101
|
Suppression of Rap1 impairs cardiac myofibrils and conduction system in zebrafish. PLoS One 2012; 7:e50960. [PMID: 23226434 PMCID: PMC3511394 DOI: 10.1371/journal.pone.0050960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have revealed that Rap1 (Ras-proximate-1 or Ras-related protein 1), a small GTPase protein, plays a crucial role in mediating cAMP signaling in isolated cardiac tissues and cell lines. However, the involvement of Rap1 in the cardiac development in vivo is largely unknown. By injecting anti-sense morpholino oligonucleotides to knock down Rap1a and Rap1b in zebrafish embryos, and in combination with time-lapsed imaging, in situ hybridization, immunohistochemistry and transmission electron microscope techniques, we seek to understand the role of Rap1 in cardiac development and functions. At an optimized low dose of mixed rap1a and rap1b morpholino oligonucleotides, the heart developed essentially normally until cardiac contraction occurred. Morphant hearts showed the myocardium defect phenotypes, most likely due to disrupted myofibril assembly and alignment. In vivo heart electrocardiography revealed prolonged P-R interval and QRS duration, consistent with an adherens junction defect and reduced Connexons in cardiac myocytes of morphants. We conclude that a proper level of Rap1 is crucial for heart morphogenesis and function, and suggest that Rap1 and/or their downstream factor genes are potential candidates for genetic screening for human heart diseases.
Collapse
|
102
|
Pantoja M, Fischer KA, Ieronimakis N, Reyes M, Ruohola-Baker H. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. Development 2012; 140:136-46. [PMID: 23154413 DOI: 10.1242/dev.087791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Duchenne muscular dystrophy is a lethal genetic disease characterized by the loss of muscle integrity and function over time. Using Drosophila, we show that dystrophic muscle phenotypes can be significantly suppressed by a reduction of wunen, a homolog of lipid phosphate phosphatase 3, which in higher animals can dephosphorylate a range of phospholipids. Our suppression analyses include assessing the localization of Projectin protein, a titin homolog, in sarcomeres as well as muscle morphology and functional movement assays. We hypothesize that wunen-based suppression is through the elevation of the bioactive lipid Sphingosine 1-phosphate (S1P), which promotes cell proliferation and differentiation in many tissues, including muscle. We confirm the role of S1P in suppression by genetically altering S1P levels via reduction of S1P lyase (Sply) and by upregulating the serine palmitoyl-CoA transferase catalytic subunit gene lace, the first gene in the de novo sphingolipid biosynthetic pathway and find that these manipulations also reduce muscle degeneration. Furthermore, we show that reduction of spinster (which encodes a major facilitator family transporter, homologs of which in higher animals have been shown to transport S1P) can also suppress dystrophic muscle degeneration. Finally, administration to adult flies of pharmacological agents reported to elevate S1P signaling significantly suppresses dystrophic muscle phenotypes. Our data suggest that localized intracellular S1P elevation promotes the suppression of muscle wasting in flies.
Collapse
Affiliation(s)
- Mario Pantoja
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
103
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
104
|
Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:193-202. [PMID: 22735358 DOI: 10.1016/j.bbalip.2012.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
105
|
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 2012; 84:4-16. [PMID: 22704690 DOI: 10.1016/j.diff.2012.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.
Collapse
Affiliation(s)
- Shu Tu
- Department of Medicine, Division of Cardiology, University of California, San Diego, CA 92093-0613J, USA
| | | |
Collapse
|
106
|
Nijnik A, Clare S, Hale C, Chen J, Raisen C, Mottram L, Lucas M, Estabel J, Ryder E, Adissu H, Adams NC, Ramirez-Solis R, White JK, Steel KP, Dougan G, Hancock REW. The role of sphingosine-1-phosphate transporter Spns2 in immune system function. THE JOURNAL OF IMMUNOLOGY 2012; 189:102-11. [PMID: 22664872 DOI: 10.4049/jimmunol.1200282] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However, the mechanisms of S1P transport across cellular membranes remain poorly understood, with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However, the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. In this study, we characterized Spns2-null mouse line carrying the Spns2(tm1a(KOMP)Wtsi) allele (Spns2(tm1a)). The Spns2(tm1a/tm1a) animals were viable, indicating a divergence in Spns2 function from its zebrafish ortholog. However, the immunological phenotype of the Spns2(tm1a/tm1a) mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the nonhematopoietic cells was critical for normal lymphocyte development and localization. Overall, Spns2(tm1a/tm1a) resulted in impaired humoral immune responses to immunization. This study thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard.
