101
|
Zhou X, Zhan W, Bian W, Hua L, Shi Q, Xie S, Yang D, Li Y, Zhang X, Liu G, Yu R. GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 2013; 433:338-44. [PMID: 23500462 DOI: 10.1016/j.bbrc.2013.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/14/2022]
Abstract
Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. However, the biological significance of GOLPH3 in glioma progression remains largely unknown. In this study, we report, for the first time, that downregulation of GOLPH3 led to clear reductions in glioma cell migration and invasion. In addition, downregulation of GOLPH3 inhibited the expression of the small GTPase RhoA as well as cytoskeletal reorganization, which are both required for glioma cell migration. Furthermore, we found that the observed reductions in glioma cell migration and RhoA level could be rescued by RhoA overexpression. Taken together, these results show that GOLPH3 contributes to the motility of glioma cells by regulating the expression of RhoA.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ. GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell 2013; 24:796-808. [PMID: 23345592 PMCID: PMC3596250 DOI: 10.1091/mbc.e12-07-0525] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GOLPH3 is a ubiquitous PI4P effector, critical for Golgi function, and also an oncogene. GOLPH3L, a paralogue in vertebrates, also binds PI4P and localizes to the Golgi, but its expression is restricted to secretory cells. Despite some similarities to GOLPH3, GOLPH3L fails to interact with myosin 18A and functions at the Golgi to antagonize GOLPH3. GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) effector that plays an important role in maintaining Golgi architecture and anterograde trafficking. GOLPH3 does so through its ability to link trans-Golgi membranes to F-actin via its interaction with myosin 18A (MYO18A). GOLPH3 also is known to be an oncogene commonly amplified in human cancers. GOLPH3L is a GOLPH3 paralogue found in all vertebrate genomes, although previously it was largely uncharacterized. Here we demonstrate that although GOLPH3 is ubiquitously expressed in mammalian cells, GOLPH3L is present in only a subset of tissues and cell types, particularly secretory tissues. We show that, like GOLPH3, GOLPH3L binds to PI4P, localizes to the Golgi as a consequence of its PI4P binding, and is required for efficient anterograde trafficking. Surprisingly, however, we find that perturbations of GOLPH3L expression produce effects on Golgi morphology that are opposite to those of GOLPH3 and MYO18A. GOLPH3L differs critically from GOLPH3 in that it is largely unable to bind to MYO18A. Our data demonstrate that despite their similarities, unexpectedly, GOLPH3L antagonizes GOLPH3/MYO18A at the Golgi.
Collapse
Affiliation(s)
- Michelle M Ng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
103
|
Cottam NP, Ungar D. Retrograde vesicle transport in the Golgi. PROTOPLASMA 2012; 249:943-55. [PMID: 22160157 DOI: 10.1007/s00709-011-0361-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.
Collapse
Affiliation(s)
- Nathanael P Cottam
- Department of Biology (Area 9), University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
104
|
Ali MF, Chachadi VB, Petrosyan A, Cheng PW. Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 2012; 287:39564-77. [PMID: 23027862 DOI: 10.1074/jbc.m112.346528] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 1 (C2GnT1) is a key enzyme participating in the synthesis of core 2-associated sialyl Lewis x (C2-O-sLe(x)), a ligand involved in selectin-mediated leukocyte trafficking and cancer metastasis. To accomplish that, C2GnT1 needs to be localized to the Golgi and this step requires interaction of its cytoplasmic tail (CT) with a protein that has not been identified. Employing C2GnT1 CT as the bait to perform a yeast two-hybrid screen, we have identified Golgi phosphoprotein 3 (GOLPH3) as a principal candidate protein that interacts with C2GnT1 and demonstrated that C2GnT1 binds to GOLPH3 via the LLRRR(9) sequence in the CT. Confocal fluorescence microscopic analysis shows substantial Golgi co-localization of C2GnT1 and GOLPH3. Upon GOLPH3 knockdown, C2GnT1 is found mainly in the endoplasmic reticulum and decorated with complex-type N-glycans, indicating that the enzyme has been transported to the Golgi but is not retained. Also, we have found that a recombinant protein consisting of C2GnT1 CT(1-16)-Leu(17-32)-Gly(33-42)-GFP is localized to the Golgi although the same construct with mutated CT (AAAAA(9)) is not. The data demonstrate that the C2GnT1 CT is necessary and sufficient for Golgi localization of C2GnT1. Furthermore, GOLPH3 knockdown results in reduced synthesis of C2-O-sLe(x) associated with P-selectin glycoprotein ligand-1, reduced cell tethering to and rolling on immobilized P- or E-selectin, and compromised E-selectin-induced activation of spleen tyrosine kinase and cell adhesion to intercellular adhesion molecule-1 under dynamic flow. Our results reveal that GOLPH3 can regulate cell-cell interaction by controlling Golgi retention of C2GnT1.
Collapse
Affiliation(s)
- Mohamed F Ali
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | | | | | | |
Collapse
|
105
|
Tu L, Chen L, Banfield DK. A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 2012; 13:1496-507. [PMID: 22889169 DOI: 10.1111/j.1600-0854.2012.01403.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/05/2012] [Accepted: 08/13/2012] [Indexed: 01/08/2023]
Abstract
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi-resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N-terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non-functional for glycosyltransferase retention, the Golgi membrane-binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol-4-phosphate-binding properties of Vps74p largely account for the membrane-binding capacity of the protein and identify an Arf1p-Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association.
