101
|
Roelink H. Sonic Hedgehog Is a Member of the Hh/DD-Peptidase Family That Spans the Eukaryotic and Bacterial Domains of Life. J Dev Biol 2018; 6:jdb6020012. [PMID: 29890674 PMCID: PMC6027127 DOI: 10.3390/jdb6020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Sonic Hedgehog (Shh) coordinates Zn2+ in a manner that resembles that of peptidases. The ability of Shh to undergo autoproteolytic processing is impaired in mutants that affect the Zn2+ coordination, while mutating residues essential for catalytic activity results in more stable forms of Shh. The residues involved in Zn2+ coordination in Shh are found to be mutated in some individuals with the congenital birth defect holoprosencephaly, demonstrating their importance in development. Highly conserved Shh domains are found in parts of some bacterial proteins that are members of the larger family of DD-peptidases, supporting the notion that Shh acts as a peptidase. Whereas this Hh/DD-peptidase motif is present in Hedgehog (Hh) proteins of nearly all animals, it is not present in Drosophila Hh, indicating that Hh signaling in fruit flies is derived, and perhaps not a good model for vertebrate Shh signaling. A sequence analysis of Hh proteins and their possible evolutionary precursors suggests that the evolution of modern Hh might have involved horizontal transfer of a bacterial gene coding of a Hh/DD-peptidase into a Cnidarian ancestor, recombining to give rise to modern Hh.
Collapse
Affiliation(s)
- Henk Roelink
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, 3204, Berkeley, CA 94720, USA.
| |
Collapse
|
102
|
Xue Y, Mars WM, Bowen W, Singhi AD, Stoops J, Michalopoulos GK. Hepatitis C Virus Mimics Effects of Glypican-3 on CD81 and Promotes Development of Hepatocellular Carcinomas via Activation of Hippo Pathway in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1469-1477. [PMID: 29577937 PMCID: PMC5975625 DOI: 10.1016/j.ajpath.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
Glypican (GPC)-3 is overexpressed in hepatocellular carcinomas (HCCs). GPC3 binds to CD81. Forced expression of CD81 in a GPC3-expressing HCC cell line caused activation of Hippo, a decrease in ezrin phosphorylation, and a decrease in yes-associated protein (YAP). CD81 is also associated with hepatitis C virus (HCV) entry into hepatocytes. Activation of CD81 by agonistic antibody causes activation of tyrosine-protein kinase SYK (SYK) and phosphorylation of ezrin, a regulator of the Hippo pathway. In cultures of normal hepatocytes, CD81 agonistic antibody led to enhanced phosphorylation of ezrin and an increase in nuclear YAP. HCV E2 protein mimicked GPC3 and led to enhanced Hippo activity and decreased YAP in cultured normal human hepatocytes. HCC tissue microarray revealed a lack of expression of CD81 in most HCCs, rendering them insusceptible to HCV infection. Activation of CD81 by agonistic antibody suppressed the Hippo pathway and increased nuclear YAP. HCV mimicked GPC3, causing Hippo activation and a decrease in YAP. HCV is thus likely to enhance hepatic neoplasia by acting as a promoter of growth of early CD81-negative neoplastic hepatocytes, which are resistant to HCV infection, and thus have a proliferative advantage to clonally expand as they participate in compensatory regeneration for the required maintenance of 100% of liver weight (hepatostat).
Collapse
Affiliation(s)
- Yuhua Xue
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
103
|
Wang S, Kalim M, Liang K, Zhan J. Polyclonal antibody production against rGPC3 and their application in diagnosis of hepatocellular carcinoma. Prep Biochem Biotechnol 2018; 48:435-445. [PMID: 29561231 DOI: 10.1080/10826068.2018.1452258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glypican-3 (GPC3) is an integral membrane proteoglycan, which contains a core protein anchored to the cytoplasmic membrane through a glycosylphosphatidylinositol linkage. The glypican-3 can regulate the signaling pathways, thereby enhances cell division, growth, and apoptosis in certain cell types. It is almost nonexistent on the surface of the human normal cell membrane and highly expresses on the membrane of hepatocellular carcinoma (HCC) cells. It has been well established that GPC3 provides a useful diagnostic marker. For generating the polyclonal antibody of GPC3, we expected that GPC3 N-terminal region (amino acid sequence 26-358) could be expressed in Escherichia coli system, however, no active expression was observed after IPTG induction. Interestingly, after deletion of six proline residues from position 26 to 31 in the N-terminus, expression of recombinant GPC3 was clearly detected. We further analyzed the expressed protein deprived of six prolines, to immunize the New Zealand male rabbits for production of active antibodies. The binding affinity of antibody was analyzed by immunofluorescence analysis, immunohistochemical detection, and western blotting. The functional GPC3 N-terminal protein recombinant development, expression, purification, and the polyclonal antibody have been generated provide the basis for the diagnosis of HCC in cancer therapy.
Collapse
Affiliation(s)
- Shenghao Wang
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| | - Muhammad Kalim
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| | | | - Jinbiao Zhan
- a Department of Biochemistry and Genetics , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
104
|
Wang S, Chen N, Chen Y, Sun L, Li L, Liu H. Elevated GPC3 level promotes cell proliferation in liver cancer. Oncol Lett 2018; 16:970-976. [PMID: 29963171 PMCID: PMC6019913 DOI: 10.3892/ol.2018.8754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/29/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the biological role of glypican 3 (GPC3), and to identify its mechanism and clinical significance in the carcinogenesis of liver cancer. A total of 114 patients with liver cancer were involved. Their clinical data, hematoxylin and eosin-stained and Antigen Ki-67 protein (Ki-67) and GPC3 immunohistochemically-stained liver cancer tissue sections were analyzed to evaluate the correlation between the liver cancer proliferation, differentiation and GPC3 expression. Fluorescence microscopy, western blotting, MTT and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays were performed in HepG2 and HLE cell lines to investigate the potential mechanisms of action. Among the 114 patients with liver cancer enrolled in the present study, 12 exhibited well-differentiated liver cancer, of which 6 (50%) were positive for GPC3. A total of 30 cases exhibited poorly differentiated liver cancer; 26 (87%) of these expressed GPC3 and 11 cases (37%) demonstrated strong positive expression levels. The other 72 liver cancer cases were moderately differentiated; 75% (54/72) of these expressed GPC3 and 12.5% (9/72) exhibited strong positive expression levels. There was a significant association between the levels of GPC3 expression and liver cancer differentiation (χ2=16.306, P=0.008). Ki-67 staining as the criteria of the liver cancer cell proliferation index also indicated a cross correlation between liver cancer proliferation and GPC3 levels. Among the 39 liver cancer samples with a cell proliferation index <5%, only 2.6% (1/39) exhibited strong positive GPC3 staining, but of the 16 cases with a high cell proliferation index >50%, 6 exhibited strong GPC3 staining (37.5%). The difference of cell proliferation indexes between cancer cells were well, moderate and poorly differentiated, and was markedly significant (χ2=26.334, P=0.002), and suggested that liver cancer cell proliferation was positively correlated with GPC3 expression (r=0.316, P=0.001). Consistently, in vitro analysis indicated that GPC3 promoted HepG2 and HLE cell growth, which was more apparent in HepG2 cells. The RT-qPCR results indicated that GPC3 promoted proliferation through the Hedgehog (Hh) pathway in HepG2 cells, but not in HLE cells. In the present study, it was demonstrated that patients with liver cancer with higher GPC3 levels exhibited poorer differentiation and higher proliferation levels. In vitro GPC3 may promote liver cancer cell lines proliferation through the Hh pathway.