Collapse
Affiliation(s)
- Anastasia Nijnik
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
108
|
Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 2012; 122:1416-26. [PMID: 22406534 DOI: 10.1172/jci60746] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/30/2012] [Indexed: 12/11/2022] Open
Abstract
The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Balczerski B, Matsutani M, Castillo P, Osborne N, Stainier DY, Crump JG. Analysis of sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. Dev Biol 2012; 362:230-41. [PMID: 22185793 PMCID: PMC3265674 DOI: 10.1016/j.ydbio.2011.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/30/2011] [Accepted: 12/02/2011] [Indexed: 01/25/2023]
Abstract
Development of the head skeleton involves reciprocal interactions between cranial neural crest cells (CNCCs) and the surrounding pharyngeal endoderm and ectoderm. Whereas elegant experiments in avians have shown a prominent role for the endoderm in facial skeleton development, the relative functions of the endoderm in growth versus regional identity of skeletal precursors have remained unclear. Here we describe novel craniofacial defects in zebrafish harboring mutations in the Sphingosine-1-phospate (S1P) type 2 receptor (s1pr2) or the S1P transporter Spinster 2 (spns2), and we show that S1P signaling functions in the endoderm for the proper growth and positioning of the jaw skeleton. Surprisingly, analysis of s1pr2 and spns2 mutants, as well as sox32 mutants that completely lack endoderm, reveals that the dorsal-ventral (DV) patterning of jaw skeletal precursors is largely unaffected even in the absence of endoderm. Instead, we observe reductions in the ectodermal expression of Fibroblast growth factor 8a (Fgf8a), and transgenic misexpression of Shha restores fgf8a expression and partially rescues the growth and differentiation of jaw skeletal precursors. Hence, we propose that the S1P-dependent anterior foregut endoderm functions primarily through Shh to regulate the growth but not DV patterning of zebrafish jaw precursors.
Collapse
Affiliation(s)
- Bartosz Balczerski
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Megan Matsutani
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Pablo Castillo
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Nick Osborne
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - J. Gage Crump
- Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
110
|
Langenbacher AD, Huang J, Chen Y, Chen JN. Sodium pump activity in the yolk syncytial layer regulates zebrafish heart tube morphogenesis. Dev Biol 2011; 362:263-70. [PMID: 22182522 DOI: 10.1016/j.ydbio.2011.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/13/2011] [Accepted: 12/02/2011] [Indexed: 11/16/2022]
Abstract
Na(+),K(+) ATPase pumps Na(+) out of and K(+) into the cytosol, maintaining a resting potential that is essential for the function of excitable tissues like cardiac muscle. In addition to its well-characterized physiological role in the heart, Na(+),K(+) ATPase also regulates the morphogenesis of the embryonic zebrafish heart via an as yet unknown mechanism. Here, we describe a novel non-cell autonomous function of Na(+),K(+) ATPase/Atp1a1 in the elongation of the zebrafish heart tube. Embryos lacking Atp1a1 function exhibit abnormal migration behavior of cardiac precursors, defects in the elongation of the heart tube, and a severe reduction in ECM/Fibronectin deposition around the myocardium, despite the presence of normal cell polarity and junctions in the myocardial epithelium prior to the timeframe of heart tube elongation. Interestingly, we found that Atp1a1 is not present in the myocardium at the time when cardiac morphogenesis defects first become apparent, but is expressed in an extra-embryonic tissue, the yolk syncytial layer (YSL), at earlier stages. Knockdown of Atp1a1 activity specifically in the YSL using morpholino oligonucleotides produced heart tube elongation defects like those found in atp1a1 mutants, indicating that Atp1a1 function in the YSL is necessary for heart tube elongation. Furthermore, atp1a1 expression in the YSL was regulated by the homeobox transcription factor mxtx1. Together, these data reveal a new non-cell autonomous role for Atp1a1 in cardiac morphogenesis and establish Na(+),K(+) ATPase as a major player in the genetic pathway by which the YSL regulates embryonic ECM deposition.