Collapse
Affiliation(s)
- Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | | | | |
Collapse
|
106
|
Li H, Guo L, Chen SW, Zhao XH, Zhuang SM, Wang LP, Song LB, Song M. GOLPH3 overexpression correlates with tumor progression and poor prognosis in patients with clinically N0 oral tongue cancer. J Transl Med 2012; 10:168. [PMID: 22905766 PMCID: PMC3480894 DOI: 10.1186/1479-5876-10-168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Overexpression of GOLPH3 (Golgi phosphoprotein 3, 34 kDa) is associated with the progression of many solid tumor types leading to an unfavorable clinical outcome. We aimed to investigate the clinical significance of GOLPH3 expression in the development and progression of clinically N0 (cN0) oral tongue cancer. METHODS Real-time PCR and Western blotting analyses were employed to examine GOLPH3 expression in four oral tongue cancer cell lines, primary cultured normal tongue epithelial cells (TEC), eight matched pairs of oral tongue cancer samples and adjacent noncancerous tissue samples from the same patient. Immunohistochemistry (IHC) was performed to examine GOLPH3 protein expression in paraffin-embedded tissues from 179 cN0 oral tongue cancer patients. Statistical analyses were applied to evaluate the diagnostic value and the associations of GOLPH3 expression with clinical parameters. RESULTS GOLPH3 mRNA and protein was up-regulated in oral tongue cancer cell lines and cancerous tissues compared with that in primary cultured normal tongue epithelial cells (TEC) and adjacent noncancerous tissue samples. GOLPH3 protein level was positively correlated with clinical stage (P = 0.001), T classification (P = 0.001), N classification (P = 0.043) and recurrence (P = 0.009). Patients with higher GOLPH3 expression had shorter overall survival time, whereas those with lower GOLPH3 expression had longer survival time. CONCLUSION Our results suggest GOLPH3 overexpression is associated with poor prognosis for cN0 oral tongue cancer patients and may represent a novel and useful prognostic indicator for cN0 oral tongue cancer.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Oncology in South China, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University
| |
Collapse
|
108
|
Petrosyan A, Ali MF, Verma SK, Cheng H, Cheng PW. Non-muscle myosin IIA transports a Golgi glycosyltransferase to the endoplasmic reticulum by binding to its cytoplasmic tail. Int J Biochem Cell Biol 2012; 44:1153-65. [PMID: 22525330 PMCID: PMC4011501 DOI: 10.1016/j.biocel.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/14/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022]
Abstract
The mechanism of the Golgi-to-ER transport of Golgi glycosyltransferases is not clear. We utilize a cell line expressing the core 2 N-acetylglucosaminyltransferase-M (C2GnT-M) tagged with c-Myc to explore this mechanism. By immunoprecipitation using anti-c-Myc antibodies coupled with proteomics analysis, we have identified several proteins including non-muscle myosin IIA (NMIIA), heat shock protein (HSP)-70 and ubiquitin activating enzyme E1 in the immunoprecipitate. Employing yeast-two-hybrid analysis and pulldown experiments, we show that the C-terminal region of the NMIIA heavy chain binds to the 1-6 amino acids in the cytoplasmic tail of C2GnT-M. We have found that NMIIA co-localizes with C2GnT-M at the periphery of the Golgi. In addition, inhibition or knockdown of NMIIA prevents the brefeldin A-induced collapse of the Golgi as shown by the inhibition of the migration of both Giantin, a Golgi matrix protein, and C2GnT-M, a Golgi non-matrix protein, to the ER. In contrast, knockdown of HSP70 retains Giantin in the Golgi but moves C2GnT-M to the ER, a process also blocked by inhibition or knockdown of NMIIA. Also, the intracellular distribution of C2GnT-M is not affected by knockdown of β-coatomer protein with or without inhibition of HSPs, suggesting that the Golgi-to-ER trafficking of C2GnT-M does not depend on coat protein complex-I. Further, inhibition of proteasome results in accumulation of ubiquitinated C2GnT-M, suggesting its degradation by proteasome. Therefore, NMIIA and not coat protein complex-I is responsible for transporting the Golgi glycosyltransferase to the ER for proteasomal degradation. The data suggest that NMIIA is involved in the Golgi remodeling.
Collapse
Affiliation(s)
- Armen Petrosyan
- Omaha Western Iowa Health System, VA Service, Department of Veterans Affairs Medical Center, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
109
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
110
|
Wood CS, Hung CS, Huoh YS, Mousley CJ, Stefan CJ, Bankaitis V, Ferguson KM, Burd CG. Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell 2012; 23:2527-36. [PMID: 22553352 PMCID: PMC3386216 DOI: 10.1091/mbc.e12-01-0077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Signaling by phosphatidylinositol 4-kinases (PI4Ks) in the Golgi apparatus controls lipid homeostasis and protein-sorting pathways. Signaling is shown to be terminated on the medial cisterna by a complex of a PI4K effector, Vps74, and Sac1, the major PtdIns4P phosphatase in the cell. In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (KD = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents.
Collapse
Affiliation(s)
- Christopher S Wood
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Gao C, Yu CK, Qu S, San MWY, Li KY, Lo SW, Jiang L. The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. THE PLANT CELL 2012; 24:2086-104. [PMID: 22570441 PMCID: PMC3442589 DOI: 10.1105/tpc.112.096057] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/12/2012] [Accepted: 04/18/2012] [Indexed: 05/17/2023]
Abstract
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.