Collapse
Affiliation(s)
- Shanshan Wang
- Beijing You'An Hospital Affiliated to Capital Medical University, Beijing Institute of Hepatology, Beijing 100069, P.R. China.,Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, P.R. China
| | - Ning Chen
- Department of Gastrointestinal and Hepatology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Yuhan Chen
- Department of Gastrointestinal and Hepatology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Lin Sun
- Department of Pathology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| | - Li Li
- Beijing You'An Hospital Affiliated to Capital Medical University, Beijing Institute of Hepatology, Beijing 100069, P.R. China
| | - Hui Liu
- Department of Pathology, Beijing You'An Hospital Affiliated to Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
105
|
Vuillaume ML, Moizard MP, Rossignol S, Cottereau E, Vonwill S, Alessandri JL, Busa T, Colin E, Gérard M, Giuliano F, Lambert L, Lefevre M, Kotecha U, Nampoothiri S, Netchine I, Raynaud M, Brioude F, Toutain A. Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature. Hum Mutat 2018; 39:790-805. [PMID: 29637653 DOI: 10.1002/humu.23428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/08/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).
Collapse
Affiliation(s)
- Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Marie-Pierre Moizard
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Sylvie Rossignol
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France.,Service de génétique médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Edouard Cottereau
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France
| | - Sandrine Vonwill
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | | | - Tiffany Busa
- Unité de Génétique Clinique, Département de génétique médicale, Hôpital de la Timone, CHU de Marseille, Marseille, France
| | - Estelle Colin
- Département de biochimie et génétique, CHU d'Angers, Angers, France
| | - Marion Gérard
- Service de génétique, CHU de Caen, Hôpital Clémenceau, Avenue Georges Clémenceau, Caen, France
| | - Fabienne Giuliano
- Service de génétique médicale, CHU de Nice, Hôpital l'Archet 2, Nice, France
| | - Laetitia Lambert
- Service de Génétique Clinique, Hôpital d'Enfants, CHU de Nancy, Rue du Morvan, Vandoeuvre-Lès-Nancy, France
| | - Mathilde Lefevre
- Centre de génétique, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France
| | - Udhaya Kotecha
- Center of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, AIMS Poneakara P O, Cochin, Kerala, India
| | - Irène Netchine
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Martine Raynaud
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Frédéric Brioude
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Annick Toutain
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| |
Collapse
|
106
|
Drosophila Glypicans Regulate Follicle Stem Cell Maintenance and Niche Competition. Genetics 2018; 209:537-549. [PMID: 29632032 DOI: 10.1534/genetics.118.300839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Adult stem cells reside in specialized microenvironments called niches, which provide signals for stem cells to maintain their undifferentiated and self-renewing state. To maintain stem cell quality, several types of stem cells are known to be regularly replaced by progenitor cells through niche competition. However, the cellular and molecular bases for stem cell competition for niche occupancy are largely unknown. Here, we show that two Drosophila members of the glypican family of heparan sulfate proteoglycans (HSPGs), Dally and Dally-like (Dlp), differentially regulate follicle stem cell (FSC) maintenance and competitiveness for niche occupancy. Lineage analyses of glypican mutant FSC clones showed that dally is essential for normal FSC maintenance. In contrast, dlp is a hypercompetitive mutation: dlp mutant FSC progenitors often eventually occupy the entire epithelial sheet. RNA interference knockdown experiments showed that Dally and Dlp play both partially redundant and distinct roles in regulating Jak/Stat, Wg, and Hh signaling in FSCs. The Drosophila FSC system offers a powerful genetic model to study the mechanisms by which HSPGs exert specific functions in stem cell replacement and competition.
Collapse
|
107
|
Condomitti G, de Wit J. Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity. Front Mol Neurosci 2018; 11:14. [PMID: 29434536 PMCID: PMC5790772 DOI: 10.3389/fnmol.2018.00014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Neural circuits consist of distinct neuronal cell types connected in specific patterns. The specificity of these connections is achieved in a series of sequential developmental steps that involve the targeting of neurites, the identification of synaptic partners, and the formation of specific types of synapses. Cell-surface proteins play a critical role in each of these steps. The heparan sulfate proteoglycan (HSPG) family of cell-surface proteins is emerging as a key regulator of connectivity. HSPGs are expressed throughout brain development and play important roles in axon guidance, synapse development and synapse function. New insights indicate that neuronal cell types express unique combinations of HSPGs and HS-modifying enzymes. Furthermore, HSPGs interact with cell type-specific binding partners to mediate synapse development. This suggests that cell type-specific repertoires of HSPGs and specific patterns of HS modifications on the cell surface are required for the development of specific synaptic connections. Genome-wide association studies have linked these proteins to neurodevelopmental and neuropsychiatric diseases. Thus, HSPGs play an important role in the development of specific synaptic connectivity patterns important for neural circuit function, and their dysfunction may be involved in the development of brain disorders.