Collapse
Affiliation(s)
- Adam D Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
111
|
Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2011; 30:69-94. [PMID: 22149932 DOI: 10.1146/annurev-immunol-020711-075011] [Citation(s) in RCA: 651] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much has been learned about how cells enter lymphoid tissues. But how do they leave? Sphingosine-1-phosphate (S1P) has emerged over the past decade as a central mediator of lymphocyte egress. In this review, we summarize the current understanding of how S1P promotes exit from the secondary lymphoid organs and thymus. We review what is known about additional requirements for emigration and summarize the mostly distinct requirements for exit from the bone marrow. Egress from lymphoid organs is limited during immune responses, and we examine how this regulation works. There is accumulating evidence for roles of S1P in directing immune cell behavior within lymphoid tissues. How such actions can fit together with the egress-promoting role of S1P is discussed. Finally, we examine current understanding of how FTY720, a drug that targets S1P receptors and is approved for the treatment of multiple sclerosis, causes immune suppression.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA.
| | | |
Collapse
|
112
|
Invertebrate models of lysosomal storage disease: what have we learned so far? INVERTEBRATE NEUROSCIENCE 2011; 11:59-71. [PMID: 22038288 DOI: 10.1007/s10158-011-0125-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/08/2011] [Indexed: 01/17/2023]
Abstract
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.
Collapse
|
113
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
114
|
Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T. The impact of bioactive lipids on cardiovascular development. Stem Cells Int 2011; 2011:916180. [PMID: 21876704 PMCID: PMC3159013 DOI: 10.4061/2011/916180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/05/2011] [Indexed: 12/30/2022] Open
Abstract
Lysophospholipids comprise a group of bioactive molecules with multiple biological functions. The cardinal members of this signalling molecule group are sphingosylphosphorylcholine (SPC), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) which are, at least in part, homologous to each other. Bioactive lipids usually act via G-protein coupled receptors (GPCRs), but can also function as direct intracellular messengers. Recently, it became evident that bioactive lipids play a role during cellular differentiation development. SPC induces mesodermal differentiation of mouse ES cells and differentiation of promyelocytic leukemia cells, by a mechanism being critically dependent on MEK-ERK signalling. LPA stimulates the clonal expansion of neurospheres from neural stem/progenitor cells and induces c-fos via activation of mitogen- and stress-activated protein kinase 1 (MSK1) in ES cells. S1P acts on hematopoietic progenitor cells as a chemotactic factor and has also been found to be critical for cardiac and skeletal muscle regeneration. Furthermore, S1P promotes cardiogenesis and similarly activates Erk signalling in mouse ES cells. Interestingly, S1P may also act to maintain human stem cell pluripotency. Both LPA and S1P positively regulate the proliferative capacity of murine ES cells. In this paper we will focus on the differential and developmental impact of lysophospholipids on cardiovascular development.