Collapse
|
112
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
113
|
Mayinger P. Phosphoinositides and vesicular membrane traffic. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1104-13. [PMID: 22281700 DOI: 10.1016/j.bbalip.2012.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023]
Abstract
Phosphoinositide lipids were initially discovered as precursors for specific second messengers involved in signal transduction, but have now taken the center stage in controlling many essential processes at virtually every cellular membrane. In particular, phosphoinositides play a critical role in regulating membrane dynamics and vesicular transport. The unique distribution of certain phosphoinositides at specific intracellular membranes makes these molecules uniquely suited to direct organelle-specific trafficking reactions. In this regulatory role, phosphoinositides cooperate specifically with small GTPases from the Arf and Rab families. This review will summarize recent progress in the study of phosphoinositides in membrane trafficking and organellar organization and highlight the particular relevance of these signaling pathways in disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
114
|
Abstract
The Golgi complex is a ribbon-like organelle composed of stacks of flat cisternae interconnected by tubular junctions. It occupies a central position in the endomembrane system as proteins and lipids that are synthesized in the endoplasmic reticulum (ER) pass through the Golgi complex to undergo biosynthetic modification (mainly glycosylation) and to be sorted to their final destinations. In addition the Golgi complex possesses a number of activities, apparently not directly connected with its main role in trafficking and sorting, which have been recently reviewed in Wilson et al. 2011. In spite of the constant massive flux of material the Golgi complex maintains its identity and phosphoinositides (PIs), among other factors, play a central role in this process. The active metabolism of PIs at the Golgi is necessary for the proper functioning of the organelle both in terms of membrane trafficking/sorting and its manifold metabolic and signalling activities. Phosphatidylinositol 4-phosphate (PtdIns4P), in particular, is responsible for the recruitment of numerous cytosolic proteins that recognise and bind PtdIns4P via specific lipid-binding domains. In this chapter we will summarize the findings that have contributed to our current understanding of the role of PIs in the biology of the Golgi complex in terms of the regulation of PI metabolism and the functional roles and regulation of PtdIns4P effectors.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131, Napoli, Italy,
| | | | | | | |
Collapse
|
115
|
Schuh AL, Audhya A. Phosphoinositide signaling during membrane transport in Saccharomyces cerevisiae. Subcell Biochem 2012; 59:35-63. [PMID: 22374087 DOI: 10.1007/978-94-007-3015-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, 1300 University Avenue, WI, 53706, Madison, USA
| | | |
Collapse
|
116
|
Ruiz-May E, Kim SJ, Brandizzi F, Rose JKC. The secreted plant N-glycoproteome and associated secretory pathways. FRONTIERS IN PLANT SCIENCE 2012; 3:117. [PMID: 22685447 PMCID: PMC3368311 DOI: 10.3389/fpls.2012.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 05/14/2023]
Abstract
N-Glycosylation is a common form of eukaryotic protein post-translational modification, and one that is particularly prevalent in plant cell wall proteins. Large scale and detailed characterization of N-glycoproteins therefore has considerable potential in better understanding the composition and functions of the cell wall proteome, as well as those proteins that reside in other compartments of the secretory pathway. While there have been numerous studies of mammalian and yeast N-glycoproteins, less is known about the population complexity, biosynthesis, structural variation, and trafficking of their plant counterparts. However, technical developments in the analysis of glycoproteins and the structures the glycans that they bear, as well as valuable comparative analyses with non-plant systems, are providing new insights into features that are common among eukaryotes and those that are specific to plants, some of which may reflect the unique nature of the plant cell wall. In this review we present an overview of the current knowledge of plant N-glycoprotein synthesis and trafficking, with particular reference to those that are cell wall localized.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast Lansing, MI, USA
- DOE Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Jocelyn K. C. Rose
- Department of Plant Biology, Cornell UniversityIthaca, NY, USA
- *Correspondence: Jocelyn K. C. Rose, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853 USA. e-mail:
| |
Collapse
|
117
|
Suda Y, Nakano A. The Yeast Golgi Apparatus. Traffic 2011; 13:505-10. [DOI: 10.1111/j.1600-0854.2011.01316.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuyuki Suda
- Molecular Membrane Biology Laboratory; RIKEN Advanced Science Institute; Wako; Saitama; 351-0198; Japan
| | | |
Collapse
|
118
|
Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 2011; 20:15-27. [PMID: 22193136 DOI: 10.1016/j.str.2011.11.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
Abstract
Regulated relocalization of signaling and trafficking proteins is crucial for the control of many cellular processes and is driven by a series of domains that respond to alterations at membrane surfaces. The first examples of these domains--conditional peripheral membrane proteins--included C1, C2, PH, PX, and FYVE domains, which specifically recognize single tightly regulated membrane components such as diacylglycerol or phosphoinositides. The structural basis for this recognition is now well understood. Efforts to identify additional domains with similar functions that bind other targets (or participate in unexplained cellular processes) have not yielded many more examples of specific phospholipid-binding domains. Instead, most of the recently discovered conditional peripheral membrane proteins bind multiple targets (each with limited specificity), relying on coincidence detection and/or recognizing broader physical properties of the membrane such as charge or curvature. This broader range of recognition modes presents significant methodological challenges for a full structural understanding.
Collapse
Affiliation(s)
- Katarina Moravcevic
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
119
|
Gannon J, Bergeron JJM, Nilsson T. Golgi and related vesicle proteomics: simplify to identify. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005421. [PMID: 21813401 DOI: 10.1101/cshperspect.a005421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite more than six decades of successful Golgi research, the fundamental question as to how biosynthetic material is transported through the secretory pathway remains unanswered. New technologies such as live cell imaging and correlative microscopy have highlighted the plastic nature of the Golgi, one that is sensitive to perturbation yet highly efficient in regaining both structure and function. Single molecule-microscopy and super resolution-microscopy further adds to this picture. Various models for protein transport have been put forward, each with its own merits and pitfalls but we are far from resolving whether one is more correct than the other. As such, our laboratory considers multiple mechanisms of Golgi transport until proven otherwise. This includes the two classical modes of transport, vesicular transport and cisternal progression/maturation as well as more recent models such as tubular inter- and intra-cisternal connections (long lasting or transient) and inter-Golgi stack transport. In this article, we focus on an emerging inductive technology, mass spectrometry-based proteomics that has already enabled insight into the relative composition of compartments and subcompartments of the secretory pathway including mechanistic aspects of protein transport. We note that proteomics, as with any other technology, is not a stand-alone technology but one that works best alongside complementary approaches.
