101
|
Zhang Y, Quiñones GM, Ferrarelli F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: Recent findings and future directions. Schizophr Res 2020; 221:29-36. [PMID: 31753592 PMCID: PMC7231641 DOI: 10.1016/j.schres.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/27/2022]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during NREM sleep. Slow waves are ∼1 Hz, high amplitude, negative-positive deflections that are primarily generated and coordinated within the cortex, whereas sleep spindles are 12-16 Hz, waxing and waning oscillations that are initiated within the thalamus and regulated by thalamo-cortical circuits. In healthy subjects, these oscillations are thought to be responsible for the restorative aspects of sleep and have been increasingly shown to be involved in learning, memory and plasticity. Furthermore, deficits in sleep spindles and, to lesser extent, slow waves have been reported in both chronic schizophrenia (SCZ) and early course psychosis patients. In this article, we will first describe sleep spindle and slow wave characteristics, including their putative functional roles in the healthy brain. We will then review electrophysiological, genetic, and cognitive studies demonstrating spindle and slow wave impairments in SCZ and other psychotic disorders, with particularly emphasis on recent findings in early course patients. Finally, we will discuss how future work, including sleep studies in individuals at clinical high risk for psychosis, may help position spindles and slow waves as candidate biomarkers, as well as novel treatment targets, for SCZ and related psychotic disorders.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Psychiatry, University of Pittsburgh, USA
| | | | | |
Collapse
|
102
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
103
|
Krempp C, Paulk AC, Truccolo W, Cash SS, Zelmann R. Effect of Closed-Loop Direct Electrical Stimulation during Sleep Spindles in Humans. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3586-3589. [PMID: 33018778 DOI: 10.1109/embc44109.2020.9175404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sleep spindles are transient oscillations in the brain related to sleep consolidation and memory. We investigated if brief, localized electrical pulses could perturb spindles on five human patients with intracerebral electrodes implanted for clinical purpose. We used a closed-loop setup to specifically detect spindles and stimulate in real-time during these events. Stimulation latency was 200-400 ms following spindle onset. Analyzing the intracranial electro-encephalographic (iEEG) data both locally and globally, we found, in two of the patients, that single pulse stimulation could stop the spindles locally. Spindles were shorter than those without stimulation and a decrease in power at the same frequency as spindles was observed following stimulation.Clinical Relevance- This study shows that brief and precise electrical stimulation may be used to modulate oscillatory behavior of the human brain. Applied to sleep spindles, further studies may establish that single pulses applied in a closed-loop manner could be used to modulate memory and could help understand effect of neuromodulation in sleep disruption.
Collapse
|
104
|
Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife 2020; 9:e53730. [PMID: 32579108 PMCID: PMC7314542 DOI: 10.7554/elife.53730] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Precise temporal coordination of slow oscillations (SO) and sleep spindles is a fundamental mechanism of sleep-dependent memory consolidation. SO and spindle morphology changes considerably throughout development. Critically, it remains unknown how the precise temporal coordination of these two sleep oscillations develops during brain maturation and whether their synchronization indexes the development of memory networks. Here, we use a longitudinal study design spanning from childhood to adolescence, where participants underwent polysomnography and performed a declarative word-pair learning task. Performance on the memory task was better during adolescence. After disentangling oscillatory components from 1/f activity, we found frequency shifts within SO and spindle frequency bands. Consequently, we devised an individualized cross-frequency coupling approach, which demonstrates that SO-spindle coupling strength increases during maturation. Critically, this increase indicated enhanced memory formation from childhood to adolescence. Our results provide evidence that improved coordination between SOs and spindles indexes the development of sleep-dependent memory networks.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
105
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
106
|
Salfi F, D’Atri A, Tempesta D, De Gennaro L, Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci 2020; 10:300. [PMID: 32429181 PMCID: PMC7287854 DOI: 10.3390/brainsci10050300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Sleep represents a crucial time window for the consolidation of memory traces. In this view, some brain rhythms play a pivotal role, first of all the sleep slow waves. In particular, the neocortical slow oscillations (SOs), in coordination with the hippocampal ripples and the thalamocortical spindles, support the long-term storage of the declarative memories. The aging brain is characterized by a disruption of this complex system with outcomes on the related cognitive functions. In recent years, the advancement of the comprehension of the sleep-dependent memory consolidation mechanisms has encouraged the development of techniques of SO enhancement during sleep to induce cognitive benefits. In this review, we focused on the studies reporting on the application of acoustic or electric stimulation procedures in order to improve sleep-dependent memory consolidation in older subjects. Although the current literature is limited and presents inconsistencies, there is promising evidence supporting the perspective to non-invasively manipulate the sleeping brain electrophysiology to improve cognition in the elderly, also shedding light on the mechanisms underlying the sleep-memory relations during healthy and pathological aging.
Collapse
Affiliation(s)
- Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| | - Aurora D’Atri
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (A.D.); (L.D.G.)
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (A.D.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (D.T.)
| |
Collapse
|
107
|
A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. SENSORS 2020; 20:s20102770. [PMID: 32414060 PMCID: PMC7285770 DOI: 10.3390/s20102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
Advances in computer processing technology have enabled researchers to analyze real-time brain activity and build real-time closed-loop paradigms. In many fields, the effectiveness of these closed-loop protocols has proven to be better than that of the simple open-loop paradigms. Recently, sleep studies have attracted much attention as one possible application of closed-loop paradigms. To date, several studies that used closed-loop paradigms have been reported in the sleep-related literature and recommend a closed-loop feedback system to enhance specific brain activity during sleep, which leads to improvements in sleep's effects, such as memory consolidation. However, to the best of our knowledge, no report has reviewed and discussed the detailed technical issues that arise in designing sleep closed-loop paradigms. In this paper, we reviewed the most recent reports on sleep closed-loop paradigms and offered an in-depth discussion of some of their technical issues. We found 148 journal articles strongly related with 'sleep and stimulation' and reviewed 20 articles on closed-loop feedback sleep studies. We focused on human sleep studies conducting any modality of feedback stimulation. Then we introduced the main component of the closed-loop system and summarized several open-source libraries, which are widely used in closed-loop systems, with step-by-step guidelines for closed-loop system implementation for sleep. Further, we proposed future directions for sleep research with closed-loop feedback systems, which provide some insight into closed-loop feedback systems.