Collapse
Affiliation(s)
- Alexander Kleger
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
115
|
Abstract
Over the last decade, the zebrafish has entered the field of cardiovascular research as a new model organism. This is largely due to a number of highly successful small- and large-scale forward genetic screens, which have led to the identification of zebrafish mutants with cardiovascular defects. Genetic mapping and identification of the affected genes have resulted in novel insights into the molecular regulation of vertebrate cardiac development. More recently, the zebrafish has become an attractive model to study the effect of genetic variations identified in patients with cardiovascular defects by candidate gene or whole-genome-association studies. Thanks to an almost entirely sequenced genome and high conservation of gene function compared with humans, the zebrafish has proved highly informative to express and study human disease-related gene variants, providing novel insights into human cardiovascular disease mechanisms, and highlighting the suitability of the zebrafish as an excellent model to study human cardiovascular diseases. In this review, I discuss recent discoveries in the field of cardiac development and specific cases in which the zebrafish has been used to model human congenital and acquired cardiac diseases.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Interuniversity Cardiology Institute of The Netherlands, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
116
|
Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 2011; 11:403-15. [PMID: 21546914 DOI: 10.1038/nri2974] [Citation(s) in RCA: 660] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
117
|
Fish JE, Wythe JD, Xiao T, Bruneau BG, Stainier DYR, Srivastava D, Woo S. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development 2011; 138:1409-19. [PMID: 21385766 PMCID: PMC3050667 DOI: 10.1242/dev.060046] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 01/01/2023]
Abstract
Members of the Slit family of secreted ligands interact with Roundabout (Robo) receptors to provide guidance cues for many cell types. For example, Slit/Robo signaling elicits repulsion of axons during neural development, whereas in endothelial cells this pathway inhibits or promotes angiogenesis depending on the cellular context. Here, we show that miR-218 is intronically encoded in slit2 and slit3 and that it suppresses Robo1 and Robo2 expression. Our data indicate that miR-218 and multiple Slit/Robo signaling components are required for heart tube formation in zebrafish and that this network modulates the previously unappreciated function of Vegf signaling in this process. These findings suggest a new paradigm for microRNA-based control of ligand-receptor interactions and provide evidence for a novel signaling pathway regulating vertebrate heart tube assembly.
Collapse
Affiliation(s)
- Jason E. Fish
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L8, Canada
| | - Joshua D. Wythe
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Tong Xiao
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Stephanie Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
118
|
Cis-4-methylsphingosine is a sphingosine-1-phosphate receptor modulator. Biochem Pharmacol 2011; 81:617-25. [DOI: 10.1016/j.bcp.2010.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/24/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022]
|
119
|
Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 - Jekyll Hidden behind Hyde. Am J Cancer Res 2011; 1:460-481. [PMID: 21984966 PMCID: PMC3186046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/19/2011] [Indexed: 05/31/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets and tumor cells, in the latter case SphK1 is a downstream target of activated Ras mutant and hypoxia, and is frequently upregulated especially in advanced stages of tumors. Most if not all of the S1P actions in vertebrates are mediated through evolutionarily conserved G protein-coupled S1P receptor family. Ubiquitously expressed mammalian subtypes S1PR1, S1PR2 and S1PR3 mediate pleiotropic actions of S1P in diverse cell types, through coupling to distinctive repertoire of heterotrimeric G proteins. S1PR1 and S1PR3 mediate directed cell migration toward S1P through coupling to G(i) and activating Rac, a Rho family small G protein essential for cell migration. Indeed, S1PR1 expressed in lymphocytes directs their egress from lymph nodes into lymph and recirculation, serving as the target for downregulation by the immunosuppressant FTY720 (fingolimod). S1PR1 in endothelial cells plays an essential role in vascular maturation in embryonic stage, and mediates angiogenic and vascular protective roles of S1P which include eNOS activation and maintenance of barrier integrity. It is likely that S1PR1 and SphK1 expressed in host endothelial cells and tumor cells act in concert in a paracrine loop to contribute to tumor angiogenesis, tumor invasion and progression. In sharp contrast, S1PR2 mediates S1P inhibition of Rac at the site downstream of G(12/13)-mediated Rho activation, thus identified as the first G protein-coupled receptor that negatively regulates Rac and cell migration. S1PR2 could also mediate inhibition of Akt and cell proliferation/survival signaling via Rho-ROCK-PTEN pathway. S1PR2 expressed in tumor cells mediates inhibition of cell migration and invasion in vitro and metastasis in vivo. Moreover, S1PR2 expressed in host endothelial cells and tumor-infiltrating myeloid cells in concert mediates potent inhibition of tumor angiogenesis and tumor growth in vivo, with inhibition of VEGF expression and MMP9 activity. These recent findings provide further basis for S1P receptor subtype-specific, novel therapeutic tactics for individualized treatment of patients with cancer.