Collapse
Affiliation(s)
- Joan Gannon
- The Research Institute of the McGill University Health Centre and the Department of Medicine, Montreal, Quebec, Canada
| | | | | |
Collapse
|
120
|
Popoff V, Adolf F, Brügger B, Wieland F. COPI budding within the Golgi stack. Cold Spring Harb Perspect Biol 2011; 3:a005231. [PMID: 21844168 DOI: 10.1101/cshperspect.a005231] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.
Collapse
Affiliation(s)
- Vincent Popoff
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
121
|
Nacev BA, Grassi P, Dell A, Haslam SM, Liu JO. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J Biol Chem 2011; 286:44045-44056. [PMID: 22025615 DOI: 10.1074/jbc.m111.278754] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Paola Grassi
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
122
|
Abstract
The protein composition of the Golgi is intimately linked to its structure and function. As the Golgi serves as the major protein-sorting hub for the secretory pathway, it faces the unique challenge of maintaining its protein composition in the face of constant influx and efflux of transient cargo proteins. Much of our understanding of how proteins are retained in the Golgi has come from studies on glycosylation enzymes, largely because of the compartment-specific distributions these proteins display. From these and other studies of Golgi membrane proteins, we now understand that a variety of retention mechanisms are employed, the majority of which involve the dynamic process of iterative rounds of retrograde and anterograde transport. Such mechanisms rely on protein conformation and amino acid-based sorting signals as well as on properties of transmembrane domains and their relationship with the unique lipid composition of the Golgi.
Collapse
Affiliation(s)
- David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
123
|
Santiago-Tirado FH, Bretscher A. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 2011; 21:515-25. [PMID: 21764313 DOI: 10.1016/j.tcb.2011.05.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Cell polarity in eukaryotes requires constant sorting, packaging and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material and the trans-Golgi network for outgoing material. Phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases regulate membrane trafficking directly, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi network.
Collapse
Affiliation(s)
- Felipe H Santiago-Tirado
- Department of Molecular Biology and Genetics, 107 Biotechnology Bldg., Cornell University, Ithaca, NY 14853-7202, USA
| | | |
Collapse
|
124
|
Abstract
The protein processing and trafficking function of the Golgi is intimately linked to multiple intracellular signaling pathways. Assembly of Golgi trafficking structures and lipid sorting at the Golgi complex is controlled and coordinated by specific phosphoinositide kinases and phosphatases. The intra-Golgi transport machinery is also regulated by kinases belonging to several functionally distinct families, for example, MAP kinase signaling is required for mitotic disassembly of the Golgi. However, the Golgi plays an additional, prominent role in compartmentalizing other signaling cascades that originate at the plasma membrane or at other organelles. This article summarizes recent advances in our understanding of the signaling network that converges at the Golgi.
Collapse
Affiliation(s)
- Peter Mayinger
- Division of Nephrology and Hypertension and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
125
|
Mizutani A, Tsunashima H, Nishijima KI, Sasamoto T, Yamada Y, Kojima Y, Motono M, Kojima J, Inayoshi Y, Miyake K, Park EY, Iijima S. Genetic modification of a chicken expression system for the galactosylation of therapeutic proteins produced in egg white. Transgenic Res 2011; 21:63-75. [DOI: 10.1007/s11248-011-9511-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/30/2011] [Indexed: 01/12/2023]
|
126
|
Maccioni HJF, Quiroga R, Spessott W. Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 2011; 585:1691-8. [PMID: 21420403 DOI: 10.1016/j.febslet.2011.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022]
Abstract
Glycolipids constitute a complex family of amphipathic molecules structurally characterized by a hydrophilic mono- or oligo-saccharide moiety linked to a hydrophobic ceramide moiety. Due to their asymmetric distribution in cell membranes, exposing the saccharide moiety to the extracytoplasmic side of the cell, glycolipids participate in a variety of cell-cell and cell-ligand interactions. Here we summarize aspects of the cell biology of the stepwise synthesis of the saccharide moiety in the Golgi complex of cells from vertebrates. In particular we refer to the participant glycosyltransferases, with emphasis on their trafficking along the secretory pathway, their retention and organization in the Golgi complex membranes and their dependence on the Golgi complex ultra structural organization for proper function.
Collapse
Affiliation(s)
- Hugo J F Maccioni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | |
Collapse
|
127
|
Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 2011; 21:1554-69. [PMID: 21421995 DOI: 10.1093/glycob/cwr028] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.
Collapse
Affiliation(s)
- Irina D Pokrovskaya
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 505, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
128
|
Schoberer J, Strasser R. Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. MOLECULAR PLANT 2011; 4:220-8. [PMID: 21307368 PMCID: PMC3063520 DOI: 10.1093/mp/ssq082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
In all eukaryotes, the Golgi apparatus is the main site of protein glycosylation. It is widely accepted that the glycosidases and glycosyltransferases involved in N-glycan processing are found concentrated within the Golgi stack where they provide their function. This means that enzymes catalyzing early steps in the processing pathway are located mainly at the cis-side, whereas late-acting enzymes mostly locate to the trans-side of the stacks, creating a non-uniform distribution along the cis-trans axis of the Golgi. There is compelling evidence that the information for their sorting to specific Golgi cisternae depends on signals encoded in the proteins themselves as well as on the trafficking machinery that recognizes these signals and it is believed that cisternal sub-compartmentalization is achieved and maintained by a combination of retention and retrieval mechanisms. Yet, the signals, mechanism(s), and molecular factors involved are still unknown. Here, we address recent findings and summarize the current understanding of this fundamental process in plant cell biology.
