diagnosis and Survival Outcomes in the Women's Health Initiative. Cancer Epidemiol Biomarkers Prev 2023; 32:1356-1364. [PMID: 37590895 PMCID: PMC11002976 DOI: 10.1158/1055-9965.epi-23-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Individuals diagnosed with an obesity-related cancer (ORC survivors) are at an elevated risk of incident diabetes compared with cancer-free individuals, but whether this confers survival disadvantage is unknown. METHODS We assessed the rate of incident diabetes in ORC survivors and evaluated the association of incident diabetes with all-cause and cancer-specific mortality among females with ORC in the Women's Health Initiative cohort (N = 14,651). Cox proportional hazards regression models stratified by exposure-risk periods (0-1, >1-3, >3-5, >5-7, and >7-10 years) from ORC diagnosis and time-varying exposure (diabetes) analyses were performed. RESULTS Among the ORC survivors, a total of 1.3% developed diabetes within ≤1 year of follow-up and 2.5%, 2.3%, 2.3%, and 3.6% at 1-3, 3-5, 5-7, and 7-10 years of follow-up, respectively, after an ORC diagnosis. The median survival for those diagnosed with diabetes within 1-year of cancer diagnosis and those with no diabetes diagnosis in that time frame was 8.8 [95% confidence interval (CI), 7.0-14.5) years and 16.6 (95% CI, 16.1-17.0) years, respectively. New-onset compared with no diabetes as a time-varying exposure was associated with higher risk of all-cause (HR, 1.27; 95% CI, 1.16-1.40) and cancer-specific (HR, 1.17; 95% CI, 0.99-1.38) mortality. When stratified by exposure-risk periods, incident diabetes in ≤1 year of follow-up was associated with higher all-cause (HR, 1.76; 95% CI, 1.40-2.20) and cancer-specific (HR0-1, 1.82; 95% CI, 1.28-2.57) mortality, compared with no diabetes diagnosis. CONCLUSIONS Incident diabetes was associated with worse cancer-specific and all-cause survival, particularly in the year after cancer diagnosis. IMPACT These findings draw attention to the importance of diabetes prevention efforts among cancer survivors to improve survival outcomes.
Collapse
Affiliation(s)
- Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Sheetal Hardikar
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Maci Winn
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Benjamin Haaland
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Benjamin Krick
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Aladdin Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California
| | - Juhua Luo
- Indiana University, Bloomington, Indiana
| | - Nazmus Saquib
- Sulaiman AlRajhi University, Kingdom of Saudi Arabia, Al Bukayriyah, Saudi Arabia
| | | | | | | | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Mary C. Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
129
|
Alexopoulou F, Buch-Månson N, Pedersen SL, Vrang N, Fink LN, Strømgaard K. Identification of GDF15 peptide fragments inhibiting GFRAL receptor signaling. Peptides 2023; 168:171063. [PMID: 37495041 DOI: 10.1016/j.peptides.2023.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Growth differentiation factor 15 (GDF15) is believed to be a major causative factor for cancer-induced cachexia. Recent elucidation of the central circuits involved in GDF15 function and its signaling through the glial cell-derived neurotrophic factor family receptor α-like (GFRAL) has prompted the interest of targeting the GDF15-GFRAL signaling for energy homeostasis and body weight regulation. Here, we applied advanced peptide technologies to identify GDF15 peptide fragments inhibiting GFRAL signaling. SPOT peptide arrays revealed binding of GDF15 C-terminal peptide fragments to the extracellular domain of GFRAL. Parallel solid-phase peptide synthesis allowed for generation of complementary GDF15 peptide libraries and their subsequent functional evaluation in cells expressing the GFRAL/RET receptor complex. We identified a series of C-terminal fragments of GDF15 inhibiting GFRAL activity in the micromolar range. These novel GFRAL peptide inhibitors could serve as valuable tools for further development of peptide therapeutics towards the treatment of cachexia and other wasting disorders.
Collapse
Affiliation(s)
- Flora Alexopoulou
- Gubra Aps, Hørsholm, DK-2970 Hørsholm, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | - Niels Vrang
- Gubra Aps, Hørsholm, DK-2970 Hørsholm, Denmark
| | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
130
|
He Y, Zheng J, Ye B, Dai Y, Nie K. Chemotherapy-induced gastrointestinal toxicity: Pathogenesis and current management. Biochem Pharmacol 2023; 216:115787. [PMID: 37666434 DOI: 10.1016/j.bcp.2023.115787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Chemotherapy is the most common treatment for malignant tumors. However, chemotherapy-induced gastrointestinal toxicity (CIGT) has been a major concern for cancer patients, which reduces their quality of life and leads to treatment intolerance and even cessation. Nevertheless, prevention and treatment for CIGT are challenging, due to the prevalence and complexity of the condition. Chemotherapeutic drugs directly damage gastrointestinal mucosa to induce CIGT, including nausea, vomiting, anorexia, gastrointestinal mucositis, and diarrhea, etc. The pathogenesis of CIGT involves multiple factors, such as gut microbiota disorders, inflammatory responses and abnormal neurotransmitter levels, that synergistically contribute to its occurrence and development. In particular, the dysbiosis of gut microbiota is usually linked to abnormal immune responses that increases inflammatory cytokines' expression, which is a common characteristic of many types of CIGT. Chemotherapy-induced intestinal neurotoxicity is also a vital concern in CIGT. Currently, modern medicine is the dominant treatment of CIGT, however, traditional Chinese medicine (TCM) has attracted interest as a complementary and alternative therapy that can greatly alleviate CIGT. Accordingly, this review aimed to comprehensively summarize the pathogenesis and current management of CIGT using PubMed and Google Scholar databases, and proposed that future research for CIGT should focus on the gut microbiota, intestinal neurotoxicity, and promising TCM therapies, which may help to develop more effective interventions and optimize managements of CIGT.