Collapse
Affiliation(s)
- Noriko Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University7-1 Nakanuma-tu, Kahoku, Ishikawa 929-1212, Japan
| | - Wa Du
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Erika Kaneko
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University Graduate School of Medicine13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
120
|
Sphingosine-1-Phosphate-Specific G Protein-Coupled Receptors as Novel Therapeutic Targets for Atherosclerosis. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052545 DOI: 10.3390/ph4010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process involving complex interactions of modified lipoproteins, monocyte-derived macrophages or foam cells, lymphocytes, endothelial cells (ECs), and vascular smooth muscle cells. Sphingosine-1-phosphate (S1P), a biologically active blood-borne lipid mediator, exerts pleiotropic effects such as cell proliferation, migration and cell-cell adhesion in a variety of cell types via five members of S1P-specific high-affinity G protein-coupled receptors (S1P1-S1P5). Among them, S1P1, S1P2 and S1P3 are major receptor subtypes which are widely expressed in various tissues. Available evidence suggest that S1P and HDL-bound S1P exert atheroprotective effects including inhibition of leukocyte adhesion and stimulation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) through the activation of Gi signaling pathway via S1P3 and probably S1P1, although there is still controversy. FTY720, the phosphorylation product of which is a high-affinity agonist for all S1P receptors except S1P2 and act as an immunosuppressant by downregulating S1P1 on lymphocytes, inhibits atherosclerosis in LDL receptor-null mice and apoE-null mice through the inhibition of lymphocyte and macrophage functions and probably stimulation of EC functions, without influencing plasma lipid concentrations. In contrast to S1P1 and S1P3, S1P2 facilitates atherosclerosis by activating G12/13-Rho-Rho kinase (ROCK) in apoE-null mice. S1P2 mediates transmigration of monocytes into the arterial intima, oxidized LDL accumulation and cytokine secretion in monocyte-derived macrophages, and eNOS inhibition and cytokine secretion in ECs through Rac inhibition, NF-κB activation and 3′-specific phosphoinositide phosphatase (PTEN) stimulation downstream of G12/13-Rho-ROCK. Systemic long-term administration of a selective S1P2-blocker remarkably inhibits atherosclerosis without overt toxicity. Thus, multiple S1P receptors positively and negatively regulate atherosclerosis through multitudes of mechanisms. Considering the essential and multi-faceted role of S1P2 in atherogenesis and the impact of S1P2 inactivation on atherosclerosis, S1P2 is a particularly promising therapeutic target for atherosclerosis.
Collapse
|
121
|
Abstract
The zebrafish is an ideal model organism for investigating the molecular mechanisms underlying cardiogenesis, due to the powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. A continually increasing number of studies are uncovering mutations, morpholinos, and small molecules that cause striking cardiac defects and disrupt blood circulation in the zebrafish embryo. Such defects can result from a wide variety of origins including defects in the specification or differentiation of cardiac progenitor cells; errors in the morphogenesis of the heart tube, the cardiac chambers, or the atrioventricular canal or problems with establishing proper cardiac function. An extensive arsenal of techniques is available to distinguish between these possibilities and thereby decipher the roots of cardiac defects. In this chapter, we provide a guide to the experimental strategies that are particularly effective for the characterization of cardiac phenotypes in the zebrafish embryo.