Collapse
Affiliation(s)
- Jennifer Schoberer
- School of Life Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- To whom correspondence should be addressed. E-mail , fax +43 1 47654 6392, tel. +43 1 47654 6700
| |
Collapse
|
129
|
Reynders E, Foulquier F, Annaert W, Matthijs G. How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 2010; 21:853-63. [PMID: 21112967 DOI: 10.1093/glycob/cwq179] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein glycosylation is one of the major biosynthetic functions occurring in the endoplasmic reticulum and Golgi compartments. It requires an amazing number of enzymes, chaperones, lectins and transporters whose actions delicately secure the fidelity of glycan structures. Over the past 30 years, glycobiologists hammered that glycan structures are not mere decorative elements but serve crucial cellular functions. This becomes dramatically illustrated by a group of mostly severe, inherited human disorders named congenital disorders of glycosylation (CDG). To date, many types of CDG have been defined genetically and most of the time the defects impair the biosynthesis, transfer and remodeling of N-glycans. Recently, the identification of the several types of CDG caused by deficiencies in the conserved oligomeric Golgi (COG) complex, a complex involved in vesicular Golgi trafficking, expanded the field of CDG but also brought novel insights in glycosylation. The molecular mechanisms underlying the complex pathway of N-glycosylation in the Golgi are far from understood. The availability of COG-deficient CDG patients and patients' cells offered a new way to study how COG, and its different subunits, could influence the Golgi N-glycosylation machinery and localization. This review summarizes the recent findings on the implication of COG in Golgi glycosylation. It highlights the need for a dynamic, finely tuned balance between anterograde and retrograde trafficking for the correct localization of Golgi enzymes to assure the stepwise maturation of N-glycan chains.
Collapse
Affiliation(s)
- Ellen Reynders
- Laboratory for Membrane Trafficking, Center for Human Genetics, KULeuven, Department for Molecular and Developmental Genetics (VIB), Leuven, Belgium
| | | | | | | |
Collapse
|
130
|
Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 2010; 21:113-21. [PMID: 21282087 DOI: 10.1016/j.tcb.2010.10.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. Evidence has emerged from the characterization of Golgi PI4K effectors that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase called Drs2 and Sec2, a Rab guanine nucleotide exchange factor (GEF). These effectors orchestrate membrane transformation events facilitating vesicle formation and targeting. In this review, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these crucial functions of the Golgi apparatus.
Collapse
Affiliation(s)
- Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
131
|
Harbour ME, Breusegem SYA, Antrobus R, Freeman C, Reid E, Seaman MNJ. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci 2010; 123:3703-17. [PMID: 20923837 DOI: 10.1242/jcs.071472] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The retromer complex is required for the efficient endosome-to-Golgi retrieval of the CIMPR, sortilin, SORL1, wntless and other physiologically important membrane proteins. Retromer comprises two protein complexes that act together in endosome-to-Golgi retrieval; the cargo-selective complex is a trimer of VPS35, VPS29 and VPS26 that sorts cargo into tubules for retrieval to the Golgi. Tubules are produced by the oligomerization of sorting nexin dimers. Here, we report the identification of five endosomally-localised proteins that modulate tubule formation and are recruited to the membrane via interactions with the cargo-selective retromer complex. One of the retromer-interacting proteins, strumpellin, is mutated in hereditary spastic paraplegia, a progressive length-dependent axonopathy. Here, we show that strumpellin regulates endosomal tubules as part of a protein complex with three other proteins that include WASH1, an actin-nucleating promoting factor. Therefore, in addition to a direct role in endosome-to-Golgi retrieval, the cargo-selective retromer complex also acts as a platform for recruiting physiologically important proteins to endosomal membranes that regulate membrane tubule dynamics.
Collapse
Affiliation(s)
- Michael E Harbour
- Department of Clinical Biochemistry, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|
132
|
Corbacho I, Olivero I, Hernández LM. Identification of the MNN3 gene of Saccharomyces cerevisiae. Glycobiology 2010; 20:1336-40. [PMID: 20663959 DOI: 10.1093/glycob/cwq114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The MNN3 gene of Saccharomyces cerevisiae has been identified as a synonym of VPS74. We have compared phenotype characteristics of the original mnn3 mutant, including low dye binding phenotype, size of external invertase, clump formation, and sodium orthovanadate resistance and found these to be identical to those shown by vps74Δ. Mating of both haploid strains resulted in non-complementation of mutant phenotypes. Finally, a vector containing wild-type VPS74 complemented the defects of both vps74Δ and mnn3. This work completes the identification of the entire collection of genes that are defective in mnn mutants. In addition, we have identified the mnn3 mutation by sequencing the VPS74 gene from the original mnn3 strain. We found a single amino acid change of Arg97 to Cys. This unique alteration seems to be sufficient to account for the phenotype of mnn3.
Collapse
Affiliation(s)
- Isaac Corbacho
- Department of Biomedical Sciences, Microbiology, University of Extremadura, 06006 Badajoz, Spain
| | | | | |
Collapse
|
133
|
Abstract
Estimates based on proteomic analyses indicate that a third of translated proteins in eukaryotic genomes enter the secretory pathway. After folding and assembly of nascent secretory proteins in the endoplasmic reticulum (ER), the coat protein complex II (COPII) selects folded cargo for export in membrane-bound vesicles. To accommodate the great diversity in secretory cargo, protein sorting receptors are required in a number of instances for efficient ER export. These transmembrane sorting receptors couple specific secretory cargo to COPII through interactions with both cargo and coat subunits. After incorporation into COPII transport vesicles, protein sorting receptors release bound cargo in pre-Golgi or Golgi compartments, and receptors are then recycled back to the ER for additional rounds of cargo export. Distinct types of protein sorting receptors that recognize carbohydrate and/or polypeptide signals in secretory cargo have been characterized. Our current understanding of the molecular mechanisms underlying cargo receptor function are described.
