101
|
Hall C, Flores MV, Chien A, Davidson A, Crosier K, Crosier P. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages. J Leukoc Biol 2009; 85:751-65. [PMID: 19218482 DOI: 10.1189/jlb.0708405] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The immune response of a host to an invading pathogen is dependent on the capacity of its immune cell compartment to recognize highly conserved pathogen components using an ancient class of pattern recognition receptors known as Toll-like receptors (TLRs). Initiation of TLR-mediated signaling results in the induction of proinflammatory cytokines that help govern the scale and duration of any ensuing response. Specificity for TLR signaling is, in part, a result of the differential recruitment of intracellular adaptor molecules. Of these, MyD88 is required for the majority of TLR signaling. Zebrafish have been shown to possess TLRs and adaptor molecules throughout early development, including MyD88, strongly suggesting conservation of this ancient defense mechanism. However, information about which embryonic cells/tissues possess this conserved signaling potential is lacking. To help define which embryonic cells, in particular, those of the innate immune system, have the potential for MyD88-dependent, TLR-mediated signaling, we generated transgenic reporter lines using regulatory elements of the myd88 gene to drive the fluorescent reporters enhanced GFP and Discosoma red fluorescent protein 2 within live zebrafish. These lines possess fluorescently marked cells/tissues consistent with endogenous myd88 expression, including a subset of myeloid leukocytes. These innate immune cells were confirmed to express other TLR adaptors including Mal, trif, and Sarm. Live wound-healing and infection assays validated the potential of these myd88-expressing leukocytes to participate in immune responses. These lines will provide a valuable resource for further resolving the contribution of MyD88 to early vertebrate immunity.
Collapse
Affiliation(s)
- Chris Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
102
|
Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. A replication clock for Mycobacterium tuberculosis. Nat Med 2009; 15:211-4. [PMID: 19182798 PMCID: PMC2779834 DOI: 10.1038/nm.1915] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 12/10/2008] [Indexed: 01/15/2023]
Abstract
Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Mycobacterium tuberculosis replication within hosts, we exploit an unstable plasmid that is lost at a steady, quantifiable rate from dividing cells in the absence of antibiotic selection. By applying a mathematical model, we calculate bacterial growth and death rates during infection of mice. We show that during chronic infection, the cumulative bacterial burden-enumerating total live, dead and removed organisms encountered by the mouse lung-is substantially higher than estimates from colony-forming units. Our data show that M. tuberculosis replicates throughout the course of chronic infection of mice and is restrained by the host immune system. This approach may also shed light on the replication dynamics of other chronic pathogens.
Collapse
Affiliation(s)
- Wendy P Gill
- Division of Allergy and Infectious Diseases, University of Washington Medical Center, 1959 Northeast Pacific Street, Box 356523, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
103
|
Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood 2009; 113:2535-46. [PMID: 19139076 DOI: 10.1182/blood-2008-07-171967] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.
Collapse
|
104
|
Schaaf MJM, Chatzopoulou A, Spaink HP. The zebrafish as a model system for glucocorticoid receptor research. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:75-82. [PMID: 19168143 DOI: 10.1016/j.cbpa.2008.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/24/2008] [Accepted: 12/25/2008] [Indexed: 11/26/2022]
Abstract
Glucocorticoids regulate a plethora of physiological processes, and are widely used clinically as anti-inflammatory drugs. Their effects are mediated by the glucocorticoid receptor (GR), a ligand-activated transcription factor. Currently, zebrafish embryos are being developed into a model system for GR research, since they are easy to manipulate genetically and their phenotype can easily be visualized because of their transparent bodies. In addition, the zebrafish GR gene shows a relatively high level of similarity with its human equivalent. First, both the zebrafish and the human genome contain only a single gene encoding the GR. In all other fish species studied thus far, two GR genes have been found. Second, the zebrafish contains a C-terminal GR splice variant with high similarity to the human GRbeta, which has been shown to be a dominant-negative inhibitor of the canonical GRalpha and may be involved in glucocorticoid resistance. Thus, zebrafish embryos are potentially a useful model system for glucocorticoid receptor research, but currently only a limited number of tools is available. In this review, we discuss which tools are available and which need to be developed, in order to exploit the full potential of the zebrafish as a model system for GR research.