Collapse
Affiliation(s)
- Grant I Miura
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
122
|
Wattenberg BW. Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 2010; 1:362-8. [PMID: 21537471 PMCID: PMC3083941 DOI: 10.4331/wjbc.v1.i12.362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 02/05/2023] Open
Abstract
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.
Collapse
Affiliation(s)
- Binks W Wattenberg
- Binks W Wattenberg, Clinical and Translational Research Building, Room 419, 505 South Hancock St. Louisville, KY 40202, United States
| |
Collapse
|
123
|
The yolk syncytial layer in early zebrafish development. Trends Cell Biol 2010; 20:586-92. [DOI: 10.1016/j.tcb.2010.06.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
|
124
|
Garavito-Aguilar ZV, Riley HE, Yelon D. Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development 2010; 137:3215-20. [PMID: 20724450 DOI: 10.1242/dev.052225] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heart formation requires the fusion of bilateral cardiomyocyte populations as they move towards the embryonic midline. The bHLH transcription factor Hand2 is essential for cardiac fusion; however, the effector genes that execute this function of Hand2 are unknown. Here, we provide in zebrafish the first evidence for a downstream component of the Hand2 pathway that mediates cardiac morphogenesis. Although hand2 is expressed in cardiomyocytes, mosaic analysis demonstrates that it plays a non-autonomous role in regulating cardiomyocyte movement. Gene expression profiles reveal heightened expression of fibronectin 1 (fn1) in hand2 mutant embryos. Reciprocally, overexpression of hand2 leads to decreased Fibronectin levels. Furthermore, reduction of fn1 function enables rescue of cardiac fusion in hand2 mutants: bilateral cardiomyocyte populations merge and exhibit improved tissue architecture, albeit without major changes in apicobasal polarity. Together, our data provide a novel example of a tissue creating a favorable environment for its morphogenesis: the Hand2 pathway establishes an appropriate environment for cardiac fusion through negative modulation of Fn1 levels.
Collapse
|
125
|
Abstract
Zebrafish are an increasingly popular vertebrate model organism in which to study biological phenomena. It has been widely used, especially in developmental biology and neurobiology, and many aspects of its development and physiology are similar to those of mammals. The popularity of zebrafish relies on its relatively low cost, rapid development and ease of genetic manipulation. Moreover, the optical transparency of the developing fish together with novel imaging techniques enable the direct visualization of complex phenomena at the level of the entire organism. This potential is now also being increasingly appreciated by the lipid research community. In the present review we summarize basic information on the lipid composition and distribution in zebrafish tissues, including lipoprotein metabolism, intestinal lipid absorption, the yolk lipids and their mobilization, as well as lipids in the nervous system. We also discuss studies in which zebrafish have been employed for the visualization of whole-body lipid distribution and trafficking. Finally, recent advances in using zebrafish as a model for lipid-related diseases, including atherosclerosis, obesity, diabetes and hepatic steatosis are highlighted. As the insights into zebrafish lipid metabolism increase, it is likely that zebrafish as a model organism will become an increasingly powerful tool in lipid research.
Collapse
|
126
|
Abstract
There is substantial evidence that sphingosine 1-phosphate (S1P) is involved in cancer. S1P regulates processes such as inflammation, which can drive tumorigenesis; neovascularization, which provides cancer cells with nutrients and oxygen; and cell growth and survival. This occurs at multiple levels and involves S1P receptors, sphingosine kinases, S1P phosphatases and S1P lyase. This Review summarizes current research findings and examines the potential for new therapeutics designed to alter S1P signalling and function in cancer.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK.