Collapse
Affiliation(s)
- Julia Dancourt
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
134
|
Bennett EP, Chen YW, Schwientek T, Mandel U, Schjoldager KTBG, Cohen SM, Clausen H. Rescue of Drosophila Melanogaster l(2)35Aa lethality is only mediated by polypeptide GalNAc-transferase pgant35A, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11. Glycoconj J 2010; 27:435-44. [PMID: 20422447 DOI: 10.1007/s10719-010-9290-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 01/02/2023]
Abstract
The Drosophila l(2)35Aa gene encodes a UDP-N-acetylgalactosamine: Polypeptide N-acetylgalactosaminyltransferase, essential for embryogenesis and development (J. Biol. Chem. 277, 22623-22638; J. Biol. Chem. 277, 22616-22). l(2)35Aa, also known as pgant35A, is a member of a large evolutionarily conserved family of genes encoding polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human GALNT11 are thought to belong to a distinct subfamily. Recent in vitro studies have shown that pgant35A and pgant7, encoding enzymes from different subfamilies, prefer different acceptor substrates, whereas the orthologous pgant35A and human GALNT11 gene products possess, 1) conserved substrate preferences and 2) similar acceptor site preferences in vitro. In line with the in vitro pgant7 studies, we show that l(2)35Aa lethality is not rescued by ectopic pgant7 expression. Remarkably and in contrast to this observation, the human pgant35A ortholog, GALNT11, was shown not to support rescue of the l(2)35Aa lethality. By use of genetic "domain swapping" experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11.
Collapse
Affiliation(s)
- Eric P Bennett
- Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
135
|
Scott KL, Chin L. Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 2010; 16:2229-34. [PMID: 20354134 DOI: 10.1158/1078-0432.ccr-09-1695] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Golgi phosphoprotein 3 (GOLPH3; also known as GPP34/GMx33/MIDAS) represents an exciting new class of oncoproteins involved in vesicular trafficking. Encoded by a gene residing on human chromosome 5p13, which is frequently amplified in multiple solid tumor types, GOLPH3 was initially discovered as a phosphorylated protein localized to the Golgi apparatus. Recent functional, cell biological, and biochemical analyses show that GOLPH3 can function as an oncoprotein to promote cell transformation and tumor growth by enhancing activity of the mammalian target of rapamycin, a serine/threonine protein kinase known to regulate cell growth, proliferation, and survival. Although its precise mode of action in cancer remains to be elucidated, the fact that GOLPH3 has been implicated in protein trafficking, receptor recycling, and glycosylation points to potential links of these cellular processes to tumorigenesis. Understanding how these processes may be deregulated and contribute to cancer pathogenesis and drug response will uncover new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
136
|
Noda Y, Yoda K. Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae. J Biol Chem 2010; 285:15420-15429. [PMID: 20236934 DOI: 10.1074/jbc.m109.086272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Svp26 is a polytopic integral membrane protein found in the ER and early Golgi compartment. In the Deltasvp26 cell, the Golgi mannosyltransferase Ktr3 remains in the ER. Here, we report that two other Golgi mannosyltransferases, Mnn2 and Mnn5 are also mislocalized and found in the ER in the absence of Svp26 and that localization of other mannosyltransferases including Mnn1 are not affected. Mnn2 and Mnn5 bind to Svp26 in vivo as Ktr3 does. Using an in vitro budding assay, the incorporation of Ktr3 and Mnn2 in the COPII vesicles is greatly stimulated by the presence of Svp26. As Svp26 itself is an efficient cargo, Svp26 is likely to support selective incorporation of a set of mannosyltransferases into COPII vesicles by working as their adaptor protein. The domain switching between Svp26-dependent Mnn2 or Ktr3 and Svp26-independent Mnn1 suggests that the lumenal domain of mannosyltransferases, but not the cytoplasmic or transmembrane domain, is responsible for recognition by Svp26.
Collapse
Affiliation(s)
- Yoichi Noda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Koji Yoda
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
137
|
Gillilan RE, Cook MJ, Cornaby SW, Bilderback DH. Microcrystallography using single-bounce monocapillary optics. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:227-36. [PMID: 20157276 PMCID: PMC2823584 DOI: 10.1107/s0909049509053564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 12/11/2009] [Indexed: 05/15/2023]
Abstract
X-ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high-precision sample-positioning hardware, special visible-light optics for sample visualization, and small-diameter X-ray beams with low background scatter. Most commonly, X-ray microbeams with diameters ranging from 50 microm to 1 microm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single-bounce glass monocapillary X-ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next-generation X-ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture-collimated beam shows that capillary-focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single-bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography.
Collapse
Affiliation(s)
- R E Gillilan
- MacCHESS (Macromolecular Diffraction Facility at CHESS), Ithaca, NY, USA.
| | | | | | | |
Collapse
|
138
|
Abstract
Newly synthesized secretory cargo molecules pass through the Golgi apparatus while resident Golgi proteins remain in the organelle. However, the pathways of membrane traffic within the Golgi are still uncertain. Most of the available data can be accommodated by the cisternal maturation model, which postulates that Golgi cisternae form de novo, carry secretory cargoes forward and ultimately disappear. The entry face of the Golgi receives material that has been exported from transitional endoplasmic reticulum sites, and the exit face of the Golgi is intimately connected with endocytic compartments. These conserved features are enhanced by cell-type-specific elaborations such as tubular connections between mammalian Golgi cisternae. Key mechanistic questions remain about the formation and maturation of Golgi cisternae, the recycling of resident Golgi proteins, the origins of Golgi compartmental identity, the establishment of Golgi architecture, and the roles of Golgi structural elements in membrane traffic.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
139
|
Tu L, Banfield DK. Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci 2010; 67:29-41. [PMID: 19727557 PMCID: PMC11115592 DOI: 10.1007/s00018-009-0126-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
For many glycosyltransferases, the information that instructs Golgi localization is located within a relatively short sequence of amino acids in the N-termini of these proteins comprising: the cytoplasmic tail, the transmembrane spanning region, and the stem region (CTS). Also, one enzyme may be more reliant on a particular region in the CTS for its localization than another. The predominance of these integral membrane proteins in the Golgi has seen these enzymes become central players in the development of membrane trafficking models of transport within this organelle. It is now understood that the means by which the characteristic distributions of glycosyltransferases arise within the subcompartments of the Golgi is inextricably linked to the mechanisms that cells employ to direct the flow of proteins and lipids within this organelle.