Collapse
Affiliation(s)
- Yunjing He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingrui Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
131
|
Wang J, Tan S, Gianotti L, Wu G. Evaluation and management of body composition changes in cancer patients. Nutrition 2023; 114:112132. [PMID: 37441827 DOI: 10.1016/j.nut.2023.112132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023]
Abstract
Wasting in cancer patients has long been recognized as a condition that adversely affects cancer patients' quality of life, treatment tolerance, and oncological outcomes. Historically, this condition was mainly evaluated by changes in body weight. However, this approach is not quite accurate because body weight is the overall change of all body compartments. Conditions such as edema and ascites can mask the severity of muscle and adipose tissue depletion. Changes in body composition assessment in cancer patients have historically been underappreciated because of the limited availability of measurement tools. As more evidence highlighting the importance of body composition has emerged, it is imperative to apply a more precise evaluation of nutritional status and a more targeted approach to provide nutritional support for cancer patients. In this review, we will discuss the modalities for evaluating body composition and how to manage body composition changes in cancer patients.
Collapse
Affiliation(s)
- Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luca Gianotti
- School of Medicine and Surgery, University of Milano-Bicocca, and HBP Surgery Unit, and Foundation IRCCS San Gerardo, Monza, Italy.
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
132
|
Zhang R, Shen Q, Wang Y, Deng X, Fan J, Gu X, Fan M, Wei K, Cheng C, Zhang W, Zhang X, Liu X. Corylifol A ameliorates muscle atrophy by inhibiting TAOK1/p38-MAPK/FoxO3 pathway in cancer cachexia. J Cachexia Sarcopenia Muscle 2023; 14:2098-2113. [PMID: 37439183 PMCID: PMC10570114 DOI: 10.1002/jcsm.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Corylifol A (CYA) is one of the main active components of Psoralea corylifolia L. CYA had been reported to have ameliorating effects on dexamethasone-induced atrophy of C2C12 mouse skeletal myotubes, but its effects on cancer cachexia were unclear. Here, we checked the influence of CYA on muscle atrophy in cancer cachexia mice and tried to clarify its mechanisms. METHODS C26 tumour-bearing mice were applied as the animal model to examine the effects of CYA in attenuating cachexia symptoms. The in vitro cell models of TNF-α-induced C2C12 myotubes or ad-mRFP-GFP-LC3B-transfected C2C12 myotubes were used to check the influence of CYA on myotube atrophy based on both ubiquitin proteasome system (UPS) and autophagy-lysosome system. The possible direct targets of CYA were searched using the biotin-streptavidin pull-down assay and then confirmed using the Microscale thermophoresis binding assay. The levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting and immunocytochemical assay. RESULTS The administration of CYA prevented body weight loss and muscle wasting in C26 tumour-bearing mice without affecting tumour growth. At the end of the experiment, the body weight of mice treated with 30 mg/kg of CYA (23.59 ± 0.94 g) was significantly higher than that of the C26 model group (21.66 ± 0.56 g) with P < 0.05. The values of gastrocnemius muscle weight/body weight of mice treated with 15 or 30 mg/kg CYA (0.53 ± 0.02% and 0.54 ± 0.01%, respectively) were both significantly higher than that of the C26 model group (0.45 ± 0.01%) with P < 0.01. CYA decreased both UPS-mediated protein degradation and autophagy in muscle tissues of C26 tumour-bearing mice as well as in C2C12 myotubes treated with TNF-α. The thousand-and-one amino acid kinase 1 (TAOK1) was found to be the direct binding target of CYA. CYA inhibited the activation of TAOK1 and its downstream p38-MAPK pathway thus decreased the level and nuclear location of FoxO3. siRNA knockdown of TAOK1 or regulation of the p38-MAPK pathway using activator or inhibitor could affect the ameliorating effects of CYA on myotube atrophy. CONCLUSIONS CYA ameliorates cancer cachexia muscle atrophy by decreasing both UPS degradation and autophagy. The ameliorating effects of CYA on muscle atrophy might be based on its binding with TAOK1 and inhibiting the TAOK1/p38-MAPK/FoxO3 pathway.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qiang Shen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yueping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xue Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jialing Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Kun Wei
- School of Chemical EngineeringSichuan University of Science & EngineeringSichuanChina
| | - Chun‐Ru Cheng
- School of Chemical EngineeringSichuan University of Science & EngineeringSichuanChina
| | - Wei‐Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiong‐wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
133
|