Collapse
|
108
|
Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves. Sci Rep 2020; 10:7360. [PMID: 32355172 PMCID: PMC7193608 DOI: 10.1038/s41598-020-64378-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Transcranial electrical stimulation (TES) is a widely accepted neuromodulation modality for treating brain disorders. However, its clinical efficacy is fundamentally limited due to the current shunting effect of the scalp and safety issues. A newer electrical stimulation technique called subcutaneous electrical stimulation (SES) promises to overcome the limitations of TES by applying currents directly at the site of the disorder through the skull. While SES seems promising, the electrophysiological effect of SES compared to TES is still unknown, thus limiting its broader application. Here we comprehensively analyze the SES and TES to demonstrate the effectiveness and advantages of SES. Beagles were bilaterally implanted with subdural strips for intracranial electroencephalography and electric field recording. For the intracerebral electric field prediction, we designed a 3D electromagnetic simulation framework and simulated TES and SES. In the beagle model, SES induces three to four-fold larger cerebral electric fields compared to TES, and significant changes in power ratio of brainwaves were observed only in SES. Our prediction framework suggests that the field penetration of SES would be several-fold larger than TES in human brains. These results demonstrate that the SES would significantly enhance the neuromodulatory effects compared to conventional TES and overcome the TES limitations.
Collapse
|
109
|
Iotchev IB, Szabó D, Kis A, Kubinyi E. Possible association between spindle frequency and reversal-learning in aged family dogs. Sci Rep 2020; 10:6505. [PMID: 32300165 PMCID: PMC7162895 DOI: 10.1038/s41598-020-63573-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
In both humans and dogs sleep spindle occurrence between acquisition and recall of a specific memory correlate with learning performance. However, it is not known whether sleep spindle characteristics are also linked to performance beyond the span of a day, except in regard to general mental ability in humans. Such a relationship is likely, as both memory and spindle expression decline with age in both species (in dogs specifically the density and amplitude of slow spindles). We investigated if spindle amplitude, density (spindles/minute) and/or frequency (waves/second) correlate with performance on a short-term memory and a reversal-learning task in old dogs (> 7 years), when measurements of behavior and EEG were on average a month apart. Higher frequencies of fast (≥ 13 Hz) spindles on the frontal and central midline electrodes, and of slow spindles (≤ 13 Hz) on the central midline electrode were linked to worse performance on a reversal-learning task. The present findings suggest a role for spindle frequency as a biomarker of cognitive aging across species: Changes in spindle frequency are associated with dementia risk and onset in humans and declining learning performance in the dog.
Collapse
Affiliation(s)
| | - Dóra Szabó
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
110
|
Hoang KB, Turner DA. The Emerging Role of Biomarkers in Adaptive Modulation of Clinical Brain Stimulation. Neurosurgery 2020; 85:E430-E439. [PMID: 30957145 DOI: 10.1093/neuros/nyz096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/01/2019] [Indexed: 11/14/2022] Open
Abstract
Therapeutic brain stimulation has proven efficacious for treatment of nervous system diseases, exerting widespread influence via disease-specific neural networks. Activation or suppression of neural networks could theoretically be assessed by either clinical symptom modification (ie, tremor, rigidity, seizures) or development of specific biomarkers linked to treatment of symptomatic disease states. For example, biomarkers indicative of disease state could aid improved intraoperative localization of electrode position, optimize device efficacy or efficiency through dynamic control, and eventually serve to guide automatic adjustment of stimulation settings. Biomarkers to control either extracranial or intracranial stimulation span from continuous physiological brain activity, intermittent pathological activity, and triggered local phenomena or potentials, to wearable devices, blood flow, biochemical or cardiac signals, temperature perturbations, optical or magnetic resonance imaging changes, or optogenetic signals. The goal of this review is to update new approaches to implement control of stimulation through relevant biomarkers. Critical questions include whether adaptive systems adjusted through biomarkers can optimize efficiency and eventually efficacy, serve as inputs for stimulation adjustment, and consequently broaden our fundamental understanding of abnormal neural networks in pathologic states. Neurosurgeons are at the forefront of translating and developing biomarkers embedded within improved brain stimulation systems. Thus, criteria for developing and validating biomarkers for clinical use are important for the adaptation of device approaches into clinical practice.
Collapse
Affiliation(s)
- Kimberly B Hoang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas
| | - Dennis A Turner
- Departments of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
111
|
Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190232. [PMID: 32248783 DOI: 10.1098/rstb.2019.0232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405, Orsay, France.,Université d'Orléans, CIAMS, 45067, Orléans, France
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
112
|
Rantamäki T, Kohtala S. Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects. Pharmacol Rev 2020; 72:439-465. [PMID: 32139613 DOI: 10.1124/pr.119.018697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. SIGNIFICANCE STATEMENT: Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage.
Collapse
Affiliation(s)
- Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (T.R., S.K.) and SleepWell Research Program, Faculty of Medicine (T.R., S.K.), University of Helsinki, Helsinki, Finland
| | - Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy (T.R., S.K.) and SleepWell Research Program, Faculty of Medicine (T.R., S.K.), University of Helsinki, Helsinki, Finland
| |
Collapse
|
113
|
Local Targeted Memory Reactivation in Human Sleep. Curr Biol 2020; 30:1435-1446.e5. [DOI: 10.1016/j.cub.2020.01.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
|
114
|
Solomonova E, Dubé S, Blanchette-Carrière C, Sandra DA, Samson-Richer A, Carr M, Paquette T, Nielsen T. Different Patterns of Sleep-Dependent Procedural Memory Consolidation in Vipassana Meditation Practitioners and Non-meditating Controls. Front Psychol 2020; 10:3014. [PMID: 32038390 PMCID: PMC6989470 DOI: 10.3389/fpsyg.2019.03014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Aim Rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep, and sleep spindles are all implicated in the consolidation of procedural memories. Relative contributions of sleep stages and sleep spindles were previously shown to depend on individual differences in task processing. However, no studies to our knowledge have focused on individual differences in experience with Vipassana meditation as related to sleep. Vipassana meditation is a form of mental training that enhances proprioceptive and somatic awareness and alters attentional style. The goal of this study was to examine a potential role for Vipassana meditation experience in sleep-dependent procedural memory consolidation. Methods Groups of Vipassana meditation practitioners (N = 22) and matched meditation-naïve controls (N = 20) slept for a daytime nap in the laboratory. Before and after the nap they completed a procedural task on the Wii Fit balance platform. Results Meditators performed slightly better on the task before the nap, but the two groups improved similarly after sleep. The groups showed different patterns of sleep-dependent procedural memory consolidation: in meditators, task learning was positively correlated with density of slow occipital spindles, while in controls task improvement was positively associated with time in REM sleep. Sleep efficiency and sleep architecture did not differ between groups. Meditation practitioners, however, had a lower density of occipital slow sleep spindles than controls. Conclusion Results suggest that neuroplastic changes associated with meditation practice may alter overall sleep microarchitecture and reorganize sleep-dependent patterns of memory consolidation. The lower density of occipital spindles in meditators may mean that meditation practice compensates for some of the memory functions of sleep.