Collapse
Affiliation(s)
- Linna Tu
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| | - David Karl Banfield
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
140
|
Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 2009; 187:967-75. [PMID: 20026658 PMCID: PMC2806290 DOI: 10.1083/jcb.200909063] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mitochondrial DNA absence sensitive factor). We show that targeting of Vps74 and GOLPH3 to the Golgi apparatus requires ongoing synthesis of phosphatidylinositol (PtdIns) 4-phosphate (PtdIns4P) by the Pik1 PtdIns 4-kinase and that modulation of the levels and cellular location of PtdIns4P leads to mislocalization of these proteins. Vps74 and GOLPH3 bind specifically to PtdIns4P, and a sulfate ion in a crystal structure of GOLPH3 indicates a possible phosphoinositide-binding site that is conserved in Vps74. Alterations in this site abolish phosphoinositide binding in vitro and Vps74 function in vivo. These results implicate Pik1 signaling in retention of Golgi-resident proteins via Vps74 and show that GOLPH3 family proteins are effectors of Golgi PtdIns 4-kinases.
Collapse
Affiliation(s)
- Christopher S. Wood
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Karl R. Schmitz
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Nicholas J. Bessman
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Thanuja Gangi Setty
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kathryn M. Ferguson
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christopher G. Burd
- Department of Cell and Developmental Biology, Department of Physiology, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
141
|
Abraham RT. GOLPH3 links the Golgi network to mTOR signaling and human cancer. Pigment Cell Melanoma Res 2009; 22:378-9. [PMID: 19624311 DOI: 10.1111/j.1755-148x.2009.00596.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
142
|
Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 2009; 139:337-51. [PMID: 19837035 DOI: 10.1016/j.cell.2009.07.052] [Citation(s) in RCA: 500] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 04/13/2009] [Accepted: 07/31/2009] [Indexed: 11/15/2022]
Abstract
Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid-binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends on PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy.
Collapse
Affiliation(s)
- Holly C Dippold
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Ungar D. Golgi linked protein glycosylation and associated diseases. Semin Cell Dev Biol 2009; 20:762-9. [PMID: 19508859 DOI: 10.1016/j.semcdb.2009.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/17/2022]
Abstract
One of the Golgi's main functions is the glycosylation of secreted proteins. A large variety of glycan chains can be synthesized in the Golgi, and it is increasingly clear that these are critical in basic cellular functions as well as the development of multicellular organisms. The structurally best-documented glycans are N-glycans, yet these are also the most enigmatic in their function. In contrast, O-glycan function is far better understood, but here the structures and biosynthetic pathways are very incomplete. The critical importance of glycans is highlighted by the broad spectrum of diseases they are associated with, such as a number of inherited diseases, but also cancers or diabetes. The molecular clues to these, however, are only just being elucidated. Although some glycan structures are known to be involved in signaling or adhesion to the extracellular matrix, for most the functions are not yet known. This review aims at summarizing current knowledge as much as to point out critical areas key for future progress.
Collapse
Affiliation(s)
- Daniel Ungar
- University of York, Department of Biology (area 9), PO Box 373, York YO10 5YW, UK.
| |
Collapse
|
144
|
Nilsson T, Au CE, Bergeron JJM. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 2009; 583:3764-9. [PMID: 19878678 DOI: 10.1016/j.febslet.2009.10.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 11/26/2022]
Abstract
The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of anin vitrotransport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport.
Collapse
Affiliation(s)
- Tommy Nilsson
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | |
Collapse
|
145
|
Beck R, Ravet M, Wieland F, Cassel D. The COPI system: Molecular mechanisms and function. FEBS Lett 2009; 583:2701-9. [DOI: 10.1016/j.febslet.2009.07.032] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 02/03/2023]
|
146
|
Scott KL, Kabbarah O, Liang MC, Ivanova E, Anagnostou V, Wu J, Dhakal S, Wu M, Chen S, Feinberg T, Huang J, Saci A, Widlund HR, Fisher DE, Xiao Y, Rimm DL, Protopopov A, Wong KK, Chin L. GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 2009; 459:1085-90. [PMID: 19553991 PMCID: PMC2753613 DOI: 10.1038/nature08109] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 05/07/2009] [Indexed: 11/08/2022]
Abstract
Genome-wide copy number analyses of human cancers identified a frequent 5p13 amplification in several solid tumour types, including lung (56%), ovarian (38%), breast (32%), prostate (37%) and melanoma (32%). Here, using integrative analysis of a genomic profile of the region, we identify a Golgi protein, GOLPH3, as a candidate targeted for amplification. Gain- and loss-of-function studies in vitro and in vivo validated GOLPH3 as a potent oncogene. Physically, GOLPH3 localizes to the trans-Golgi network and interacts with components of the retromer complex, which in yeast has been linked to target of rapamycin (TOR) signalling. Mechanistically, GOLPH3 regulates cell size, enhances growth-factor-induced mTOR (also known as FRAP1) signalling in human cancer cells, and alters the response to an mTOR inhibitor in vivo. Thus, genomic and genetic, biological, functional and biochemical data in yeast and humans establishes GOLPH3 as a new oncogene that is commonly targeted for amplification in human cancer, and is capable of modulating the response to rapamycin, a cancer drug in clinical use.