Figueira ACC, Pereira A, Leitão L, Ferreira R, Oliveira PA, Duarte JA. Effects of Moderate Exercise Training on Cancer-Induced Muscle Wasting. Healthcare (Basel) 2023; 11:2652. [PMID: 37830689 PMCID: PMC10572373 DOI: 10.3390/healthcare11192652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Muscle wasting is a common phenomenon in oncology and seems to be attenuated by exercise training. The aim of this study is to determine the degree of aggressiveness of cancer-induced muscle wasting in two different phenotypic muscles. It will also determine whether exercise training can attenuate this muscle dysfunction. METHODS Fifty Sprague Dawley rats were randomly assigned to four experimental groups: two breast cancer model groups (sedentary and exercise) and two control groups (sedentary and exercise). Breast cancer was induced by 1-methyl-1-nitrosoureia (MNU). After 35 weeks of endurance training, animals were sacrificed, and gastrocnemius and soleus muscles harvested for morphometric analysis. RESULTS In sedentary tumor-bearing animals, a significant reduction in cross-sectional area was found in both muscles (p < 0.05). Interstitial fibrosis was significantly higher in the gastrocnemius muscle of the sedentary tumor-bearing animals (p < 0.05), but not in the soleus muscle. In the gastrocnemius of sedentary tumor-bearing animals, a shift from large to small fibers was observed. This cancer-related muscle dysfunction was prevented by long-term exercise training. CONCLUSIONS In sedentary animals with tumors, the gastrocnemius muscle showed a very pronounced reduction in cross-sectional area and a marked degree of interstitial fibrosis. There was no difference in collagen deposition between tumor groups, and the soleus muscle showed a less pronounced but significant reduction in cross-sectional area. These contrasting results confirm that cancer-induced muscle wasting can affect specific types of fibers and specific muscles, namely fast glycolytic muscles, and that exercise training can be used to improve it.
Collapse
Affiliation(s)
- Ana Cristina Corrêa Figueira
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.P.); (L.L.)
- Life Quality Research Center (CIEQV), 2400-901 Leiria, Portugal
| | - Ana Pereira
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.P.); (L.L.)
- Life Quality Research Center (CIEQV), 2400-901 Leiria, Portugal
| | - Luís Leitão
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal; (A.P.); (L.L.)
- Life Quality Research Center (CIEQV), 2400-901 Leiria, Portugal
| | - Rita Ferreira
- Laboratory for Green Chemistry and Technology (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-081 Vila Real, Portugal;
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4099-002 Porto, Portugal;
- One Health Toxicology Research Unit (1H-TOXRUN), University Institute of Health Sciences, Campus of Gandra, 1317-116 Gandra, Portugal
| |
Collapse
|
134
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
135
|
Ruan X, Cao M, Yan W, Jones YZ, Gustafsson ÅB, Patel HH, Schenk S, Wang SE. Cancer-cell-secreted extracellular vesicles target p53 to impair mitochondrial function in muscle. EMBO Rep 2023; 24:e56464. [PMID: 37439436 PMCID: PMC10481655 DOI: 10.15252/embr.202256464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Skeletal muscle loss and weakness are associated with bad prognosis and poorer quality of life in cancer patients. Tumor-derived factors have been implicated in muscle dysregulation by inducing cachexia and apoptosis. Here, we show that extracellular vesicles secreted by breast cancer cells impair mitochondrial homeostasis and function in skeletal muscle, leading to decreased mitochondrial content and energy production and increased oxidative stress. Mechanistically, miR-122-5p in cancer-cell-secreted EVs is transferred to myocytes, where it targets the tumor suppressor TP53 to decrease the expression of TP53 target genes involved in mitochondrial regulation, including Tfam, Pgc-1α, Sco2, and 16S rRNA. Restoration of Tp53 in muscle abolishes mitochondrial myopathology in mice carrying breast tumors and partially rescues their impaired running capacity without significantly affecting muscle mass. We conclude that extracellular vesicles from breast cancer cells mediate skeletal muscle mitochondrial dysfunction in cancer and may contribute to muscle weakness in some cancer patients.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of PathologyUniversity of California San DiegoLa JollaCAUSA
| | - Minghui Cao
- Department of PathologyUniversity of California San DiegoLa JollaCAUSA
| | - Wei Yan
- Department of PathologyUniversity of California San DiegoLa JollaCAUSA
| | - Ying Z Jones
- Department of Cellular & Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Hemal H Patel
- VA San Diego Healthcare SystemSan DiegoCAUSA
- Department of AnesthesiologyUniversity of California San DiegoLa JollaCAUSA
| | - Simon Schenk
- Department of Orthopedic SurgeryUniversity of California San DiegoLa JollaCAUSA
| | - Shizhen Emily Wang
- Department of PathologyUniversity of California San DiegoLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
136
|
Nishie K, Nishie T, Sato S, Hanaoka M. Update on the treatment of cancer cachexia. Drug Discov Today 2023; 28:103689. [PMID: 37385369 DOI: 10.1016/j.drudis.2023.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Cancer cachexia is a complex multifaceted syndrome involving functional impairment and changes in body composition that cannot be reversed by nutritional support. Cancer cachexia is characterized by decreased skeletal muscle mass, increased lipolysis, and decreased food intake. Cancer cachexia decreases chemotherapy tolerance as well as quality of life. However, because no fully effective interventions are available, cancer cachexia remains an unmet need in cancer treatment. In recent years, several discoveries and treatments for cancer cachexia have been studied, and guidelines have been published. We believe that the development of effective strategies for the diagnosis and treatment of cancer cachexia will lead to breakthroughs in cancer treatment.