Collapse
Affiliation(s)
- Elizaveta Solomonova
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada.,Culture, Mind and Brain Research Group, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Simon Dubé
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Cloé Blanchette-Carrière
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Dasha A Sandra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arnaud Samson-Richer
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Michelle Carr
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Sleep Laboratory, Swansea University, Swansea, United Kingdom
| | - Tyna Paquette
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
115
|
Gorgoni M, Scarpelli S, Reda F, De Gennaro L. Sleep EEG oscillations in neurodevelopmental disorders without intellectual disabilities. Sleep Med Rev 2020; 49:101224. [PMID: 31731102 DOI: 10.1016/j.smrv.2019.101224] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Neurodevelopmental disorders (NDDs) are often characterised by sleep problems, and recent evidence indicates alterations of the sleep electroencephalographic (EEG) oscillations in these patients. Sleep microstructure plays a crucial role in cognitive functioning and brain maturation. In this view, modifications in sleep EEG oscillations in NDDs could further impair the cognitive maturation process in these patients. We provide an overview of sleep microstructure alterations observed in three NDDs without intellectual disabilities (attention-deficit/hyperactivity disorder, high-functioning autism/Asperger syndrome and developmental dyslexia) and their relationships with the disorders' phenomenology. For each NDD, we discuss empirical evidence of altered EEG oscillations, and we consider their interaction with patients' cognitive and behavioural functioning, with the aim to elucidate their functional meaning. We highlight the limits of the present literature and propose possible future directions while underlining the clinical relevance of the research in this field. Beyond confirming the importance of sleep management in atypically developing children, the review findings suggest that sleep EEG oscillations in NDDs could become a target for specific clinical intervention.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Flaminia Reda
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
116
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
117
|
Gilad R, Shapiro C. Sleep and Development. Health (London) 2020. [DOI: 10.4236/health.2020.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
118
|
Raffin E, Salamanca-Giron RF, Hummel FC. Perspectives: Hemianopia-Toward Novel Treatment Options Based on Oscillatory Activity? Neurorehabil Neural Repair 2019; 34:13-25. [PMID: 31858874 DOI: 10.1177/1545968319893286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stroke has become one of the main causes of visual impairment, with more than 15 million incidences of first-time strokes, per year, worldwide. One-third of stroke survivors exhibit visual impairment, and most of them will not fully recover. Some recovery is possible, but this usually happens in the first few weeks after a stroke. Most of the rehabilitation options that are offered to patients are compensatory, such as optical aids or eye training. However, these techniques do not seem to provide a sufficient amount of improvement transferable to everyday life. Based on the relatively recent idea that the visual system can actually recover from a chronic lesion, visual retraining protocols have emerged, sometimes even in combination with noninvasive brain stimulation (NIBS), to further boost plastic changes in the residual visual tracts and network. The present article reviews the underlying mechanisms supporting visual retraining and describes the first clinical trials that applied NIBS combined with visual retraining. As a further perspective, it gathers the scientific evidence demonstrating the relevance of interregional functional synchronization of brain networks for visual field recovery, especially the causal role of α and γ oscillations in parieto-occipital regions. Because transcranial alternating current stimulation (tACS) can induce frequency-specific entrainment and modulate spike timing-dependent plasticity, we present a new promising interventional approach, consisting of applying physiologically motivated tACS protocols based on multifocal cross-frequency brain stimulation of the visuoattentional network for visual field recovery.
Collapse
Affiliation(s)
- Estelle Raffin
- Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinique Romande de Réadaptation, Sion, Switzerland
| | | | - Friedhelm Christoph Hummel
- Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland.,Clinique Romande de Réadaptation, Sion, Switzerland.,University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
119
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
120
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|
121
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
122
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
123
|
Kam K, Pettibone WD, Shim K, Chen RK, Varga AW. Dynamics of sleep spindles and coupling to slow oscillations following motor learning in adult mice. Neurobiol Learn Mem 2019; 166:107100. [PMID: 31622665 DOI: 10.1016/j.nlm.2019.107100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
Abstract
Sleep spindles have been implicated in motor learning in human subjects, but their occurrence, timing in relation to cortical slow oscillations, and relationship to offline gains in motor learning have not been examined in animal models. In this study, we recorded EEG over bilateral primary motor cortex in conjunction with EMG for 24 h following a period of either baseline handling or following rotarod motor learning to monitor sleep. We measured several biophysical properties of sleep spindles and their temporal coupling with cortical slow oscillations (SO, <1 Hz) and cortical delta waves (1-4 Hz). Following motor learning, we found an increase in spindles during an early period of NREM sleep (1-4 h) without changes to biophysical properties such as spindle power, peak frequency and coherence. In this same period of early NREM sleep, both SO and delta power increased after motor learning. Notably, a vast majority of spindles were associated with minimal SO power, but in the subset that were associated with significant SO power (>1 z-score above the population mean), spindle-associated SO power was greater in spindles following motor learning compared to baseline sleep. Also, we did not observe a group-level preferred phase in spindle-SO or spindle-delta coupling. While SO power alone was not predictive of motor performance in early NREM sleep, both spindle density and the difference in the magnitude of the mean resultant vector length of the phase angle for SO-associated spindles, a measure of its coupling precision, were positively correlated with offline change in motor performance. These findings support a role for sleep spindles and their coupling to slow oscillations in motor learning and establish a model in which spindle timing and the brain circuits that support offline plasticity can be mechanistically explored.