| | | |
Collapse
|
127
|
Sakurai A, Nakano Y, Koganezawa M, Yamamoto D. Phenotypic interactions of spinster with the genes encoding proteins for cell death control in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:119-127. [PMID: 20091795 DOI: 10.1002/arch.20345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The spin gene was first identified by its mutant phenotype, which is characterized by extremely strong mate refusal by females in response to male courtship in Drosophila. Spin mutants are also known to be accompanied by a remarkable reduction in programmed cell death in the reproductive and nervous systems. To better understand the molecular functions of spin, we searched for its genetic modifiers. Forced expression of spin(+) in somatic cells as driven by ptc-Gal4 in the testis resulted in the invasion of mature sperm into the anterior testes tip, which is otherwise occupied only by immature germ cells. To obtain genes that modulate spin's effect, the gain-of-function spin phenotype was observed in the presence of a chromosome harboring an EP or GS P-element insertion, which initiates transcription of the genomic sequence neighboring the insertion site. We isolated th and emc as suppressors of spin and atg8a as a gene that reproduces the spin phenotype on its own. th encodes Inhibitor of apoptosis-1, and mammalian Id genes homologous to emc are known to inhibit apoptosis. atg8a encodes a protein essential for autophagy. These results suggest that spin promotes cell death mechanisms that are regulated negatively by th and emc and positively by atg8a.
Collapse
Affiliation(s)
- Akira Sakurai
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
128
|
Claas RF, ter Braak M, Hegen B, Hardel V, Angioni C, Schmidt H, Jakobs KH, Van Veldhoven PP, Heringdorf DMZ. Enhanced Ca2+ storage in sphingosine-1-phosphate lyase-deficient fibroblasts. Cell Signal 2010; 22:476-83. [DOI: 10.1016/j.cellsig.2009.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
129
|
Pham THM, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. ACTA ACUST UNITED AC 2009; 207:17-27. [PMID: 20026661 PMCID: PMC2812554 DOI: 10.1084/jem.20091619] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lymphocyte egress from lymph nodes (LNs) is dependent on sphingosine-1-phosphate (S1P), but the cellular source of this S1P is not defined. We generated mice that expressed Cre from the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1) locus and that showed efficient recombination of loxP-flanked genes in lymphatic endothelium. We report that mice with Lyve-1 CRE-mediated ablation of sphingosine kinase (Sphk) 1 and lacking Sphk2 have a loss of S1P in lymph while maintaining normal plasma S1P. In Lyve-1 Cre+ Sphk-deficient mice, lymphocyte egress from LNs and Peyer's patches is blocked. Treatment with pertussis toxin to overcome Gαi-mediated retention signals restores lymphocyte egress. Furthermore, in the absence of lymphatic Sphks, the initial lymphatic vessels in nonlymphoid tissues show an irregular morphology and a less organized vascular endothelial cadherin distribution at cell–cell junctions. Our data provide evidence that lymphatic endothelial cells are an in vivo source of S1P required for lymphocyte egress from LNs and Peyer's patches, and suggest a role for S1P in lymphatic vessel maturation.
Collapse
Affiliation(s)
- Trung H M Pham
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Morris AJ, Selim S, Salous A, Smyth SS. Blood relatives: dynamic regulation of bioactive lysophosphatidic acid and sphingosine-1-phosphate metabolism in the circulation. Trends Cardiovasc Med 2009; 19:135-40. [PMID: 19818950 DOI: 10.1016/j.tcm.2009.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lysophosphatidic acid and sphingosine 1-phosphate are bioactive lipid mediators with potent effects on cardiovascular development and vascular function. New studies define dynamic mechanisms that maintain physiologically relevant levels of both lipids in the blood. We review the mechanisms controlling the production, metabolism, and distribution of these lipids between vascular cells, circulating blood components, and the plasma.