Collapse
Affiliation(s)
- Kenichi Nishie
- Department of Respiratory Medicine, Iida Municipal Hospital, 438 Yawatamachi Iida Nagano, 395-0814, Japan; The First Department of Internal Medicine, Shinshu University School of Medicine, Japan.
| | - Tomomi Nishie
- The Faculty of Pharmaceutical Sciences, Ritsumeikan University, Japan
| | - Seiichi Sato
- Department of Pharmaceutics, Iida Municipal Hospital, Japan
| | - Masayuki Hanaoka
- The First Department of Internal Medicine, Shinshu University School of Medicine, Japan
| |
Collapse
|
137
|
Yamada M, Warabi E, Oishi H, Lira VA, Okutsu M. Muscle p62 stimulates the expression of antioxidant proteins alleviating cancer cachexia. FASEB J 2023; 37:e23156. [PMID: 37624620 PMCID: PMC10560086 DOI: 10.1096/fj.202300349r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Oxidative stress plays an important role in skeletal muscle atrophy during cancer cachexia, and more glycolytic muscles are preferentially affected. Sequestosome1/SQSTM1 (i.e., p62), particularly when phosphorylated at Ser 349 (Ser 351 in mice), competitively binds to the Kelch-like ECH-associated protein 1 (Keap1) activating Nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 then stimulates the transcription of antioxidant/electrophile-responsive elements in target genes. However, a potential role for p62 in the protection of muscle wasting in cachexia remains to be determined. Here, using the well-established cachexia-inducing model of Lewis Lung Carcinoma (LLC) in mice we demonstrate higher expression of antioxidant proteins (i.e., NQO1, HO-1, GSTM1, CuZnSOD, MnSOD, and EcSOD) in the more oxidative and cachexia resistant soleus muscle than in the more glycolytic and cachexia prone extensor digitorum longus muscle. This was accompanied by higher p62 (total and phosphorylated) and nuclear Nrf2 levels in the soleus, which were paralleled by higher expression of proteins known to either phosphorylate or promote p62 phosphorylation (i.e., NBR1, CK1, PKCδ, and TAK1). Muscle-specific p62 gain-of-function (i.e., in p62 mTg mice) activated Nrf2 nuclear translocation and increased the expression of multiple antioxidant proteins (i.e., CuZnSOD, MnSOD, EcSOD, NQO1, and GSTM1) in glycolytic muscles. Interestingly, skeletal muscle Nrf2 haplodeficiency blunted the increases of most of these proteins (i.e., CuZnSOD, EcSOD, and NQO1) suggesting that muscle p62 stimulates antioxidant protein expression also via additional, yet to be determined mechanisms. Of note, p62 gain-of-function mitigated glycolytic muscle wasting in LLC-affected mice. Collectively, our findings identify skeletal muscle p62 as a potential therapeutic target for cancer cachexia.
Collapse
Affiliation(s)
- Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Vitor A. Lira
- Department of Health and Human Physiology, Obesity Research and Education Initiative, F.O.E. Diabetes Research Center, Abboud Cardiovascular Research Center, Pappajohn Biomedical Institute, The University of Iowa, IA, USA
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| |
Collapse
|
138
|
Cabrera AR, Deaver JW, Lim S, Morena da Silva F, Schrems ER, Saling LW, Tsitkanou S, Rosa-Caldwell ME, Wiggs MP, Washington TA, Greene NP. Females display relatively preserved muscle quality compared with males during the onset and early stages of C26-induced cancer cachexia. J Appl Physiol (1985) 2023; 135:655-672. [PMID: 37535708 PMCID: PMC10642509 DOI: 10.1152/japplphysiol.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Cancer cachexia is clinically defined by involuntary weight loss >5% in <6 mo, primarily affecting skeletal muscle. Here, we aimed to identify sex differences in the onset of colorectal cancer cachexia with specific consideration to skeletal muscle contractile and metabolic functions. Eight-weeks old BALB/c mice (69 males, 59 females) received subcutaneous C26 allografts or PBS vehicle. Tumors were developed for 10-, 15-, 20-, or 25 days. Muscles and organs were collected, in vivo muscle contractility, protein synthesis rate, mitochondrial function, and protein turnover markers were assessed. One-way ANOVA within sex and trend analysis between sexes were performed, P < 0.05. Gastrocnemius and tibialis anterior (TA) muscles became atrophic in male mice at 25 days, whereas female mice exhibited no significant differences in muscle weights at endpoints despite presenting hallmarks of cancer cachexia (fat loss, hepatosplenomegaly). We observed lowered muscle contractility and protein synthesis concomitantly to muscle mass decay in males, with higher proteolytic markers in muscles of both sexes. mRNA of Opa1 was lower in TA, whereas Bnip3 was higher in gastrocnemius after 25 days in male mice, with no significant effect in female mice. Our data suggest relative protections to skeletal muscle in females compared with males despite other canonical signs of cancer cachexia and increased protein degradation markers; suggesting we should place onus upon nonmuscle tissues during early stages of cancer cachexia in females. We noted potential protective mechanisms relating to skeletal muscle contractile and mitochondrial functions. Our findings underline possible heterogeneity in onset of cancer cachexia between biological sexes, suggesting the need for sex-specific approaches to treat cancer cachexia.NEW & NOTEWORTHY Our study demonstrates biological-sex differences in phenotypic characteristics of cancer cachexia between male and female mice, whereby females display many common characteristics of cachexia (gonadal fat loss and hepatosplenomegaly), protein synthesis markers alterations, and common catabolic markers in skeletal muscle despite relatively preserved muscle mass in early-stage cachexia compared with males. Mechanisms of cancer cachexia appear to differ between sexes. Data suggest need to place onus of early cancer cachexia detection and treatment on nonmuscle tissues in females.