Collapse
Affiliation(s)
- Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ward D Pettibone
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Shim
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca K Chen
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
124
|
How Targeted Memory Reactivation Promotes the Selective Strengthening of Memories in Sleep. Curr Biol 2019; 29:R906-R912. [DOI: 10.1016/j.cub.2019.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
125
|
Tambini A, Davachi L. Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition. Trends Cogn Sci 2019; 23:876-890. [PMID: 31445780 DOI: 10.1016/j.tics.2019.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
After experiences are encoded into memory, post-encoding reactivation mechanisms have been proposed to mediate long-term memory stabilization and transformation. Spontaneous reactivation of hippocampal representations, together with hippocampal-cortical interactions, are leading candidate mechanisms for promoting systems-level memory strengthening and reorganization. While the replay of spatial representations has been extensively studied in rodents, here we review recent fMRI work that provides evidence for spontaneous reactivation of nonspatial, episodic event representations in the human hippocampus and cortex, as well as for experience-dependent alterations in systems-level hippocampal connectivity. We focus on reactivation during awake post-encoding periods, relationships between reactivation and subsequent behavior, how reactivation is modulated by factors that influence consolidation, and the implications of persistent reactivation for biasing ongoing perception and cognition.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
126
|
Iotchev IB, Kis A, Turcsán B, Tejeda Fernández de Lara DR, Reicher V, Kubinyi E. Age-related differences and sexual dimorphism in canine sleep spindles. Sci Rep 2019; 9:10092. [PMID: 31300672 PMCID: PMC6626048 DOI: 10.1038/s41598-019-46434-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
Non-REM bursts of activity in the sigma range (9-16 Hz) typical of sleep spindles predict learning in dogs, similar to humans and rats. Little is known, however, about the age-related changes in amplitude, density (spindles/minute) and frequency (waves/second) of canine spindles. We investigated a large sample (N = 155) of intact and neutered pet dogs of both sexes, varying in breed and age, searching for spindles in segments of non-REM sleep. We recorded EEG from both a frontal midline electrode (Fz) and a central midline electrode (Cz) in 55.5% of the dogs, in the remaining animals only the Fz electrode was active (bipolar derivation). A similar topography was observed for fast (≥13 Hz) spindle occurrence as in humans (fast spindle number, density on Cz > Fz). For fast spindles, density was higher in females, and increased with age. These effects were more pronounced among intact animals and on Fz. Slow spindle density declined and fast spindle frequency increased with age on Cz, while on Fz age-related amplitude decline was observed. The frequency of fast spindles on Fz and slow spindles on Cz was linked to both sex and neutering, suggesting modulation by sexual hormones. Intact females displayed higher frequencies than males and neutered females. Our findings support the argument that sigma bursts in the canine non-REM sleep are analogous to human sleep spindles, and suggest that slow and fast spindles display different trajectories related to age, of which an increase in frontal fast spindles is unique to dogs.
Collapse
Affiliation(s)
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Borbála Turcsán
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | | - Vivien Reicher
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
127
|
Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ. How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 2019; 42:zsz095. [PMID: 31100149 PMCID: PMC6612670 DOI: 10.1093/sleep/zsz095] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Indexed: 11/14/2022] Open
Abstract
Decades of neurobehavioral research has linked sleep-associated rhythms in various brain areas to improvements in cognitive performance. However, it remains unclear what synaptic changes might underlie sleep-dependent declarative memory consolidation and procedural task improvement, and why these same changes appear not to occur across a similar interval of wake. Here we describe recent research on how one specific feature of sleep-network rhythms characteristic of rapid eye movement and non-rapid eye movement-could drive synaptic strengthening or weakening in specific brain circuits. We provide an overview of how these rhythms could affect synaptic plasticity individually and in concert. We also present an overarching hypothesis for how all network rhythms occurring across the sleeping brain could aid in encoding new information in neural circuits.
Collapse
Affiliation(s)
| | - James Roach
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Michal Zochowski
- Department of Physics, Biophysics Program, University of Michigan, Ann Arbor, MI
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
128
|
Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, Sterpenich V, Phillips C, Maquet P, Grova C, Dang-Vu TT. Cortical reactivations during sleep spindles following declarative learning. Neuroimage 2019; 195:104-112. [DOI: 10.1016/j.neuroimage.2019.03.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023] Open
|
129
|
Kulkarni PM, Xiao Z, Robinson EJ, Jami AS, Zhang J, Zhou H, Henin SE, Liu AA, Osorio RS, Wang J, Chen Z. A deep learning approach for real-time detection of sleep spindles. J Neural Eng 2019; 16:036004. [PMID: 30790769 PMCID: PMC6527330 DOI: 10.1088/1741-2552/ab0933] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Sleep spindles have been implicated in memory consolidation and synaptic plasticity during NREM sleep. Detection accuracy and latency in automatic spindle detection are critical for real-time applications. APPROACH Here we propose a novel deep learning strategy (SpindleNet) to detect sleep spindles based on a single EEG channel. While the majority of spindle detection methods are used for off-line applications, our method is well suited for online applications. MAIN RESULTS Compared with other spindle detection methods, SpindleNet achieves superior detection accuracy and speed, as demonstrated in two publicly available expert-validated EEG sleep spindle datasets. Our real-time detection of spindle onset achieves detection latencies of 150-350 ms (~two-three spindle cycles) and retains excellent performance under low EEG sampling frequencies and low signal-to-noise ratios. SpindleNet has good generalization across different sleep datasets from various subject groups of different ages and species. SIGNIFICANCE SpindleNet is ultra-fast and scalable to multichannel EEG recordings, with an accuracy level comparable to human experts, making it appealing for long-term sleep monitoring and closed-loop neuroscience experiments.
Collapse
Affiliation(s)
- Prathamesh M Kulkarni
- Department of Psychiatry, School of Medicine, New York University, New York, NY 10016, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kaskie RE, Graziano B, Ferrarelli F. Topographic deficits in sleep spindle density and duration point to frontal thalamo-cortical dysfunctions in first-episode psychosis. J Psychiatr Res 2019; 113:39-44. [PMID: 30878791 DOI: 10.1016/j.jpsychires.2019.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Sleep spindles are NREM sleep EEG oscillations, which are initiated within the thalamus and are regulated by thalamo-cortical circuits. Previous work from our and other research groups has shown marked spindle deficits in patients with schizophrenia (SCZ). However, the presence of spindle impairments at illness onset, including which parameters are most affected, their topographic characteristics, and their relationships with clinical symptoms have yet to be characterized. In this study we performed sleep high density (hd)-EEG recordings in twenty-seven first-episode psychosis (FEP) patients and twenty-three healthy controls (HC). Several spindle parameters-amplitude, duration, and density-were calculated and compared across groups. FEP patients showed reduced spindle duration and density, but not in spindle amplitude relative to HC. These spindles reductions were localized in a frontal area and predicted the severity of FEP patients' negative symptoms. Altogether, these findings indicate that spindle deficits are present at the beginning of psychosis, contribute to clinical symptomatology, and point to frontal thalamo-cortical dysfunctions, thus providing a potential treatment target for early interventions in SCZ and related psychotic disorders.