Collapse
Affiliation(s)
- Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
108
|
Wang S, Li Y, Jiang C, Tian H. Fibroblast growth factor 9 subfamily and the heart. Appl Microbiol Biotechnol 2017; 102:605-613. [PMID: 29198068 DOI: 10.1007/s00253-017-8652-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions due to their high degree of sequence homology. Unlike other secreted proteins which have a cleavable N-terminal secreted signal peptide, FGF9/16/20 have non-cleaved N-terminal signal peptides. As an intercellular signaling molecule, they are involved in a variety of complex responses in animal development. Cardiogenesis is controlled by many members of the transcription factor family. Evidence suggests that FGF signaling, including the FGF9 subfamily, has a pretty close association with these cardiac-specific genes. In addition, recent studies have shown that the FGF9 subfamily maintains functional adaptation and survival after myocardial infarction in adult myocardium. Since FGF9/16/20 are secreted proteins, their function characterization in cardiac regeneration can promote their potential to be developed for the treatment of cardioprotection and revascularization. Here, we conclude that the FGF9 subfamily roles in cardiac development and maintenance of postnatal cardiac homeostasis, especially cardiac function maturation and functional maintenance of the heart after injury.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
109
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
110
|
Capurro M, Izumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, Gariepy J, Bonafe L, Filmus J. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol 2017; 216:2911-2926. [PMID: 28696225 PMCID: PMC5584141 DOI: 10.1083/jcb.201605119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 03/30/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Autosomal-recessive omodysplasia (OMOD1) is caused by mutations in glypican-6. Capurro et al. show that glypican-6 stimulates Hedgehog (Hh) signaling, and reduced Hh signaling may contribute to the pathogenesis of OMOD1. Autosomal-recessive omodysplasia (OMOD1) is a genetic condition characterized by short stature, shortened limbs, and facial dysmorphism. OMOD1 is caused by loss-of-function mutations of glypican 6 (GPC6). In this study, we show that GPC6-null embryos display most of the abnormalities found in OMOD1 patients and that Hedgehog (Hh) signaling is significantly reduced in the long bones of these embryos. The Hh-stimulatory activity of GPC6 was also observed in cultured cells, where this GPC increased the binding of Hh to Patched 1 (Ptc1). Consistent with this, GPC6 interacts with Hh through its core protein and with Ptc1 through its glycosaminoglycan chains. Hh signaling is triggered at the primary cilium. In the absence of Hh, we observed that GPC6 is localized outside of the cilium but moves into the cilium upon the addition of Hh. We conclude that GPC6 stimulates Hh signaling by binding to Hh and Ptc1 at the cilium and increasing the interaction of the receptor and ligand.
Collapse
Affiliation(s)
- Mariana Capurro
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tomomi Izumikawa
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Philippe Suarez
- Center for Molecular Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Wen Shi
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Marzena Cydzik
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tomoyuki Kaneiwa
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariepy
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Luisa Bonafe
- Center for Molecular Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Jorge Filmus
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
111
|
Abstract
Communication between cells pervades the development and physiology of metazoans. In animals, this process is carried out by a relatively small number of signaling pathways, each consisting of a chain of biochemical events through which extracellular stimuli control the behavior of target cells. One such signaling system is the Hedgehog pathway, which is crucial in embryogenesis and is implicated in many birth defects and cancers. Although Hedgehog pathway components were identified by genetic analysis more than a decade ago, our understanding of the molecular mechanisms of signaling is far from complete. In this review, we focus on the biochemistry and cell biology of the Hedgehog pathway. We examine the unique biosynthesis of the Hedgehog ligand, its specialized release from cells into extracellular space, and the poorly understood mechanisms involved in ligand reception and pathway activation at the surface of target cells. We highlight several critical questions that remain open.
Collapse
Affiliation(s)
- Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Bradley M Wierbowski
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
112
|
Cheng W, Huang PC, Chao HM, Jeng YM, Hsu HC, Pan HW, Hwu WL, Lee YM. Glypican-3 induces oncogenicity by preventing IGF-1R degradation, a process that can be blocked by Grb10. Oncotarget 2017; 8:80429-80442. [PMID: 29113314 PMCID: PMC5655209 DOI: 10.18632/oncotarget.19035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a major cause of cancer-related death worldwide. Previously, we demonstrated that glypican-3 (GPC3) is highly expressed in HCC, and that GPC3 induces oncogenicity and promotes the growth of cancer cells through IGF-1 receptor (IGF-1R). In the present study, we investigated the mechanisms of GPC3-mediated enhancement of IGF-1R signaling. We demonstrated that GPC3 decreased IGF-1-induced IGF-1R ubiquitination and degradation and increased c-Myc protein levels. GPC3 bound to Grb10, a mediator of ligand-induced receptor ubiquitination, and the overexpression of Grb10 blocked GPC3-enhanced IGF-1-induced ERK phosphorylation. GPC3 promoted the growth of NIH3T3 and PLC-PRF-5 cells in serum-free medium but did not promote the growth of IGF-1R negative R- cells. Grb10 overexpression decreased GPC3-promoted cell growth. Therefore, the present study elucidates the mechanisms of GPC3-induced oncogenicity, which may highlight new strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pathology, Kee-Lung Hospital, Ministry of Health and Welfare, Kee-Lung, Taiwan.,Ching Kuo Institute of Management and Health, Kee-Lung, Taiwan.,National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Po-Chun Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Mei Chao
- Department of Pathology, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hey-Chi Hsu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Pan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-May Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
113
|
Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2017. [PMID: 28621802 DOI: 10.1002/med.21455] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver cancer is the second leading cause of cancer-related deaths, and hepatocellular carcinoma (HCC) is the most common type. Therefore, molecular targets are urgently required for the early detection of HCC and the development of novel therapeutic approaches. Glypican-3 (GPC3), an oncofetal proteoglycan anchored to the cell membrane, is normally detected in the fetal liver but not in the healthy adult liver. However, in HCC patients, GPC3 is overexpressed at both the gene and protein levels, and its expression predicts a poor prognosis. Mechanistic studies have revealed that GPC3 functions in HCC progression by binding to molecules such as Wnt signaling proteins and growth factors. Moreover, GPC3 has been used as a target for molecular imaging and therapeutic intervention in HCC. To date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared imaging have been investigated for early HCC detection, and various immunotherapeutic protocols targeting GPC3 have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, treatment with peptide/DNA vaccines, immunotoxin therapies, and genetic therapies. In this review, we summarize the current knowledge regarding the structure, function, and biology of GPC3 with a focus on its clinical potential as a diagnostic molecule and a therapeutic target in HCC immunotherapy.