Collapse
Affiliation(s)
- Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
139
|
Aryal S, Bachman SL, Lyden K, Clay I. Measuring What Is Meaningful in Cancer Cachexia Clinical Trials: A Path Forward With Digital Measures of Real-World Physical Behavior. JCO Clin Cancer Inform 2023; 7:e2300055. [PMID: 37851933 PMCID: PMC10642875 DOI: 10.1200/cci.23.00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The burden of cancer cachexia on patients' health-related quality of life, specifically their physical functioning, is well documented, but clinical trials thus far have failed to show meaningful improvement in physical functioning. The purpose of this review is to summarize existing methods of assessing physical function in cancer cachexia, outline a path forward for measuring what is meaningful to patients using digital measures derived from digital health technologies (DHTs), and discuss the current landscape of digital measures from the clinical and regulatory standpoint. DESIGN For this narrative review, peer-reviewed articles were searched on PubMed, clinical trials records were searched on clinicaltrials.gov, and records of digital measures submitted for regulatory qualification were searched on the US Food and Drug Administration's Drug Development Tool Qualification Program database. RESULTS There are gaps in assessing aspects of physical function that matter to patients. Existing assessment methods such as patient-reported outcomes and objective performance outcomes have limitations, including their episodic nature and burden to patients. DHTs such as wearable sensors can capture real-world physical behavior continuously, passively, and remotely, and may provide a more comprehensive picture of patients' everyday functioning. Recent regulatory submissions showcase potential clinical implementation of digital measures in various therapeutic areas. CONCLUSION Digital measures of real-world physical behavior present an opportunity to detect and demonstrate improvements in physical functioning in cancer cachexia, but evidence-based development is critical. For their use in clinical and regulatory decision making, studies demonstrating meaningfulness to patients as well as feasibility and validation are necessary.
Collapse
|
140
|
Zhou Y, Lu R, Lin F, Chen S, He QQ, Wu G, Huang C, Lin D. Exploring the Therapeutic Potential of Ethyl 3-Hydroxybutyrate in Alleviating Skeletal Muscle Wasting in Cancer Cachexia. Biomolecules 2023; 13:1330. [PMID: 37759730 PMCID: PMC10527383 DOI: 10.3390/biom13091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cachexia (CAC) is a debilitating metabolic syndrome. Although dietary interventions are attractive, long-term adherence to specific diets is difficult to maintain and can lead to systemic side effects. Ethyl 3-hydroxybutyrate (EHB) is a commonly used food additive found in wine and Tribolium castaneum. In this study, we investigated the effects of EHB administration in cachectic mice. After a single intraperitoneal injection of EHB into mice, 3-hydroxybutyrate (3-HB) levels were significantly increased in the serum and gastrocnemius of mice. The administration of EHB alleviated cachexia-related symptoms, ameliorated skeletal muscle atrophy, and improved survival in cachectic mice. In addition, the supplementation of cachectic mice with 3-HB by EHB administration significantly reduced tumor weights, indicating the anti-tumor effects of 3-HB. Remarkably, the addition of 3-HB to the culture medium significantly attenuated the C2C12 myotube atrophy induced by the culture supernatant of CT26 cell lines, highlighting its potential to counteract the destructive effects of tumor-derived elements on muscle tissue. NMR-based metabolomics analysis provided insights into the underlying mechanisms and revealed that the anti-cachexia effects of 3-HB treatment can be attributed to three key mechanisms: the promotion of the TCA cycle and the attenuation of proteolysis, the promotion of protein synthesis and the improvement of metabolic homeostasis, and a reduction in inflammation and an enhancement of the antioxidant capacity. This study provided compelling evidence for the protective effects of 3-HB treatment on the cachectic gastrocnemius and highlighted the efficacy of EHB administration as a ketone supplementation approach to achieve nutritional ketosis without the need for dietary restriction.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.Z.); (R.L.)