Collapse
|
131
|
Increased Thalamocortical Connectivity in Schizophrenia Correlates With Sleep Spindle Deficits: Evidence for a Common Pathophysiology. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:706-714. [PMID: 31262708 DOI: 10.1016/j.bpsc.2019.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing necessary for spindle initiation during sleep. METHODS Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus to the cortex during wakeful rest. RESULTS As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely correlated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis. CONCLUSIONS These findings link two biomarkers of schizophrenia-the sleep spindle density deficit and abnormally increased thalamocortical functional connectivity-and point to deficient TRN inhibition as a plausible mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its manifestations, understanding its mechanism could guide the development of targeted interventions.
Collapse
|
132
|
Dehnavi F, Moghimi S, Sadrabadi Haghighi S, Safaie M, Ghorbani M. Opposite effect of motivated forgetting on sleep spindles during stage 2 and slow wave sleep. Sleep 2019; 42:5427878. [DOI: 10.1093/sleep/zsz085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Memories selectively benefit from sleep. In addition to the importance of the consolidation of relevant memories, the capacity to forget unwanted memories is also crucial. We investigated the effect of suppressing unwanted memories on electroencephalography activity of subsequent sleep using a motivated forgetting (MF) paradigm as compared with a control non-forgetting task. Subjects were randomly assigned to nap or no-nap groups. We used a modified version of the think/no-think paradigm with dominant number of no-think words cued to be forgotten and included only subjects capable of suppressing unwanted memories by performing an initial subject inclusion experiment. In both groups and conditions, the performance of the subjects in recalling the word pairs learned in the beginning of the day was evaluated in a final recall test. We found that both nap and no-nap groups recalled significantly less no-think words in the MF condition compared to the control condition. Moreover, for the nap group, in the MF compared to the control condition, spindle power and density increased during stage 2 (S2) whereas they decreased during slow wave sleep (SWS). Interestingly, recall performance of no-think words was negatively correlated with spindle power during S2 whereas it was positively correlated with spindle power during SWS. These results indicate that sleep spindles are sensitive to the previous MF experiences and suggest a differential role of sleep spindles during S2 and SWS in memory processing during sleep.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Moghimi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mostafa Safaie
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- INSERM UMR 1249, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
133
|
Santarnecchi E, Sprugnoli G, Bricolo E, Costantini G, Liew SL, Musaeus CS, Salvi C, Pascual-Leone A, Rossi A, Rossi S. Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Sci Rep 2019; 9:5778. [PMID: 30962465 PMCID: PMC6453961 DOI: 10.1038/s41598-019-42192-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
The solution to a problem might manifest itself as a burst of unexpected, unpredictable clarity. Such Eureka! events, or Insight moments, are among the most fascinating mysteries of human cognition, whose neurophysiological substrate seems to include a role for oscillatory activity within the α and γ bands in the right parietal and temporal brain regions. We tested this hypothesis on thirty-one healthy participants using transcranial Alternating Current Stimulation (tACS) to externally amplify α (10 Hz) and γ (40 Hz) activity in the right parietal and temporal lobes, respectively. During γ-tACS over the right temporal lobe, we observed an increase in accuracy on a verbal insight task. Furthermore, electroencephalography (EEG) data revealed an increase in γ spectral power over bilateral temporal lobes after stimulation. Additionally, resting-state functional MRI data acquired before the stimulation session suggested a correlation between behavioral response to right temporal lobe tACS and functional connectivity of bilateral temporal lobes, in line with the bilateral increase in γ band revealed by EEG. Overall, results suggest the possibility of enhancing the probability of generating Eureka! moments in humans by means of frequency-specific noninvasive brain stimulation.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.
| | - Giulia Sprugnoli
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy
| | - Emanuela Bricolo
- Psychology Department, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience, Milan, Italy
| | | | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Christian S Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carola Salvi
- Northwestern University, Psychology department, Evanston, IL, USA.,Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alessandro Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
134
|
Abstract
There is overwhelming evidence that sleep is crucial for memory consolidation. Patients with schizophrenia and their unaffected relatives have a specific deficit in sleep spindles, a defining oscillation of non-rapid eye movement (NREM) Stage 2 sleep that, in coordination with other NREM oscillations, mediate memory consolidation. In schizophrenia, the spindle deficit correlates with impaired sleep-dependent memory consolidation, positive symptoms, and abnormal thalamocortical connectivity. These relations point to dysfunction of the thalamic reticular nucleus (TRN), which generates spindles, gates the relay of sensory information to the cortex, and modulates thalamocortical communication. Genetic studies are beginning to provide clues to possible neurodevelopmental origins of TRN-mediated thalamocortical circuit dysfunction and to identify novel targets for treating the related memory deficits and symptoms. By forging empirical links in causal chains from risk genes to thalamocortical circuit dysfunction, spindle deficits, memory impairment, symptoms, and diagnosis, future research can advance our mechanistic understanding, treatment, and prevention of schizophrenia.
Collapse
Affiliation(s)
- Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215;
| |
Collapse
|
135
|
Transcranial Current Stimulation During Sleep Facilitates Insight into Temporal Rules, but does not Consolidate Memories of Individual Sequential Experiences. Sci Rep 2019; 9:1516. [PMID: 30728363 PMCID: PMC6365565 DOI: 10.1038/s41598-018-36107-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Slow-wave sleep (SWS) is known to contribute to memory consolidation, likely through the reactivation of previously encoded waking experiences. Contemporary studies demonstrate that when auditory or olfactory stimulation is administered during memory encoding and then reapplied during SWS, memory consolidation can be enhanced, an effect that is believed to rely on targeted memory reactivation (TMR) induced by the sensory stimulation. Here, we show that transcranial current stimulations (tCS) during sleep can also be used to induce TMR, resulting in the facilitation of high-level cognitive processes. Participants were exposed to repeating sequences in a realistic 3D immersive environment while being stimulated with particular tCS patterns. A subset of these tCS patterns was then reapplied during sleep stages N2 and SWS coupled to slow oscillations in a closed-loop manner. We found that in contrast to our initial hypothesis, performance for the sequences corresponding to the reapplied tCS patterns was no better than for other sequences that received stimulations only during wake or not at all. In contrast, we found that the more stimulations participants received overnight, the more likely they were to detect temporal regularities governing the learned sequences the following morning, with tCS-induced beta power modulations during sleep mediating this effect.