Collapse
Affiliation(s)
- Andrew J Morris
- The Gill Heart Institute, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
131
|
Arrington CB, Yost HJ. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 2009; 136:3143-52. [PMID: 19700618 DOI: 10.1242/dev.031492] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the first steps in zebrafish heart and gut organogenesis is the migration of bilateral primordia to the midline to form cardiac and gut tubes. The mechanisms that regulate this process are poorly understood. Here we show that the proteoglycan syndecan 2 (Sdc2) expressed in the extra-embryonic yolk syncytial layer (YSL) acts locally at the YSL-embryo interface to direct organ primordia migration, and is required for fibronectin and laminin matrix assembly throughout the embryo. Surprisingly, neither endogenous nor exogenous sdc2 expressed in embryonic cells can compensate for knockdown of sdc2 in the YSL, indicating that Sdc2 expressed in extra-embryonic tissues is functionally distinct from Sdc2 in embryonic cells. The effects of sdc2 knockdown in the YSL can be rescued by extra-embryonic Sdc2 lacking an extracellular proteolytic cleavage (shedding) site, but not by extra-embryonic Sdc2 lacking extracellular glycosaminoglycan (GAG) addition sites, suggesting that distinct GAG chains on extra-embryonic Sdc2 regulate extracellular matrix assembly, cell migration and epithelial morphogenesis of multiple organ systems throughout the embryo.
Collapse
Affiliation(s)
- Cammon B Arrington
- Division of Pediatric Cardiology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
132
|
Mochizuki N. Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1. Circ J 2009; 73:2183-91. [PMID: 19838001 DOI: 10.1253/circj.cj-09-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of blood vessels is coordinated by angiogenesis and stabilization of vascular endothelial cells (ECs). The vascular network is established during embryogenesis to supply oxygen and nutrients to the tissues and organs. However, after cardiac or peripheral ischemia is caused by occlusion of the vessels, new vessels must be formed to rescue the ischemic tissues. Many angiogenic growth factors and chemokines are produced in the ischemic tissue to induce angiogenic sprouting of preexisting vessels. Branched vessels must be again restabilized to form mature vessels that deliver blood to the tissues. To this end, vascular EC-cell adhesion is tightly regulated by cell-cell adhesion molecules and extracellular stimuli that activate G protein-coupled receptors and receptor tyrosine kinases exclusively expressed on vascular ECs. This review spotlights the recent studies of vascular endothelial cadherin and of sphingosine 1-phosphate signaling and angiopoietin-Tie signaling.
Collapse
Affiliation(s)
- Naoki Mochizuki
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Japan.
| |
Collapse
|
133
|
Kim RH, Takabe K, Milstien S, Spiegel S. Export and functions of sphingosine-1-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:692-6. [PMID: 19268560 PMCID: PMC2763566 DOI: 10.1016/j.bbalip.2009.02.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 02/07/2023]
Abstract
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.
Collapse
Affiliation(s)
- Roger H. Kim
- Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, 2011 Sanger Hall, Richmond, Virginia 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, 2011 Sanger Hall, Richmond, Virginia 23298, USA
| |
Collapse
|
134
|
Bakkers J, Verhoeven MC, Abdelilah-Seyfried S. Shaping the zebrafish heart: from left-right axis specification to epithelial tissue morphogenesis. Dev Biol 2009; 330:213-20. [PMID: 19371733 DOI: 10.1016/j.ydbio.2009.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
Although vertebrates appear bilaterally symmetric on the outside, various internal organs, including the heart, are asymmetric with respect to their position and/or their orientation based on the left/right (L/R) axis. The L/R axis is determined during embryo development. Determination of the L/R axis is fundamentally different from the determination of the anterior-posterior or the dorsal-ventral axis. In all vertebrates a ciliated organ has been described that induces a left-sided gene expression program, which includes Nodal expression in the left lateral plate mesoderm. To have a better understanding of organ laterality it is important to understand how L/R patterning induces cellular responses during organogenesis. In this review, we discuss the current understanding of the mechanisms of L/R patterning during zebrafish development and focus on how this affects cardiac morphogenesis. Several recent studies have provided unprecedented insights into the intimate link between L/R signaling and the cellular responses that drive morphogenesis of this organ.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute and University Medical Centre Utrecht, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
135
|
|
136
|
Kawahara A. Genetic dissection of cardiac progenitor migration. Inflamm Regen 2009. [DOI: 10.2492/inflammregen.29.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|