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.Z.); (R.L.)
| | - Fusheng Lin
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361005, China;
| | - Shu Chen
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.Z.); (R.L.)
| | - Qi-Qing He
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.Z.); (R.L.)
| | - Guoyang Wu
- Department of General Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361005, China;
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361005, China;
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (Y.Z.); (R.L.)
| |
Collapse
|
141
|
Hu Y, Liu L, Chen Y, Zhang X, Zhou H, Hu S, Li X, Li M, Li J, Cheng S, Liu Y, Xu Y, Yan W. Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat Commun 2023; 14:5179. [PMID: 37620316 PMCID: PMC10449837 DOI: 10.1038/s41467-023-40571-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer-associated cachexia is a multi-organ weight loss syndrome, especially with a wasting disorder of adipose tissue and skeletal muscle. Small extracellular vesicles (sEVs) serve as emerging messengers to connect primary tumour and metabolic organs to exert systemic regulation. However, whether and how tumour-derived sEVs regulate white adipose tissue (WAT) browning and fat loss is poorly defined. Here, we report breast cancer cell-secreted exosomal miR-204-5p induces hypoxia-inducible factor 1A (HIF1A) in WAT by targeting von Hippel-Lindau (VHL) gene. Elevated HIF1A protein induces the leptin signalling pathway and thereby enhances lipolysis in WAT. Additionally, exogenous VHL expression blocks the effect of exosomal miR-204-5p on WAT browning. Reduced plasma phosphatidyl ethanolamine level is detected in mice lack of cancer-derived miR-204-5p secretion in vivo. Collectively, our study reveals circulating miR-204-5p induces hypoxia-mediated leptin signalling pathway to promote lipolysis and WAT browning, shedding light on both preventive screenings and early intervention for cancer-associated cachexia.
Collapse
Affiliation(s)
- Yong Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Liu Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meixin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Siyuan Cheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430062, China.
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
142
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
143
|
Morton M, Patterson J, Sciuva J, Perni J, Backes F, Nagel C, O'Malley DM, Chambers LM. Malnutrition, sarcopenia, and cancer cachexia in gynecologic cancer. Gynecol Oncol 2023; 175:142-155. [PMID: 37385068 DOI: 10.1016/j.ygyno.2023.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Patients with gynecologic cancers are at risk for malnutrition, cancer cachexia, and sarcopenia. Accumulating data supports that malnourished patients with gynecologic cancer have worse overall survival, increased healthcare utilization and costs, and a higher incidence of postoperative complications and treatment toxicity than those who are not malnourished. Malnutrition is defined as insufficient energy intake, leading to altered body composition and subsequent impaired physical and cognitive function, and can result in sarcopenia and cachexia, defined as the loss of lean body mass and loss of body weight respectively. The etiology of cancer-related malnutrition is complex, resulting from a systemic pro-inflammatory state of malignancy with upregulation of muscle degradation pathways and metabolic derangements, including lipolysis and proteolysis, that may not respond to nutritional repletion alone. Numerous validated scoring systems and radiographic measures have been described to define and quantify the severity of malnutrition and muscle loss in both clinical and research settings. "Prehabilitation" and optimization of nutrition and functional status early in therapy may combat the development or worsening of malnutrition and associated syndromes and ultimately improve oncologic outcomes, but limited data exist in the context of gynecologic cancer. Multi-modality nutrition and physical activity interventions have been proposed to combat the biophysical losses related to malnutrition. Several trials are underway in gynecologic oncology patients to address these aims, but significant gaps in knowledge persist. Pharmacologic interventions and potential immune targets for combating cachexia related to malignancy are discussed in this review and may provide opportunities to target disease and cachexia. This article reviews currently available data regarding the implications, diagnostics, physiology, and intervention strategies for gynecologic oncology patients with malnutrition and its associated conditions.
Collapse
Affiliation(s)
- Molly Morton
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America.
| | - Jenna Patterson
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center, 456 W 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Jessica Sciuva
- The Ohio State University College of Medicine; 370 W. 9(th) Ave, Columbus, OH 43210, United States of America
| | - Jaya Perni
- The Ohio State University; 281 W Lane Ave, Columbus, OH 43210, United States of America
| | - Floor Backes
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Christa Nagel
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - David M O'Malley
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| | - Laura M Chambers
- Division of Gynecologic Oncology; The Ohio State University Wexner Medical Center, The James Cancer Hospital and Solove Research Institute, Starling Loving Hall, M210, 320 W. 10(th) Avenue, Columbus, OH 43210, United States of America
| |
Collapse
|
144
|