Collapse
|
136
|
Vien C, Boré A, Boutin A, Pinsard B, Carrier J, Doyon J, Fogel S. Thalamo-Cortical White Matter Underlies Motor Memory Consolidation via Modulation of Sleep Spindles in Young and Older Adults. Neuroscience 2019; 402:104-115. [PMID: 30615913 DOI: 10.1016/j.neuroscience.2018.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
Abstract
Ample evidence suggests that consolidation of the memory trace associated with a newly acquired motor sequence is supported by thalamo-cortical spindle activity during subsequent sleep, as well as functional changes in a distributed cortico-striatal network. To date, however, no studies have investigated whether the structural white matter connections between these regions affect motor sequence memory consolidation in relation with sleep spindles. Here, we used diffusion weighted imaging (DWI) tractography to reconstruct the major fascicles of the cortico-striato-pallido-thalamo-cortical loop in both young and older participants who were trained on an explicit finger sequence learning task before and after a daytime nap. Thereby, this allowed us to examine whether post-learning sleep spindles measured using polysomnographic recordings interact with consolidation processes and this specific neural network. Our findings provide evidence corroborating the critical role of NREM2 thalamo-cortical sleep spindles in motor sequence memory consolidation, and show that the post-learning changes in these neurophysiological events relate specifically to white matter characteristics in thalamo-cortical fascicles. Moreover, we demonstrate that microstructure along this fascicle relates indirectly to offline gains in performance through an increase of spindle density over motor-related cortical areas. These results suggest that the integrity of thalamo-cortical projections, via their impact on sleep spindle generation, may represent one of the critical mechanisms modulating the expression of sleep-dependent offline gains following motor sequence learning in healthy adults.
Collapse
Affiliation(s)
- Catherine Vien
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada
| | - Arnaud Boré
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Arnaud Boutin
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, 75006 Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
137
|
Individual spindle detection and analysis in high-density recordings across the night and in thalamic stroke. Sci Rep 2018; 8:17885. [PMID: 30552388 PMCID: PMC6294746 DOI: 10.1038/s41598-018-36327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Sleep spindles are thalamocortical oscillations associated with several behavioural and clinical phenomena. In clinical populations, spindle activity has been shown to be reduced in schizophrenia, as well as after thalamic stroke. Automatic spindle detection algorithms present the only feasible way to systematically examine individual spindle characteristics. We took an established algorithm for spindle detection, and adapted it to high-density EEG sleep recordings. To illustrate the detection and analysis procedure, we examined how spindle characteristics changed across the night and introduced a linear mixed model approach applied to individual spindles in adults (n = 9). Next we examined spindle characteristics between a group of paramedian thalamic stroke patients (n = 9) and matched controls. We found a high spindle incidence rate and that, from early to late in the night, individual spindle power increased with the duration and globality of spindles; despite decreases in spindle incidence and peak-to-peak amplitude. In stroke patients, we found that only left-sided damage reduced individual spindle power. Furthermore, reduction was specific to posterior/fast spindles. Altogether, we demonstrate how state-of-the-art spindle detection techniques, applied to high-density recordings, and analysed using advanced statistical approaches can yield novel insights into how both normal and pathological circumstances affect sleep.
Collapse
|
138
|
Widge AS, Boggess M, Rockhill AP, Mullen A, Sheopory S, Loonis R, Freeman DK, Miller EK. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLoS One 2018; 13:e0207781. [PMID: 30517149 PMCID: PMC6281199 DOI: 10.1371/journal.pone.0207781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
Oscillations of the brain's local field potential (LFP) may coordinate neural ensembles and brain networks. It has been difficult to causally test this model or to translate its implications into treatments, because there are few reliable ways to alter LFP oscillations. We developed a closed-loop analog circuit to enhance brain oscillations by feeding them back into cortex through phase-locked transcranial electrical stimulation. We tested the system in a rhesus macaque with chronically implanted electrode arrays, targeting 8-15 Hz (alpha) oscillations. Ten seconds of stimulation increased alpha oscillatory power for up to 1 second after stimulation offset. In contrast, open-loop stimulation decreased alpha power. There was no effect in the neighboring 15-30 Hz (beta) LFP rhythm or on a neighboring array that did not participate in closed-loop feedback. Analog closed-loop neurostimulation might thus be a useful strategy for altering brain oscillations, both for basic research and the treatment of neuro-psychiatric disease.
Collapse
Affiliation(s)
- Alik S. Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew Boggess
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander P. Rockhill
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew Mullen
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shivani Sheopory
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- College of Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Roman Loonis
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniel K. Freeman
- The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts, United States of America
| | - Earl K. Miller
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
139
|
Iturrate I, Pereira M, Millán JDR. Closed-loop electrical neurostimulation: Challenges and opportunities. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
140
|
Jones AP, Choe J, Bryant NB, Robinson CSH, Ketz NA, Skorheim SW, Combs A, Lamphere ML, Robert B, Gill HA, Heinrich MD, Howard MD, Clark VP, Pilly PK. Dose-Dependent Effects of Closed-Loop tACS Delivered During Slow-Wave Oscillations on Memory Consolidation. Front Neurosci 2018; 12:867. [PMID: 30538617 PMCID: PMC6277682 DOI: 10.3389/fnins.2018.00867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Sleep is critically important to consolidate information learned throughout the day. Slow-wave sleep (SWS) serves to consolidate declarative memories, a process previously modulated with open-loop non-invasive electrical stimulation, though not always effectively. These failures to replicate could be explained by the fact that stimulation has only been performed in open-loop, as opposed to closed-loop where phase and frequency of the endogenous slow-wave oscillations (SWOs) are matched for optimal timing. The current study investigated the effects of closed-loop transcranial Alternating Current Stimulation (tACS) targeting SWOs during sleep on memory consolidation. 21 participants took part in a three-night, counterbalanced, randomized, single-blind, within-subjects study, investigating performance changes (correct rate and F1 score) on images in a target detection task over 24 h. During sleep, 1.5 mA closed-loop tACS was delivered in phase over electrodes at F3 and F4 and 180° out of phase over electrodes at bilateral mastoids at the frequency (range 0.5-1.2 Hz) and phase of ongoing SWOs for a duration of 5 cycles in each discrete event throughout the night. Data were analyzed in a repeated measures ANOVA framework, and results show that verum stimulation improved post-sleep performance specifically on generalized versions of images used in training at both morning and afternoon tests compared to sham, suggesting the facilitation of schematization of information, but not of rote, veridical recall. We also found a surprising inverted U-shaped dose effect of sleep tACS, which is interpreted in terms of tACS-induced faciliatory and subsequent refractory dynamics of SWO power in scalp EEG. This is the first study showing a selective modulation of long-term memory generalization using a novel closed-loop tACS approach, which holds great potential for both healthy and neuropsychiatric populations.