Collapse
Affiliation(s)
- M J M Schaaf
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | |
Collapse
|
105
|
Abstract
Zebrafish have emerged as a powerful model organism to study neutrophil chemotaxis and inflammation in vivo. Studies of neutrophil chemotaxis in animal models have previously been hampered both by the limited number of specimens available for analysis and by the need for invasive procedures to perform intravital microscopy. Due to the transparency and cell permeability of zebrafish embryos these limitations are circumvented, and the zebrafish system is amenable to both live time-lapse imaging of neutrophil chemotaxis and for screening of the effects of chemical compounds on the inflammatory response in vivo. Here, we describe methods to analyze neutrophil-directed migration toward wounds using both fixed embryos by myeloperoxidase activity assay, and live embryos by time-lapse microscopy. Further, methods are described for the evaluation of the effects of chemical compounds on neutrophil motility and the innate immune responses in zebrafish embryos.
Collapse
Affiliation(s)
- Jonathan R Mathias
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
106
|
Abstract
Zebrafish are ideally suited for the live imaging of early immune cell compartments. Macrophages that initially appear on the yolk surface prior to the onset of circulation are the first functional immune cells within the embryo, predating the emergence of the first granulocytic cells-the heterophilic neutrophils. Both cell types have been shown in zebrafish to contribute to a robust early innate immune system, capable of clearing systemic infections and participating in wound healing. Early imaging of these cells within zebrafish relied on differential interference contrast (DIC) optics because of their superficial locations in the embryo and the optical transparency of embryonic tissues. Recently, the creation of a number of transgenic reporter lines possessing fluorescently marked myelomonocytic compartments provides the potential to live image these cells during the inflammatory response, in real-time, within a whole animal context. Live imaging during the different stages of inflammation using this expanding library of reporter lines, coupled with the ability to model aspects of human disease in the zebrafish system, have the potential to provide significant insights into inflammation and diseases associated with its dysregulation.
Collapse
Affiliation(s)
- Chris Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
107
|
Walters KB, Dodd ME, Mathias JR, Gallagher AJ, Bennin DA, Rhodes J, Kanki JP, Look AT, Grinblat Y, Huttenlocher A. Muscle degeneration and leukocyte infiltration caused by mutation of zebrafish Fad24. Dev Dyn 2009; 238:86-99. [PMID: 19097072 PMCID: PMC2843540 DOI: 10.1002/dvdy.21821] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Factor for adipocyte differentiation 24 (fad24) is a novel gene that has been implicated in adipocyte differentiation and DNA replication. In a screen for zebrafish mutants that have an abnormal tissue distribution of neutrophils, we identified an insertional allele of fad24, fad24hi1019. Homozygous fad24hi1019 larvae exhibit muscle degeneration accompanied by leukocyte infiltration. Muscle degeneration was extensive and included tissue apoptosis and disorganized, poorly striated muscle fibers. Blocking apoptosis using pan-caspase inhibitors resulted in decreased neutrophil recruitment into the body of the larva, suggesting a causative link between apoptosis and leukocyte infiltration. These findings suggest that zebrafish is a powerful genetic model system to address the interplay between muscle degeneration and leukocyte infiltration, and indicate that tissue apoptosis may contribute to neutrophil recruitment in some inflammatory states.