Posa DK, Miller J, Hoetker D, Ramage MI, Gao H, Zhao J, Doelling B, Bhatnagar A, Wigmore SJ, Skipworth RJ, Baba SP. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:1802-1814. [PMID: 37199284 PMCID: PMC10401540 DOI: 10.1002/jcsm.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Muscle wasting during cancer cachexia is mediated by protein degradation via autophagy and ubiquitin-linked proteolysis. These processes are sensitive to changes in intracellular pH ([pH]i ) and reactive oxygen species, which in skeletal muscle are partly regulated by histidyl dipeptides, such as carnosine. These dipeptides, synthesized by the enzyme carnosine synthase (CARNS), remove lipid peroxidation-derived aldehydes, and buffer [pH]i . Nevertheless, their role in muscle wasting has not been studied. METHODS Histidyl dipeptides in the rectus abdominis (RA) muscle and red blood cells (RBCs) of male and female controls (n = 37), weight stable (WS: n = 35), and weight losing (WL; n = 30) upper gastrointestinal cancer (UGIC) patients, were profiled by LC-MS/MS. Expression of enzymes and amino acid transporters, involved in carnosine homeostasis, was measured by Western blotting and RT-PCR. Skeletal muscle myotubes were treated with Lewis lung carcinoma conditioned medium (LLC CM), and β-alanine to study the effects of enhancing carnosine production on muscle wasting. RESULTS Carnosine was the predominant dipeptide present in the RA muscle. In controls, carnosine levels were higher in men (7.87 ± 1.98 nmol/mg tissue) compared with women (4.73 ± 1.26 nmol/mg tissue; P = 0.002). In men, carnosine was significantly reduced in both the WS (5.92 ± 2.04 nmol/mg tissue, P = 0.009) and WL (6.15 ± 1.90 nmol/mg tissue; P = 0.030) UGIC patients, compared with controls. In women, carnosine was decreased in the WL UGIC (3.42 ± 1.33 nmol/mg tissue; P = 0.050), compared with WS UGIC patients (4.58 ± 1.57 nmol/mg tissue), and controls (P = 0.025). Carnosine was significantly reduced in the combined WL UGIC patients (5.12 ± 2.15 nmol/mg tissue) compared with controls (6.21 ± 2.24 nmol/mg tissue; P = 0.045). Carnosine was also significantly reduced in the RBCs of WL UGIC patients (0.32 ± 0.24 pmol/mg protein), compared with controls (0.49 ± 0.31 pmol/mg protein, P = 0.037) and WS UGIC patients (0.51 ± 0.40 pmol/mg protein, P = 0.042). Depletion of carnosine diminished the aldehyde-removing ability in the muscle of WL UGIC patients. Carnosine levels were positively associated with decreases in skeletal muscle index in the WL UGIC patients. CARNS expression was decreased in the muscle of WL UGIC patients and myotubes treated with LLC-CM. Treatment with β-alanine, a carnosine precursor, enhanced endogenous carnosine production and decreased ubiquitin-linked protein degradation in LLC-CM treated myotubes. CONCLUSIONS Depletion of carnosine could contribute to muscle wasting in cancer patients by lowering the aldehyde quenching abilities. Synthesis of carnosine by CARNS in myotubes is particularly affected by tumour derived factors and could contribute to carnosine depletion in WL UGIC patients. Increasing carnosine in skeletal muscle may be an effective therapeutic intervention to prevent muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Dheeraj Kumar Posa
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Janice Miller
- Department of Clinical SurgeryUniversity of EdinburghEdinburghUK
| | - David Hoetker
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | - Hong Gao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Jingjing Zhao
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Benjamin Doelling
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | - Aruni Bhatnagar
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| | | | | | - Shahid P. Baba
- Center for Cardiometabolic ScienceLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteLouisvilleKentuckyUSA
| |
Collapse
|
145
|
Rentz LE, Whetsell MA, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. Int J Mol Sci 2023; 24:11669. [PMID: 37511427 PMCID: PMC10380440 DOI: 10.3390/ijms241411669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis result in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that the isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest that these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within the muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Marcella A. Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Emily H. Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| |
Collapse
|
146
|
Fu L, Lei C, Chen Y, Zhu R, Zhuang M, Dong L, Ye X, Zheng L, Gong D. TNF-α-1031T/C gene polymorphism as a predictor of malnutrition in patients with gastric cancer. Front Nutr 2023; 10:1208375. [PMID: 37533569 PMCID: PMC10393265 DOI: 10.3389/fnut.2023.1208375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malnutrition is a complex clinical syndrome, the exact mechanism of which is yet not fully understood. Studies have found that malnutrition is associated with anorexia and inadequate intake, tumor depletion, leptin, tumor-induced metabolic abnormalities in the body, and catabolic factors produced by the tumor in the circulation and cytokines produced by the host immune system. Among these, single nucleotide polymorphisms (SNPs) are present in the gene encoding the pro-inflammatory cytokine TNF-α. Aim The objective of this study was to investigate TNF-α -1,031 T/C gene polymorphism as an unfavorable predictor of malnutrition in patients with gastric cancer. Methods The study group consisted of 220 gastric cancer patients treated at Affiliated Jinhua Hospital, Zhejiang University School of Medicine. Malnutrition was mainly assessed by the Global Consensus on Malnutrition Diagnostic Criteria (GLIM). DNA was extracted from peripheral leukocytes of whole blood samples using an animal DNA extraction kit. DNA was amplified using a 1.1× T3 Super PCR mixture and genotyped using SNP1 software. Results There are three major genetic polymorphisms in TNF-α. Among the 220 patients with gastric cancer, there were 7 patients with the CC genotype, 61 with the CT genotype and 152 with the TT genotype. Compared to patients with the TT genotype, patients with the C allele had an approximately 2.5-fold higher risk of developing malnutrition (p = 0.003; OR = 0.406). On the basis of multivariate analysis, patients with the CC genotype had an approximately 20.1-fold higher risk of developing malnutrition (p = 0.013; OR = 20.114), while those with the CT genotype had an almost 3.7-fold higher risk of malnutrition (p = 0.002; OR = 3.218). Conclusion SNP (-1,031 T/C) of the TNF-α may be a useful marker in the assessment of the risk of nutritional deficiencies in gastric cancer patients. Patients with gastric cancer carrying the C allele should be supported by early nutritional intervention, but more research is still needed to explore confirmation.