Collapse
Affiliation(s)
- Fubo Zhou
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
114
|
Ayerst BI, Merry CLR, Day AJ. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications. Pharmaceuticals (Basel) 2017; 10:E54. [PMID: 28608822 PMCID: PMC5490411 DOI: 10.3390/ph10020054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding 'promiscuity' means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
115
|
Topical co-administration of Pistacia atlantica hull and Quercus infectoria gall hydroethanolic extract improves wound-healing process. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
116
|
Zhou S, O’Gorman MRG, Yang F, Andresen K, Wang L. Glypican 3 as a Serum Marker for Hepatoblastoma. Sci Rep 2017; 7:45932. [PMID: 28378832 PMCID: PMC5381115 DOI: 10.1038/srep45932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver cancer in children. The conventional serum marker for HB, alpha-fetoprotein (AFP), has its limitations. Novel serum markers need to be explored. Glypican 3 (GPC3) has been reported to be an excellent histological immunomarker for HB. However, the clinical value of serum GPC3 in patients with HB is unknown. A total of 184 serum samples were tested for both GPC3 by ELISA, and AFP by immunometric assay. Of these, 134 were from 32 patients with HB at three treatment stages, 30 from age-matched patients with benign hepatobiliary disorders (BHD) and 20 from age-matched "normal controls"(NC). We found that the GPC3 levels in HB pretreatment group were significantly higher than those in NC group and HB remission group but not statistically different from those in BHD group and HB during treatment group. In contrast, AFP showed significant differences among different groups. The areas under the receiver operating curve (AUROC) value, sensitivity and specificity of GPC3 for HB pretreatment group versus all controls were all significantly lower than those of AFP. Serum GPC3 levels were not associated with prognostic parameters. We concluded that GPC3 is inferior to AFP as a serum marker for HB.
Collapse
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Maurice R. G. O’Gorman
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Kevin Andresen
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
117
|
Schmidt J, Hollstein R, Kaiser FJ, Gillessen-Kaesbach G. Molecular analysis of a novel intragenic deletion in GPC3
in three cousins with Simpson-Golabi-Behmel syndrome. Am J Med Genet A 2017; 173:1400-1405. [DOI: 10.1002/ajmg.a.38188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Julia Schmidt
- Institut für Humangenetik; Universität zu Lübeck; Lübeck Germany
| | - Ronja Hollstein
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck; Universität zu Lübeck; Lübeck Germany
| | - Frank J. Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck; Universität zu Lübeck; Lübeck Germany
| | | |
Collapse
|
118
|
Saad K, Theis S, Otto A, Luke G, Patel K. Detailed expression profile of the six Glypicans and their modifying enzyme, Notum during chick limb and feather development. Gene 2017; 610:71-79. [PMID: 28192166 DOI: 10.1016/j.gene.2017.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
119
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
120
|
Saad K, Otto A, Theis S, Kennerley N, Munsterberg A, Luke G, Patel K. Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube. Gene 2017; 609:38-51. [PMID: 28161389 DOI: 10.1016/j.gene.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
Abstract
Vertebrate development is orchestrated by secreted signalling molecules that regulate cell behaviour and cell fate decisions during early embryogenesis. The activity of key signalling molecules including members of Hedgehog, Bone Morphogenetic Proteins and Wnt families are regulated by Glypicans, a family of GPI linked polypeptides. Glypicans either promote or inhibit the action of signalling molecules and add a layer of complexity that needs to be understood in order to fully decipher the processes that regulate early vertebrate development. Here we present a detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis. Our results strongly suggest that these proteins have many as yet undiscovered roles to play during early embryogenesis. Finally, we have taken an experimental approach to investigate their role during the patterning of a key embryonic structure - the neural tube. In particular, we show that over-expression of Notum leads to the dorsalisation of this structure.
Collapse
Affiliation(s)
- Kawakeb Saad
- School of Biological Sciences, University of Reading, Reading, UK
| | - Anthony Otto
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Theis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Niki Kennerley
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Andrea Munsterberg
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ
| | - Graham Luke
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
121
|
Xu X, Lu Y, Li Y, Prinz RA. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8:284. [PMID: 29163356 PMCID: PMC5670164 DOI: 10.3389/fendo.2017.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy.
Collapse
Affiliation(s)
- Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Xiulong Xu, ,
| | - Yurong Lu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Richard A. Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, United States
| |
Collapse
|
122
|
Abstract
Glypican-3 (GPC3), a member of heparan sulfate proteoglycans, attaches to the cell membrane and is frequently observed to be elevated in hepatocellular carcinoma (HCC). However, GPC3 is not detected in normal liver tissues and benign liver lesions. Consequently, GPC3 is currently being used as a diagnostic biomarker and HCC-specific positron emission computed tomography probe to identify HCCs in normal liver tissues and benign liver lesions. The overexpression of GPC-3 in serum or liver tissue also predicts poor prognosis for HCC patients. In addition, GPC3 promotes HCC growth and metastasis by activating the canonical Wnt and other signaling pathways. Targeting of GPC3, including GC33, HN3 and YP7, might offer new immunotherapeutic tools for HCC treatment.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology and Hepatology
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, People’s Republic of China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology
| |
Collapse
|
123
|
Venero Galanternik M, Lush ME, Piotrowski T. Glypican4 modulates lateral line collective cell migration non cell-autonomously. Dev Biol 2016; 419:321-335. [DOI: 10.1016/j.ydbio.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
|
124
|
Mendes RB, Dias RB, Figueiredo AL, Gurgel CA, Santana Filho M, Melo LA, Trierveiler M, Cury PR, Leonardi R, Dos Santos JN. Glypican-3 distinguishes aggressive from non-aggressive odontogenic tumors: a preliminary study. J Oral Pathol Med 2016; 46:297-300. [PMID: 27647326 DOI: 10.1111/jop.12501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Glypican-3 is a cell surface proteoglycan that is found in embrionary tissues, and there are no studies investigating this protein in odontogenic tumor. Thus, the aim of this study was to investigate glypican-3 in a series of aggressive and non-aggressive odontogenic tumors. METHODS Fifty-nine cases of tumors were divided into aggressive odontogenic tumors (20 solid ameloblastomas, four unicystic ameloblastoma, 28 KOTs including five associated with Gorlin-Goltz syndrome) and non-aggressive odontogenic tumors (five adenomatoid odontogenic tumors and two calcifying cystic odontogenic tumors) and analyzed for glypican-3 using immunohistochemistry. RESULTS Glypican-3 was observed in seven solid ameloblastoma and eighteen keratocystic odontogenic tumors including three of the five syndromic cases, but there was no significant difference between syndromic and sporadic cases (P > 0.05; Fisher's exact Test). All cases of unicystic ameloblastoma (n = 4), adenomatoid odontogenic tumor (n = 5), and calcifying cystic odontogenic tumor (n = 2) were negative. CONCLUSIONS This provided insights into the presence of glypican-3 in odontogenic tumors. This protein distinguished aggressive from non-aggressive odontogenic tumors.