Collapse
Affiliation(s)
- Kevin B. Walters
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison; Madison, WI 53706; USA
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| | - M. Ernest Dodd
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| | - Jonathan R. Mathias
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| | - Andrea J. Gallagher
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| | - David A. Bennin
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| | - Jennifer Rhodes
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Boston, MA 02115; USA
| | - John P. Kanki
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Boston, MA 02115; USA
| | - A. Thomas Look
- Department of Pediatric Oncology; Dana-Farber Cancer Institute; Boston, MA 02115; USA
| | - Yevgenya Grinblat
- Departments of Zoology and Anatomy, University of Wisconsin-Madison; Madison, WI 53706; USA
| | - Anna Huttenlocher
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison; Madison, WI 53706; USA
- Department of Pediatrics and Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison, WI 53706; USA
| |
Collapse
|
108
|
Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 2008; 112:2969-72. [DOI: 10.1182/blood-2008-03-145011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mast cells (MCs) play critical roles in allergy and inflammation, yet their development remains controversial due to limitations posed by traditional animal models. The zebrafish provides a highly efficient system for studying vertebrate hematopoiesis. We have identified zebrafish MCs in the gill and intestine, which resemble their mammalian counterparts both structurally and functionally. Carboxypeptidase A5 (cpa5), a MC-specific enzyme, is expressed in zebrafish blood cells beginning at 24 hours post fertilization (hpf). At 28 hpf, colocalization is observed with pu.1, mpo, l-plastin, and lysozyme C, but not fms or cepbα, identifying these early MCs as a distinct myeloid population arising from a common granulocyte/monocyte progenitor. Morpholino “knock-down” studies demonstrate that transcription factors gata-2 and pu.1, but not gata-1 or fog-1, are necessary for early MC development. These studies validate the zebrafish as an in vivo tool for studying MC ontogeny and function with future capacity for modeling human MC diseases.
Collapse
|
109
|
Cvejic A, Hall C, Bak-Maier M, Flores MV, Crosier P, Redd MJ, Martin P. Analysis of WASp function during the wound inflammatory response--live-imaging studies in zebrafish larvae. J Cell Sci 2008; 121:3196-206. [PMID: 18782862 DOI: 10.1242/jcs.032235] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wiskott-Aldrich syndrome protein (WASp) is haematopoietically restricted, and is the causative protein underlying a severe human disorder that can lead to death due to immunodeficiency and haemorrhaging. Much is known about the biochemistry of WASp and the migratory capacity of WASp-defective cells in vitro, but in vivo studies of immune-cell behaviour are more challenging. Using the translucency of zebrafish larvae, we live-imaged the effects of morpholino knockdown of WASp1 (also known as Was) on leukocyte migration in response to a wound. In embryos at 22 hours post-fertilisation, primitive macrophages were impaired in their migration towards laser wounds. Once a circulatory system had developed, at 3 days post-fertilisation, we observed significantly reduced recruitment of neutrophils and macrophages to ventral fin wounds. Cell-tracking studies indicated that fewer leukocytes leave the vessels adjacent to a wound and those that do exhibit impaired navigational capacity. Their cell morphology appears unaltered but their choice of leading-edge pseudopodia is more frequently incorrect, leading to impaired chemotaxis. We also identified two zebrafish mutants in WASp1 by TILLING, one of which was in the WIP-binding domain that is the hotspot for human lesions, and mutants exhibited the same deficiencies in wound inflammation and thrombus formation as WASp1 morphants.
Collapse
Affiliation(s)
- Ana Cvejic
- Departments of Biochemistry and Physiology, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
Lesley R, Ramakrishnan L. Insights into early mycobacterial pathogenesis from the zebrafish. Curr Opin Microbiol 2008; 11:277-83. [PMID: 18571973 PMCID: PMC3071758 DOI: 10.1016/j.mib.2008.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 12/22/2022]
Abstract
Here we discuss the application of the zebrafish as a relatively new model host for the study of mycobacterial pathogenesis. Recent advances in our understanding of host-mycobacteria interactions from the zebrafish include insights into the role of the innate immune system in both controlling and facilitating infection. Analysis in the zebrafish has revealed that innate macrophages restrict initial bacterial growth, but also convey infecting bacteria into the granuloma, which serves as a place for bacterial growth and spread. Bacterial virulence determinants interact with these processes at different steps in pathogenesis, which can be dissected in these living see-through hosts. As these studies uncover new facets of the bacteria-host interactions in tuberculosis they raise even more questions for future investigation.