Collapse
Affiliation(s)
- Liang Fu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Changzhen Lei
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yingxun Chen
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ruiyun Zhu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minling Zhuang
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liping Dong
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xianghong Ye
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Lushan Zheng
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
147
|
Almeida OLS, Ferriolli E, Taveira RCC, Rosenburg MG, Campanari DD, da Cruz Alves NM, Pfrimer K, Rapatoni L, Peria FM, Lima NKC. Mirtazapine versus Megestrol in the Treatment of Anorexia-Cachexia Syndrome in Patients with Advanced Cancer: A Randomized, Double-Blind, Controlled Phase II Clinical Trial. Cancers (Basel) 2023; 15:3588. [PMID: 37509249 PMCID: PMC10377007 DOI: 10.3390/cancers15143588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study compared mirtazapine with megestrol in the management of cancer-related anorexia-cachexia syndrome in patients with advanced cancer. A randomized, double-blind, controlled clinical trial involving patients with advanced cancer and anorexia-cachexia syndrome was performed. Participants received mirtazapine 30 mg/day or megestrol 320 mg/day for eight weeks. The primary endpoint was the effect of mirtazapine on weight gain and the secondary endpoints were its effect on appetite, muscle strength, physical performance, body composition, adverse events, and medication adherence. Linear regression model with mixed effects was applied and a significance level of 5% was adopted. Fifty-two patients were randomized. Mean age was 65.8 ± 8.4 years. There was weight gain in 52% of the participants in the megestrol group and in 38% in the mirtazapine group after four weeks (p = 0.040). Appetite improved in 92% of the participants in the megestrol group and in 56% in the mirtazapine group after eight weeks (p = 0.007). In the sub-analysis by sex, women showed improvement in appetite (p < 0.001) and weight gain (p < 0.005) in the mirtazapine group, which was not observed in men. Mirtazapine appears to be inferior to megestrol in weight and appetite improvement. However, there may be a difference in the therapeutic response between sexes.
Collapse
Affiliation(s)
- Olga Laura Sena Almeida
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Eduardo Ferriolli
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Roberta Cristina Cintra Taveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Meire Gallo Rosenburg
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Daniela Dalpubel Campanari
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Natália Maira da Cruz Alves
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Karina Pfrimer
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Liane Rapatoni
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Fernanda Maris Peria
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Nereida K C Lima
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
148
|
Liu D, Hu L, Shao H. Therapeutic drug monitoring of immune checkpoint inhibitors: based on their pharmacokinetic properties and biomarkers. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04541-8. [PMID: 37410155 DOI: 10.1007/s00280-023-04541-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/07/2023]
Abstract
As a new means of oncology treatment, immune checkpoint inhibitors (ICIs) can improve survival rates in patients with resistant or refractory tumors. However, there are obvious inter-individual differences in the unsatisfactory response rate, drug resistance rate and the occurrence of immune-related adverse events (irAE). These questions have sparked interest in researchers looking for a way to screen sensitive populations and predict efficacy and safety. Therapeutic drug monitoring (TDM) is a way to ensure the safety and effectiveness of medication by measuring the concentration of drugs in body fluids and adjusting the medication regimen. It has the potential to be an adjunctive means of predicting the safety and efficacy of ICIs treatment. In this review, the author outlined the pharmacokinetic (PK) characteristics of ICIs in patients. The feasibility and limitations of TDM of ICIs were discussed by summarizing the relationships between the pharmacokinetic parameters and the efficacy, toxicity and biomarkers.
Collapse
Affiliation(s)
- Dongxue Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Shao
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
149
|
Feng TY, Melchor SJ, Zhao XY, Ghumman H, Kester M, Fox TE, Ewald SE. Tricarboxylic acid (TCA) cycle, sphingolipid, and phosphatidylcholine metabolism are dysregulated in T. gondii infection-induced cachexia. Heliyon 2023; 9:e17411. [PMID: 37456044 PMCID: PMC10344712 DOI: 10.1016/j.heliyon.2023.e17411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cachexia is a life-threatening disease characterized by chronic, inflammatory muscle wasting and systemic metabolic impairment. Despite its high prevalence, there are no efficacious therapies for cachexia. Mice chronically infected with the protozoan parasite Toxoplasma gondii represent a novel animal model recapitulating the chronic kinetics of cachexia. To understand how perturbations to metabolic tissue homeostasis influence circulating metabolite availability we used mass spectrometry analysis. Despite the significant reduction in circulating triacylglycerides, non-esterified fatty acids, and glycerol, sphingolipid long-chain bases and a subset of phosphatidylcholines (PCs) were significantly increased in the sera of mice with T. gondii infection-induced cachexia. In addition, the TCA cycle intermediates α-ketoglutarate, 2-hydroxyglutarate, succinate, fumarate, and malate were highly depleted in cachectic mouse sera. Sphingolipids and their de novo synthesis precursors PCs are the major components of the mitochondrial membrane and regulate mitochondrial function consistent with a causal relationship in the energy imbalance driving T. gondii-induced chronic cachexia.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie J. Melchor
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Haider Ghumman
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd E. Fox
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
150
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|