Collapse
Affiliation(s)
- Ramon Barreto Mendes
- Postgraduate Program in Human Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Rosane Borges Dias
- Postgraduate Program in Human Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Andreia Leal Figueiredo
- Department of Public Health, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Clarissa Araújo Gurgel
- Postgraduate Program in Human Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Manoel Santana Filho
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Araújo Melo
- Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Marília Trierveiler
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Patrícia Ramos Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rosalia Leonardi
- Department of Medical and Surgical Sciences, University of Catania, Catania, Italy
| | - Jean Nunes Dos Santos
- Postgraduate Program in Human Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil.,Laboratory of Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
125
|
Ly K, Essalmani R, Desjardins R, Seidah NG, Day R. An Unbiased Mass Spectrometry Approach Identifies Glypican-3 as an Interactor of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) in Hepatocellular Carcinoma Cells. J Biol Chem 2016; 291:24676-24687. [PMID: 27758865 DOI: 10.1074/jbc.m116.746883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
The mechanism of LDL receptor (LDLR) degradation mediated by the proprotein convertase subtilisin/kexin type 9 (PCSK9) has been extensively studied; however, many steps within this process remain unclear and still require characterization. Recent studies have shown that PCSK9 lacking its Cys/His-rich domain can still promote LDLR internalization, but the complex does not reach the lysosome suggesting the presence of an additional interaction partner(s). In this study we carried out an unbiased screening approach to identify PCSK9-interacting proteins in the HepG2 cells' secretome using co-immunoprecipitation combined with mass spectrometry analyses. Several interacting proteins were identified, including glypican-3 (GPC3), phospholipid transfer protein, matrilin-3, tissue factor pathway inhibitor, fibrinogen-like 1, and plasminogen activator inhibitor-1. We then validated these interactions by co-immunoprecipitation and Western blotting. Furthermore, functional validation was examined by silencing each candidate protein in HepG2 cells using short hairpin RNAs to determine their effect on LDL uptake and LDLR levels. Only GPC3 and phospholipid transfer protein silencing in HepG2 cells significantly increased LDL uptake in these cells and displayed higher total LDLR protein levels compared with control cells. Moreover, our study provides the first evidence that GPC3 can modulate the PCSK9 extracellular activity as a competitive binding partner to the LDLR in HepG2 cells.
Collapse
Affiliation(s)
- Kévin Ly
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and
| | - Rachid Essalmani
- the Institut de Recherches Cliniques de Montréal, Affiliated with Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Roxane Desjardins
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and
| | - Nabil G Seidah
- the Institut de Recherches Cliniques de Montréal, Affiliated with Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Robert Day
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and.
| |
Collapse
|
126
|
The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Lett 2016; 382:245-254. [PMID: 27666777 DOI: 10.1016/j.canlet.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022]
Abstract
Heparanase, the only known mammalian endoglycosidase degrading heparan sulfate (HS) chains of HS proteoglycans (HSPG), is a highly versatile protein affecting multiple events in tumor cells and their microenvironment. In several malignancies, deregulation of the heparanase/HSPG system has been implicated in tumor progression, hence representing a valuable therapeutic target. Currently, multiple agents interfering with the heparanase/HSPG axis are under clinical investigation. Sarcomas are characterized by a high biomolecular complexity and multiple levels of interconnection with microenvironment sustaining their growth and progression. The clinical management of advanced diseases remains a challenge. In several sarcoma subtypes, high levels of heparanase expression have been correlated with poor prognosis associated factors. On the other hand, expression of cell surface-associated HSPGs (i.e. glypicans and syndecans) has been found altered in specific sarcoma subtypes. Recent studies provided the preclinical proof-of-principle of the role of the heparanase/HSPG axis as therapeutic target in various sarcoma subtypes. Although currently there are no clinical trials evaluating agents targeting heparanase and/or HSPGs in sarcomas, we here provide arguments for this strategy as potentially able to implement the therapeutic options for sarcoma patients.
Collapse
|
127
|
Zhang L, Yang Z, Le Trinh T, Teng IT, Wang S, Bradley KM, Hoshika S, Wu Q, Cansiz S, Rowold DJ, McLendon C, Kim MS, Wu Y, Cui C, Liu Y, Hou W, Stewart K, Wan S, Liu C, Benner SA, Tan W. Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angew Chem Int Ed Engl 2016; 55:12372-5. [PMID: 27601357 DOI: 10.1002/anie.201605058] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Indexed: 01/11/2023]
Abstract
Laboratory in vitro evolution (LIVE) might deliver DNA aptamers that bind proteins expressed on the surface of cells. In this work, we used cell engineering to place glypican 3 (GPC3), a possible marker for liver cancer theranostics, on the surface of a liver cell line. Libraries were then built from a six-letter genetic alphabet containing the standard nucleobases and two added nucleobases (2-amino-8H-imidazo[1,2-a][1,3,5]triazin-4-one and 6-amino-5-nitropyridin-2-one), Watson-Crick complements from an artificially expanded genetic information system (AEGIS). With counterselection against non-engineered cells, eight AEGIS-containing aptamers were recovered. Five bound selectively to GPC3-overexpressing cells. This selection-counterselection scheme had acceptable statistics, notwithstanding the possibility that cells engineered to overexpress GPC3 might also express different off-target proteins. This is the first example of such a combination.