Collapse
Affiliation(s)
- Robin Lesley
- Department of Microbiology, Box 357242, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, United States.
| | | |
Collapse
|
111
|
Forlenza M, Scharsack JP, Kachamakova NM, Taverne-Thiele AJ, Rombout JHWM, Wiegertjes GF. Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. Mol Immunol 2008; 45:3178-89. [PMID: 18406465 DOI: 10.1016/j.molimm.2008.02.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/29/2008] [Indexed: 01/03/2023]
Abstract
Tyrosine nitration is a hallmark for nitrosative stress caused by the release of reactive oxygen and nitrogen species by activated macrophages and neutrophilic granulocytes at sites of inflammation and infection. In the first part of the study, we used an informative host-parasite animal model to describe the differential contribution of macrophages and neutrophilic granulocytes to in vivo tissue nitration. To this purpose common carp (Cyprinus carpio) were infected with the extracellular blood parasite Trypanoplasma borreli (Kinetoplastida). After infection, serum nitrite levels significantly increased concurrently to the upregulation of inducible nitric oxide synthase (iNOS) gene expression. Tyrosine nitration, as measured by immunohistochemistry using an anti-nitrotyrosine antibody, dramatically increased in tissues from parasite-infected fish, demonstrating that elevated NO production during T. borreli infection coincides with nitrosative stress in immunologically active tissues. The combined use of an anti-nitrotyrosine antibody with a panel of monoclonal antibodies specific for several carp leukocytes, revealed that fish neutrophilic granulocytes strongly contribute to in vivo tissue nitration most likely through both, a peroxynitrite- and an MPO-mediated mechanism. Conversely, fish macrophages, by restricting the presence of radicals and enzymes to their intraphagosomal compartment, contribute to a much lesser extent to in vivo tissue nitration. In the second part of the study, we examined the effects of nitrosative stress on the parasite itself. Peroxynitrite, but not NO donor substances, exerted strong cytotoxicity on the parasite in vitro. In vivo, however, nitration of T. borreli was limited if not absent despite the presence of parasites in highly nitrated tissue areas. Further, we investigated parasite susceptibility to the human anti-trypanosome drug Melarsoprol (Arsobal), which directly interferes with the parasite-specific trypanothione anti-oxidant system. Arsobal treatment strongly decreased T. borreli viability both, in vitro and in vivo. All together, our data suggest an evolutionary conservation in modern bony fish of the function of neutrophilic granulocytes and macrophages in the nitration process and support the common carp as a suitable animal model for investigations on nitrosative stress in host-parasite interactions. The potential of T. borreli to serve as an alternative tool for pharmacological studies on human anti-trypanosome drugs is discussed.
Collapse
Affiliation(s)
- Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
112
|
Mathias JR, Dodd ME, Walters KB, Rhodes J, Kanki JP, Look AT, Huttenlocher A. Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci 2008; 120:3372-83. [PMID: 17881499 DOI: 10.1242/jcs.009159] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The hallmark of chronic inflammation is the infiltration and persistence of leukocytes within inflamed tissue. Here, we describe the first zebrafish chronic inflammation mutant identified in an insertional mutagenesis screen for mutants that exhibit abnormal tissue distribution of neutrophils. We identified a mutant line with an insertion in the Hepatocyte growth factor activator inhibitor 1 gene (hai1; also known as Spint1) that showed accumulation of neutrophils in the fin. The mutant embryos exhibited inflammation in areas of epidermal hyperproliferation that was rescued by knock-down of the type II transmembrane serine protease Matriptase 1 (also known as St14), suggesting a novel role for Hai1-Matriptase 1 pathway in regulating inflammation. Using time-lapse microscopy of mutant embryos that express GFP from a neutrophil-specific promoter, we found that individual neutrophils in inflamed tissue displayed random motility characterized by periods of pausing alternating with periods of motility. During periods of persistent movement the cells were highly polarized, while the pausing modes were characterized by a loss of cell polarity. In contrast to responses to acute injury, neutrophils did not exhibit clear retrograde chemotaxis or resolution of inflammation in the mutant. These findings illustrate the utility of zebrafish as a new model system to study chronic inflammation and to visualize immune responses with high resolution in vivo.