Collapse
Affiliation(s)
- Aaron P Jones
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Jaehoon Choe
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Charles S H Robinson
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States.,The Mind Research Network, Albuquerque, NM, United States
| | - Nicholas A Ketz
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Steven W Skorheim
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Angela Combs
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Melanie L Lamphere
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Hope A Gill
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Melissa D Heinrich
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| | - Michael D Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, The University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, The University of New Mexico, Albuquerque, NM, United States.,The Mind Research Network, Albuquerque, NM, United States.,Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| |
Collapse
|
141
|
Cellini N, Mednick SC. Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology. J Neurosci Methods 2018; 316:125-136. [PMID: 30452977 DOI: 10.1016/j.jneumeth.2018.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND One of the most audacious proposals throughout the history of psychology was the potential ability to learn while we sleep. The idea penetrated culture via sci-fi movies and inspired the invention of devices that claimed to teach foreign languages, facts, and even quit smoking by simply listening to audiocassettes or other devices during sleep. However, the promises from this endeavor didn't stand up to experimental scrutiny, and the dream was shunned from the scientific community. Despite the historic evidence that the sleeping brain cannot learn new complex information (i.e., words, images, facts), a new wave of current interventions are demonstrating that sleep can be manipulated to strengthen recent memories. NEW METHOD Several recent approaches have been developed that play with the sleeping brain in order to modify ongoing memory processing. Here, we provide an overview of the available techniques to non-invasively modulate memory-related sleep physiology, including sensory, vestibular and electrical stimulation, as well as pharmacological approaches. RESULTS N/A. COMPARISON WITH EXISTING METHODS N/A. CONCLUSIONS Although the results are encouraging, suggesting that in general the sleeping brain may be optimized for better memory performance, the road to bring these techniques in free-living conditions is paved with unanswered questions and technical challenges that need to be carefully addressed.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, United States
| |
Collapse
|
142
|
Affiliation(s)
- Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Deutsches Resilienz Zentrum, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
143
|
Wenderoth N. Motor Learning Triggers Neuroplastic Processes While Awake and During Sleep. Exerc Sport Sci Rev 2018; 46:152-159. [PMID: 29664743 DOI: 10.1249/jes.0000000000000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Behavioral changes characteristic for motor learning result from synaptic plasticity within the sensorimotor system. This review summarizes how the central nervous system responds rapidly to motor activity while awake. It then discusses evidence for the hypothesis that sleep is essential for both stabilizing previously acquired motor memories and maintaining the brain's efficacy to undergo plastic changes to learn new skills.
Collapse
Affiliation(s)
- Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| |
Collapse
|
144
|
Venugopal R, Sasidharan A, Marigowda V, Kumar G, Nair AK, Sharma S, Mukundan CS, Kutty BM. Beyond Hypnograms: Assessing Sleep Stability Using Acoustic and Electrical Stimulation. Neuromodulation 2018; 22:911-915. [DOI: 10.1111/ner.12847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rahul Venugopal
- Department of NeurophysiologyNational Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru KA India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL)Axxonet System Technologies Pvt Ltd Bengaluru KA India
| | - Vrinda Marigowda
- Axxonet Brain Research Laboratory (ABRL)Axxonet System Technologies Pvt Ltd Bengaluru KA India
| | - Gulshan Kumar
- Department of NeurophysiologyNational Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru KA India
| | - Ajay Kumar Nair
- Department of NeurophysiologyNational Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru KA India
| | - Sumit Sharma
- Axxonet Brain Research Laboratory (ABRL)Axxonet System Technologies Pvt Ltd Bengaluru KA India
| | - Chetan S. Mukundan
- Axxonet Brain Research Laboratory (ABRL)Axxonet System Technologies Pvt Ltd Bengaluru KA India
| | - Bindu M. Kutty
- Department of NeurophysiologyNational Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru KA India
| |
Collapse
|
145
|
Ngo HVV, Seibold M, Boche DC, Mölle M, Born J. Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states. J Neurosci Methods 2018; 316:117-124. [PMID: 30194953 DOI: 10.1016/j.jneumeth.2018.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The consolidation of sleep-dependent memories is mediated by an interplay of cortical slow oscillations (SOs) and thalamo-cortical sleep spindles. Whereas an enhancement of SOs with auditory closed-loop stimulation has been proven highly successful, the feasibility to induce and boost sleep spindles with auditory stimulation remains unknown thus far. NEW METHOD Here we tested the possibility to enhance spindle activity during endogenous SOs and thereby to promote memory consolidation. Performing a sleep study in healthy humans, we applied an auditory Spindle stimulation and compared it with an Arrhythmic stimulation and a control condition comprising no stimulation (Sham). RESULTS With Spindle stimulation we were not able to directly entrain endogenous spindle activity during SO up-states. Instead, both Spindle and Arrhythmic stimulation evoked a resonant SO response accompanied by an increase in spindle power phase-locked to the SO up-state. Assessment of overnight retention of declarative word-pairs revealed no difference between all conditions. COMPARISON WITH EXISTING METHODS Our Spindle stimulation produced oscillatory evoked responses (i.e., increases in SOs and spindle activity during SO up-states) quite similar to those observed after the auditory closed-loop stimulation of SOs in previous studies, lacking however the beneficial effects on memory retention. CONCLUSION Our findings put the endeavour for a selective enhancement of spindle activity via auditory pathways into perspective and reveal central questions with regard to the stimulation efficacy on both an electrophysiological and a neurobehavioral level.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Mitja Seibold
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Désirée C Boche
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
146
|
Abstract
Trends in brain stimulation include becoming less invasive, more focal, and more durable with less toxicity. Several of the more interesting new potentially disruptive technologies that are just making their way through basic and sometimes clinical research studies include low-intensity focused ultrasound and temporally interfering electric fields. It is possible, and even likely, that noninvasive brain stimulation may become the dominant form of brain treatments over the next 20 years. The future of brain stimulation therapeutics is bright.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Medical University of South Carolina, 67 President Street, 502 North, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| | - Mark S George
- Brain Stimulation Laboratory, Medical University of South Carolina, 67 President Street, 502 North, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
147
|