Collapse
Affiliation(s)
- Liqin Zhang
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Thu Le Trinh
- Department of Pathology, Immunology, and Laboratory Medicine, Gainesville, FL, 32611, USA
| | - I-Ting Teng
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sai Wang
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin M Bradley
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Qunfeng Wu
- Department of Pathology, Immunology, and Laboratory Medicine, Gainesville, FL, 32611, USA
| | - Sena Cansiz
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Diane J Rowold
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Christopher McLendon
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Myong-Sang Kim
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA
| | - Yuan Wu
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Cheng Cui
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Yuan Liu
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Weijia Hou
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Kimberly Stewart
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Shuo Wan
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, Gainesville, FL, 32611, USA.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Alachua, FL, 32615, USA.
| | - Weihong Tan
- Departments of Chemistry, Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA. .,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China.
| |
Collapse
|
128
|
Zhang L, Yang Z, Le Trinh T, Teng IT, Wang S, Bradley KM, Hoshika S, Wu Q, Cansiz S, Rowold DJ, McLendon C, Kim MS, Wu Y, Cui C, Liu Y, Hou W, Stewart K, Wan S, Liu C, Benner SA, Tan W. Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Liqin Zhang
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering; College of Biology; Collaborative Innovation Center for Chemistry and Molecular Medicine; Hunan University; Changsha 410082 China
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Thu Le Trinh
- Department of Pathology, Immunology, and Laboratory Medicine; Gainesville FL 32611 USA
| | - I-Ting Teng
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Sai Wang
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Qunfeng Wu
- Department of Pathology, Immunology, and Laboratory Medicine; Gainesville FL 32611 USA
| | - Sena Cansiz
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Diane J. Rowold
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Christopher McLendon
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Myong-Sang Kim
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Yuan Wu
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering; College of Biology; Collaborative Innovation Center for Chemistry and Molecular Medicine; Hunan University; Changsha 410082 China
| | - Cheng Cui
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Yuan Liu
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Weijia Hou
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Kimberly Stewart
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Shuo Wan
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine; Gainesville FL 32611 USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution; Firebird Biomolecular Sciences LLC; 13709 Progress Boulevard Alachua FL 32615 USA
| | - Weihong Tan
- Departments of Chemistry, Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; UF Health Cancer Center; UF Genetics Institute and McKnight Brain Institute; University of Florida; Gainesville FL 32611 USA
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering; College of Biology; Collaborative Innovation Center for Chemistry and Molecular Medicine; Hunan University; Changsha 410082 China
| |
Collapse
|
129
|
Ramsbottom SA, Pownall ME, Roelink H, Conway SJ. Regulation of Hedgehog Signalling Inside and Outside the Cell. J Dev Biol 2016; 4:23. [PMID: 27547735 PMCID: PMC4990124 DOI: 10.3390/jdb4030023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction.
Collapse
Affiliation(s)
- Simon A. Ramsbottom
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
- Correspondence: ; Tel.: +44-(0)191-241-8612
| | | | | | | |
Collapse
|
130
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
131
|
Ricard-Blum S, Gondelaud F. [Shuttling from the extracellular matrix to the nucleus]. Biol Aujourdhui 2016; 210:37-44. [PMID: 27286579 DOI: 10.1051/jbio/2016007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Several enzymes secreted in the extracellular space, such as matrix metalloproteinases and lysyl oxidase, are internalized and translocated to the nucleus, where they may act as proteases and transcription factors to regulate gene expression and enhance apoptosis. Membrane proteoglycan syndecans, glycosaminoglycans and an anti-angiogenic matricryptin of collagen XVIII have also been identified in the nucleus. The nuclear entry of most extracellular proteins is likely mediated by nuclear localizing sequences. The molecular mechanisms of nuclear import, the physiopathological contexts, which induce it, and the biological roles played in vivo by extracellular proteins and proteoglycans are still underexplored.
Collapse
|
132
|
Norman M, Vuilleumier R, Springhorn A, Gawlik J, Pyrowolakis G. Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife 2016; 5. [PMID: 27269283 PMCID: PMC4924993 DOI: 10.7554/elife.13301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.
Collapse
Affiliation(s)
- Mark Norman
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Robin Vuilleumier
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Alexander Springhorn
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Jennifer Gawlik
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - George Pyrowolakis
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| |
Collapse
|
133
|
Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma. PLoS One 2016; 11:e0156658. [PMID: 27249794 PMCID: PMC4889154 DOI: 10.1371/journal.pone.0156658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022] Open
Abstract
PAX8 is a thyroid-specific transcription factor whose expression is dysregulated in thyroid cancer. A recent study using a conditional knock-out mouse model identified 58 putative PAX8 target genes. In the present study, we evaluated the expression of 11 of these genes in normal and tumoral thyroid tissues from patients with papillary thyroid cancer (PTC). ATP1B1, GPC3, KCNIP3, and PRLR transcript levels in tumor tissues were significantly lower in PTCs than in NT, whereas LCN2, LGALS1 and SCD1 expression was upregulated in PTC compared with NT. Principal component analysis of the expression of the most markedly dysregulated PAX8 target genes was able to discriminate between PTC and NT. Immunohistochemistry was used to assess levels of proteins encoded by the two most dyregulated PAX8 target genes, LCN2 and GPC3. Interestingly, GPC3 was detectable in all of the NT samples but none of the PTC samples. Collectively, these findings point to significant PTC-associated dysregulation of several PAX8 target genes, supporting the notion that PAX8-regulated molecular cascades play important roles during thyroid tumorigenesis.