Collapse
Affiliation(s)
- Jonathan R Mathias
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Carradice D, Lieschke GJ. Zebrafish in hematology: sushi or science? Blood 2008; 111:3331-42. [PMID: 18182572 PMCID: PMC2275003 DOI: 10.1182/blood-2007-10-052761] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/20/2007] [Indexed: 12/15/2022] Open
Abstract
After a decade of the "modern era" of zebrafish hematology research, what have been their major contributions to hematology and what challenges does the model face? This review argues that, in hematology, zebrafish have demonstrated their suitability, are proving their utility, have supplied timely and novel discoveries, and are poised for further significant contributions. It presents an overview of the anatomy, physiology, and genetics of zebrafish hematopoiesis underpinning their use in hematology research. Whereas reverse genetic techniques enable functional studies of particular genes of interest, forward genetics remains zebrafish's particular strength. Mutants with diverse and interesting hematopoietic defects are emerging from multiple genetic screens. Some mutants model hereditary blood diseases, occasionally leading to disease genes first; others provide insights into developmental hematology. Models of malignant hematologic disorders provide tools for drug-target and pharmaceutics discovery. Numerous transgenic zebrafish with fluorescently marked blood cells enable live-cell imaging of inflammatory responses and host-pathogen interactions previously inaccessible to direct observation in vivo, revealing unexpected aspects of leukocyte behavior. Zebrafish disease models almost uniquely provide a basis for efficient whole animal chemical library screens for new therapeutics. Despite some limitations and challenges, their successes and discovery potential mean that zebrafish are here to stay in hematology research.
Collapse
Affiliation(s)
- Duncan Carradice
- Walter and Eliza Hall Institute of Medical Reserch, Department of Medical Biology, University of Melbourne, and Department of Clinical Haematology and Medical Oncology, Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
114
|
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 2007; 134:4147-56. [PMID: 17959717 PMCID: PMC2735398 DOI: 10.1242/dev.012385] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches, transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2 and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI, show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.
Collapse
Affiliation(s)
- Julien Y Bertrand
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | |
Collapse
|
115
|
Carney TJ, von der Hardt S, Sonntag C, Amsterdam A, Topczewski J, Hopkins N, Hammerschmidt M. Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development 2007; 134:3461-71. [PMID: 17728346 DOI: 10.1242/dev.004556] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial integrity requires the adhesion of cells to each other as well as to an underlying basement membrane. The modulation of adherence properties is crucial to morphogenesis and wound healing, and deregulated adhesion has been implicated in skin diseases and cancer metastasis. Here, we describe zebrafish that are mutant in the serine protease inhibitor Hai1a (Spint1la), which display disrupted epidermal integrity. These defects are further enhanced upon combined loss of hai1a and its paralog hai1b. By applying in vivo imaging, we demonstrate that Hai1-deficient keratinocytes acquire mesenchymal-like characteristics, lose contact with each other, and become mobile and more susceptible to apoptosis. In addition, inflammation of the mutant skin is evident, although not causative of the epidermal defects. Only later, the epidermis exhibits enhanced cell proliferation. The defects of hai1 mutants can be phenocopied by overexpression and can be fully rescued by simultaneous inactivation of the serine protease Matriptase1a (St14a), indicating that Hai1 promotes epithelial integrity by inhibiting Matriptase1a. By contrast, Hepatocyte growth factor (Hgf), a well-known promoter of epithelial-mesenchymal transitions and a prime target of Matriptase1 activity, plays no major role. Our work provides direct genetic evidence for antagonistic in vivo roles of Hai1 and Matriptase1a to regulate skin homeostasis and remodeling.
Collapse
Affiliation(s)
- Thomas J Carney
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|