Collapse
Affiliation(s)
- Kenneth L. Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Omar Kabbarah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Mei-Chih Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Elena Ivanova
- Center for Applied Cancer Science, Belfer Institute for Advanced Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Valsamo Anagnostou
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Joyce Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Sabin Dhakal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Min Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Shujuan Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Tamar Feinberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Joseph Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Abdel Saci
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hans R. Widlund
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - David E. Fisher
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Yonghong Xiao
- Center for Applied Cancer Science, Belfer Institute for Advanced Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - David L. Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexei Protopopov
- Center for Applied Cancer Science, Belfer Institute for Advanced Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Center for Applied Cancer Science, Belfer Institute for Advanced Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
147
|
Christiansen D, Milland J, Dodson HC, Lazarus BD, Sandrin MS. The cytoplasmic and transmembrane domains of secretor type alpha1,2fucosyltransferase confer atypical cellular localisation. J Mol Recognit 2009; 22:250-4. [PMID: 19165762 DOI: 10.1002/jmr.939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Carbohydrate structures influence many aspects of cell biology. Manipulating the glycosyltransferase enzymes, that sequentially add carbohydrate moieties to proteins and lipids as they pass through the Golgi and secretory pathway, can alter these carbohydrate epitopes. We previously demonstrated that the eight amino acid cytoplasmic tail of alpha1,2fucosyltransferase (FT) contained a sequence for Golgi localisation. In this study, we examined the localisation of the closely related secretor type alpha1,2fucosyltransferase (Sec) which has a smaller, yet apparently unrelated, five amino acid cytoplasmic tail. In contrast to the Golgi localisation of FT, Sec displayed atypical cytoplasmic vesicular-like staining. However, replacing just the five amino acid tail of Sec with FT was sufficient to relocalise the enzyme to a perinuclear region with Golgi-like staining. The biological significance of this relocalisation was this chimaeric enzyme was more effective than FT at competing for N-Acetyl-lactosamine and thus was superior in reducing expression of the Galalpha(1,3)Gal xenoepitope.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria 3084, Australia
| | | | | | | | | |
Collapse
|
148
|
Dancourt J, Barlowe C. Erv26p-dependent export of alkaline phosphatase from the ER requires lumenal domain recognition. Traffic 2009; 10:1006-18. [PMID: 19497047 DOI: 10.1111/j.1600-0854.2009.00936.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Active sorting at the endoplasmic reticulum (ER) drives efficient export of fully folded secretory proteins into coat protein complex II (COPII) vesicles, whereas ER-resident and misfolded proteins are retained and/or degraded. A number of secretory proteins depend upon polytopic cargo receptors for linkage to the COPII coat and ER export. However, the mechanism by which cargo receptors recognize transport-competent cargo is poorly understood. Here we examine the sorting determinants required for export of yeast alkaline phosphatase (ALP) by its cargo receptor Erv26p. Analyses of ALP chimeras and mutants indicated that Erv26p recognizes sorting information in the lumenal domain of ALP. This lumenal domain sorting signal must be positioned near the inner leaflet of the ER membrane for Erv26p-dependent export. Moreover, only assembled ALP dimers were efficiently recognized by Erv26p while an ALP mutant blocked in dimer assembly failed to exit the ER and was subjected to ER-associated degradation. These results further refine sorting information for ER export of ALP and show that recognition of folded cargo by export receptors contributes to strict ER quality control.
Collapse
Affiliation(s)
- Julia Dancourt
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
149
|
Abstract
The Golgi complex is the central sorting and processing station of the secretory pathway, ensuring that cargo proteins, which are synthesized in the endoplasmic reticulum, are properly glycosylated and packaged into carriers for transport to their final destinations. Two recent studies highlight the fact that properties of membrane lipids play key roles in Golgi structural organization and trafficking. The Antonny laboratory has demonstrated the mechanism by which a Golgi tether containing a membrane-curvature-sensing domain at one end can link highly curved and flat membranes together in a reversible manner. In this way, a strong interaction that binds membranes together in an oriented fashion can easily be disrupted as the properties of the membranes change. The Lippincott-Schwartz laboratory has developed a new model for intra-Golgi trafficking, called the rapid-partitioning model, which incorporates lipid trafficking as an integral part. Simulations reveal that the sorting of lipids into processing and export domains that are connected to each Golgi cisterna, and bidirectional trafficking throughout the Golgi to allow proteins to associate with their preferred lipid environment, is sufficient to drive protein transport through the secretory pathway. Although only a proof in principle, this model for the first time invokes lipid sorting as the driving force in intra-Golgi trafficking, and provides a framework for future experimental work.
Collapse
Affiliation(s)
- Catherine L Jackson
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
150
|
Lee PL, Kohler JJ, Pfeffer SR. Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 2009; 19:655-64. [PMID: 19261593 DOI: 10.1093/glycob/cwp035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Poly-N-acetyllactosamine (polyLacNAc) is a linear carbohydrate polymer composed of alternating N-acetylglucosamine and galactose residues involved in cellular functions ranging from differentiation to metastasis. PolyLacNAc also serves as a scaffold on which other oligosaccharides such as sialyl Lewis X are displayed. The polymerization of the alternating N-acetylglucosamine and galactose residues is catalyzed by the successive action of UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) and UDP-Gal:betaGlcNAc beta-1,4-galactosyltransferase, polypeptide 1 (B4GALT1), respectively. The functional association between these two glycosyltransferases led us to investigate whether the enzymes also associate physically. We show that B3GNT1 and B4GALT1 colocalize by immunofluorescence microscopy, interact by coimmunoprecipitation, and affect each other's subcellular localization when one of the two proteins is artificially retained in the endoplasmic reticulum. These results demonstrate that B3GNT1 and B4GALT1 physically associate in vitro and in cultured cells, providing insight into possible mechanisms for regulation of polyLacNAc production.
Collapse
Affiliation(s)
- Peter L Lee
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|