Collapse
|
134
|
Yuan S, Yu Z, Liu Q, Zhang M, Xiang Y, Wu N, Wu L, Hu Z, Xu B, Cai T, Ma X, Zhang Y, Liao C, Wang L, Yang P, Bai L, Li Y. GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene 2016; 35:6120-6131. [DOI: 10.1038/onc.2016.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
|
135
|
Ludwig K, Volpe A, Guzzardo V, Santoro L, Midrio P, Gamba P, Alaggio R. Anti-Glypican 3, a Novel Ancillary Maker in the Histological Assessment of Hirschsprung's Disease. J Pediatr Gastroenterol Nutr 2016; 62:692-7. [PMID: 26513623 DOI: 10.1097/mpg.0000000000001020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Hirschsprung's disease (HSCR) results from a malformation of the enteric nervous system. A congenital absence of intrinsic ganglion cells from the distal rectum and a variable length of the contiguous bowel is the required diagnostic feature of Hirschsprung's disease and total colonic aganglionosis (TCA). We evaluated the utility of a monoclonal antibody directed against glypican 3 (GPC-3), a membrane bound protein involved in regulation of the signaling of Wingless-types (WNTs), Hedgehogs (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), in the detection of ganglion cells in formalin-fixed, paraffin-embedded tissue sections. METHODS The presence/absence of ganglion cells was evaluated retrospectively by immunohistochemical staining for calretinin and GPC-3 in tissue specimens; a total of 15 patients who underwent colectomy (total or sub-total) for histologically proven aganglionosis (14 HSCR, 1 TCA) and 5 rectal suction biopsies (4HSCR-B, 1 TCA-B) were considered. Of the 20 considered cases, a total of 60 tissue specimens (3 for each patient) were selected. A total of 30 additional normal (N) colonic mucosa biopsy samples were also included. RESULTS GPC-3 constantly identified ganglion cell bodies in all but 2 normal biopsies (with normal presentation of ganglion cells on hematoxylin and eosin (H&E) stain), and was negative in all 60 aganglionotic biopsies; these results were reflective of calretinin staining pattern. CONCLUSIONS The present study indicates that monoclonal anti-GPC-3 might prove to be useful immunohistochemical marker in the identification of ganglion cells in paraffin-embedded rectal tissue specimens and suction biopsies. Further studies in larger series will contribute to demonstrate its utility as an ancillary marker in the histological assessment of HSCR aganglionosis.
Collapse
Affiliation(s)
- Kathrin Ludwig
- *Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua †Division of Pediatric Surgery, Department of Pediatrics Salus Pueri, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
136
|
The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage. Eur J Pharmacol 2016; 787:32-42. [PMID: 27112663 DOI: 10.1016/j.ejphar.2016.04.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
Abstract
Primary open angle glaucoma (POAG) is an optic neuropathy and an irreversible blinding disease. The etiology of glaucoma is not known but numerous risk factors are associated with this disease including aging, elevated intraocular pressure (IOP), race, myopia, family history and use of steroids. In POAG, the resistance to the aqueous humor drainage is increased leading to elevated IOP. Lowering the resistance and ultimately the IOP has been the only way to slow disease progression and prevent vision loss. The primary drainage pathway comprising of the trabecular meshwork (TM) is made up of relatively large porous beams surrounded by extracellular matrix (ECM). Its juxtacanalicular tissue (JCT) or the cribriform meshwork is made up of cells embedded in dense ECM. The JCT is considered to offer the major resistance to the aqueous humor outflow. This layer is adjacent to the endothelial cells forming Schlemm's canal, which provides approximately 10% of the outflow resistance. The ECM in the TM and the JCT undergoes continual remodeling to maintain normal resistance to aqueous humor outflow. It is believed that the TM is a major contributor of ECM proteins and evidence points towards increased ECM deposition in the outflow pathway in POAG. It is not clear how and from where the ECM components emerge to hinder the normal aqueous humor drainage. This review focuses on the involvement of the ECM in ocular hypertension and glaucoma and the mechanisms by which various ocular hypotensive drugs, both current and emerging, target ECM production, remodeling, and deposition.
Collapse
|
137
|
Nakato H, Li JP. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:275-93. [PMID: 27241223 DOI: 10.1016/bs.ircmb.2016.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are a class of carbohydrate-modified proteins involved in key biological processes, including growth factor signaling, cell adhesion, and enzymatic catalysis. HSPGs serve as coreceptors for a number of ligand molecules to regulate their signaling and distribution. These HS-dependent factors include fibroblast growth factors, bone morphogenetic proteins, Wnt-related factors, hedgehog, and cytokines. Several classes of HSPGs are evolutionarily conserved from humans to the genetically tractable model organism Drosophila. Sophisticated molecular genetic tools available in Drosophila provide for a powerful system to address unanswered questions regarding in vivo functions of HSPGs. These studies have highlighted the functions of HSPGs in the regulation of significant developmental events, such as morphogen gradient formation, nervous system formation, and the stem cell niche. Drosophila genetics has also established HSPGs as key factors in feedback controls that ensure robustness in developmental systems.
Collapse
Affiliation(s)
- H Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - J-P Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
138
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
139
|
Mujezinović F, Krgović D, Blatnik A, Zagradišnik B, Vipotnik TV, Golec TČ, Tul N, Vokač NK. Simpson-Golabi-Behmel syndrome: a prenatal diagnosis in a foetus withGPC3andGPC4gene microduplications. Clin Genet 2016; 90:99-101. [DOI: 10.1111/cge.12725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Affiliation(s)
- F Mujezinović
- Department of Perinatology, Division of Gynaecology and Perinatology; University Medical Centre Maribor; Maribor Slovenia
| | - D Krgović
- Laboratory of Medical Genetics; University Medical Centre Maribor; Maribor Slovenia
| | - A Blatnik
- Laboratory of Medical Genetics; University Medical Centre Maribor; Maribor Slovenia
| | - B Zagradišnik
- Laboratory of Medical Genetics; University Medical Centre Maribor; Maribor Slovenia
| | - TV Vipotnik
- Department of Radiology; University Medical Centre Ljubljana; Ljubljana Slovenia
| | - TČ Golec
- Institute of Pathology, Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - N Tul
- Department of Perinatology, Division of Obstetrics and Gynaecology; University Medical Centre Ljubljana; Ljubljana Slovenia
| | - N Kokalj Vokač
- Laboratory of Medical Genetics; University Medical Centre Maribor; Maribor Slovenia
- Faculty of Medicine; University of Maribor; Maribor Slovenia
| |
Collapse
|
140
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1554] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
141
|