Santarnecchi E, Momi D, Sprugnoli G, Neri F, Pascual-Leone A, Rossi A, Rossi S. Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Hum Brain Mapp 2018; 39:4870-4883. [PMID: 30113111 DOI: 10.1002/hbm.24329] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/18/2018] [Accepted: 07/12/2018] [Indexed: 02/03/2023] Open
Abstract
Human cognitive abilities and behavior are linked to functional coupling of many brain regions organized in distinct networks. Gaining insights on the role those networks' dynamics play in cognition and pathology requires their selective, reliable, and reversible manipulation. Here we document the possibility to manipulate the interplay between two brain networks in a controlled manner, by means of a Transcranial Magnetic Stimulation (TMS) protocol inducing spike timing dependent plasticity (STDP). Pairs of TMS pulses at specific inter-stimulus intervals, repeatedly delivered over two negatively correlated nodes of the default mode network (DMN) and the task-positive network (TPN) defined on the basis of individual functional magnetic resonance imaging (fMRI) data, induced a modulation of network-to-network connectivity, even reversing correlation from negative to slightly positive in 30% of cases. Results also suggest a baseline-dependent effect, with a greater connectivity modulation observed in participants with weaker between-networks connectivity strength right before TMS. Finally, modulation of task-evoked fMRI activity patterns during a sustained attention task was also observed after stimulation, with a faster or slower switch between rest and task blocks according to the timing of TMS pulses. The present findings promote paired associative TMS as a promising technique for controlled manipulation of fMRI connectivity dynamics in humans, as well as the causal investigation of brain-behavior relations.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy
| | - Davide Momi
- Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy
| | - Giulia Sprugnoli
- Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy
| | - Francesco Neri
- Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Alessandro Rossi
- Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy
| | - Simone Rossi
- Brain Investigation and Neuromodulation Laboratory, Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Siena School of Medicine, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
148
|
Ketz N, Jones AP, Bryant NB, Clark VP, Pilly PK. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations. J Neurosci 2018; 38:7314-7326. [PMID: 30037830 PMCID: PMC6596034 DOI: 10.1523/jneurosci.0273-18.2018] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
Benefits in long-term memory retention and generalization have been shown to be related to sleep-dependent processes, which correlate with neural oscillations as measured by changes in electric potential. The specificity and causal role of these oscillations, however, are still poorly understood. Here, we investigated the potential for augmenting endogenous slow-wave (SW) oscillations in humans with closed-loop transcranial alternating current stimulation (tACS) with an aim toward enhancing the consolidation of recent experiences into long-term memory. Sixteen (three female) participants were trained presleep on a target detection task identifying targets hidden in complex visual scenes. During post-training sleep, closed-loop SW detection and stimulation were used to deliver tACS matching the phase and frequency of the dominant oscillation in the range of 0.5-1.2 Hz. Changes in performance were assessed the following day using test images that were identical to the training ("repeated"), and images generated from training scenes but with novel viewpoints ("generalized"). Results showed that active SW tACS during sleep enhanced the postsleep versus presleep target detection accuracy for the generalized images compared with sham nights, while no significant change was found for repeated images. Using a frequency-agnostic clustering approach sensitive to stimulation-induced spectral power changes in scalp EEG, this behavioral enhancement significantly correlated with both a poststimulation increase and a subsequent decrease in measured spectral power within the SW band, which in turn showed increased coupling with spindle amplitude. These results suggest that augmenting endogenous SW oscillations can enhance consolidation by specifically improving generalization over recognition or cued recall.SIGNIFICANCE STATEMENT This human study demonstrates the use of a closed-loop noninvasive brain stimulation method to enhance endogenous neural oscillations during sleep with the effect of improving consolidation of recent experiences into long-term memory. Here we show that transient slow oscillatory transcranial alternating current stimulation (tACS) triggered by endogenous slow oscillations and matching their frequency and phase can increase slow-wave power and coupling with spindles. Further, this increase correlates with overnight improvements in generalization of recent training to facilitate performance in a target detection task. We also provide novel evidence for a tACS-induced refractory period following the tACS-induced increase. Here slow-wave power is temporarily reduced relative to sham stimulation, which nonetheless maintains a positive relationship with behavioral improvements.
Collapse
Affiliation(s)
- Nicholas Ketz
- Information and Systems Sciences Laboratory, Center for Human Machine Collaboration, HRL Laboratories, Malibu, California 90265 and
| | - Aaron P Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Praveen K Pilly
- Information and Systems Sciences Laboratory, Center for Human Machine Collaboration, HRL Laboratories, Malibu, California 90265 and
| |
Collapse
|
149
|
Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Transl Psychiatry 2018; 8:154. [PMID: 30108203 PMCID: PMC6092338 DOI: 10.1038/s41398-018-0199-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Sleep EEG spindles have been implicated in attention, sensory processing, synaptic plasticity and memory consolidation. In humans, deficits in sleep spindles have been reported in a wide range of neurological and psychiatric disorders, including schizophrenia. Genome-wide association studies have suggested a link between schizophrenia and genes associated with synaptic plasticity, including the Gria1 gene which codes for the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Gria1-/- mice exhibit a phenotype relevant for neuropsychiatric disorders, including reduced synaptic plasticity and, at the behavioural level, attentional deficits leading to aberrant salience. In this study we report a striking reduction of EEG power density including the spindle-frequency range (10-15 Hz) during sleep in Gria1-/- mice. The reduction of spindle-activity in Gria1-/- mice was accompanied by longer REM sleep episodes, increased EEG slow-wave activity in the occipital derivation during baseline sleep, and a reduced rate of decline of EEG slow wave activity (0.5-4 Hz) during NREM sleep after sleep deprivation. These data provide a novel link between glutamatergic dysfunction and sleep abnormalities in a schizophrenia-relevant mouse model.
Collapse
|
150
|
Annarumma L, D'Atri A, Alfonsi V, De Gennaro L. The Efficacy of Transcranial Current Stimulation Techniques to Modulate Resting-State EEG, to Affect Vigilance and to Promote Sleepiness. Brain Sci 2018; 8:137. [PMID: 30037023 PMCID: PMC6071002 DOI: 10.3390/brainsci8070137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se.
Collapse
Affiliation(s)
- Ludovica Annarumma
- Department of Psychology, University of Rome Sapienza, 00185 Rome, Italy.
| | - Aurora D'Atri
- Department of Psychology, University of Rome Sapienza, 00185 Rome, Italy.
| | - Valentina Alfonsi
- Department of Psychology, University of Rome Sapienza, 00185 Rome, Italy.
| | - Luigi De Gennaro
- Department of Psychology, University of Rome Sapienza, 00185 Rome, Italy.
| |
Collapse
|