LUO WEIQING, REN ZHIGANG, GAO SHENG, JIN HAILONG, ZHANG GEER, ZHOU LIN, ZHENG SHUSEN. Clinical correlation of calpain-1 and glypican-3 expression with gallbladder carcinoma. Oncol Lett 2016; 11:1345-1352. [PMID: 26893741 PMCID: PMC4734278 DOI: 10.3892/ol.2016.4079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 11/27/2015] [Indexed: 11/30/2022] Open
Abstract
Gallbladder carcinoma (GBC) possesses a poor prognosis, which is primarily attributed to the lack of early and timely surgical intervention. Calpain-1 and glypican-3 have been implicated in the progression of various types of cancer. The present study aimed to detect the expression of calpain-1 and glypican-3 in GBC, and analyzed whether the expression levels of these proteins correlated with any clinicopathological variables. A total of 100 patients with GBC and 30 patients with cholecystitis who accepted surgical treatment were enrolled in the present study. Pathological and clinical data were obtained from all patients. The expression of calpain-1 and glypican-3 was detected in paraffin-embedded tissues by immunohistochemistry. Calpain-1 expression was manually assessed with an immunohistochemical H-score with a slight modification. Glypican-3 expression was assessed as negative and positive. The correlations between protein expression and clinicopathological characteristics, and the associations between the proteins were analyzed. All patients exhibited positive expression of calpain-1. Notably, the high expression rate of calpain-1 was significantly increased in patients with GBC, compared with patients with cholecystitis (32.0 vs. 6.7%; χ2=7.668; P=0.006), suggesting that calpain-1 expression may be associated with progression from cholecystitis to GBC. In addition, the positive rate of glypican-3 expression was 53.0% in patients with GBC and 63.3% in patients with cholecystitis, with no significant difference (χ2=0.997; P=0.318). Furthermore, the expression of calpain-1 and glypican-3 had no significant correlation with gender, age, degree of tumor differentiation and tumor-node-metastasis classification in patients with GBC. Notably, the expression of calpain-1 and glypican-3 displayed a significant positive correlation in patients with GBC (r=0.517; P<0.01), but a significantly negative correlation (r=-0.856; P<0.01) in patients with cholecystitis. In conclusion, calpain-1 expression may be associated with progression from cholecystitis to GBC. Combined detection of calpain-1 and glypican-3 may be beneficial for prognosis assessment of GBC.
Collapse
Affiliation(s)
- WEIQING LUO
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
- Department of General Surgery, The People's Hospital of Deqing County, Huzhou, Zhejiang 313200, P.R. China
| | - ZHIGANG REN
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - SHENG GAO
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - HAILONG JIN
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - GEER ZHANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - LIN ZHOU
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - SHUSEN ZHENG
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
142
|
Haruyama Y, Kataoka H. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J Gastroenterol 2016; 22:275-283. [PMID: 26755876 PMCID: PMC4698492 DOI: 10.3748/wjg.v22.i1.275] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Glypican-3 (GPC3) is a cell surface oncofetal proteoglycan that is anchored by glycosylphosphatidylinositol. Whereas GPC3 is abundant in fetal liver, its expression is hardly detectable in adult liver. Importantly, GPC3 is overexpressed in hepatocellular carcinoma (HCC), and several immunohistochemical studies reported that overexpression predicts a poorer prognosis for HCC patients. Therefore, GPC3 would serve as a useful molecular marker for HCC diagnosis and also as a target for therapeutic intervention in HCC. Indeed, some immunotherapy protocols targeting GPC3 are under investigations; those include humanized anti-GPC3 cytotoxic antibody, peptide vaccine and immunotoxin therapies. When considering the clinical requirements for GPC3-targeting therapy, companion diagnostics to select the appropriate HCC patients are critical, and both immunohistochemical analysis of tissue sections and measurement of serum GPC3 level have been suggested for this purpose. This review summarizes current knowledge regarding the clinical implication of GPC3 detection and targeting in the management of patients with HCC.
Collapse
|
143
|
Halayem S, Hamza M, Maazoul F, Ben Turkia H, Touati M, Tebib N, Mrad R, Bouden A. Distinctive findings in a boy with Simpson-Golabi-Behmel syndrome. Am J Med Genet A 2015; 170A:1035-9. [DOI: 10.1002/ajmg.a.37518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 12/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Soumeyya Halayem
- Department of Child Psychiatry; Razi Hospital; Manouba Tunisia
- Faculty of Medicine of Tunis; Tunis Tunisia
| | - Mariem Hamza
- Faculty of Medicine of Tunis; Tunis Tunisia
- Department of Child Psychiatry; Mongi Slim Hospital; La Marsa Tunisia
| | - Faouzi Maazoul
- Department of Human Genetics; Charles Nicolle Hospital; Tunis Tunisia
| | - Hadhemi Ben Turkia
- Faculty of Medicine of Tunis; Tunis Tunisia
- Department of Pediatrics; La Rabta Hospital; Tunis Tunisia
| | - Maissa Touati
- Department of Child Psychiatry; Razi Hospital; Manouba Tunisia
| | - Neji Tebib
- Faculty of Medicine of Tunis; Tunis Tunisia
- Department of Pediatrics; La Rabta Hospital; Tunis Tunisia
| | - Ridha Mrad
- Faculty of Medicine of Tunis; Tunis Tunisia
- Department of Human Genetics; Charles Nicolle Hospital; Tunis Tunisia
| | - Asma Bouden
- Department of Child Psychiatry; Razi Hospital; Manouba Tunisia
- Faculty of Medicine of Tunis; Tunis Tunisia
| |
Collapse
|
144
|
Faria-Oliveira F, Carvalho J, Ferreira C, Hernáez ML, Gil C, Lucas C. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiol 2015; 15:271. [PMID: 26608260 PMCID: PMC4660637 DOI: 10.1186/s12866-015-0550-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022] Open
Abstract
Background Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods S. cerevisiae W303-1A wt strain and gup1∆ mutant were used as previously described to generate biofilm-like mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133. Conclusions yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1∆ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.
Collapse
Affiliation(s)
- Fábio Faria-Oliveira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Carvalho
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Célia Ferreira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria Luisa Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain.,Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Cândida Lucas
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
145
|
Nagarajan U, Pakkiriswami S, Pillai AB. Sugar tags and tumorigenesis. Front Cell Dev Biol 2015; 3:69. [PMID: 26583080 PMCID: PMC4631993 DOI: 10.3389/fcell.2015.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/19/2015] [Indexed: 02/01/2023] Open
Affiliation(s)
- Usha Nagarajan
- School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | | | - Agieshkumar B Pillai
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth Puducherry, India
| |
Collapse
|
146
|
Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2015; 7:1554-85. [PMID: 26270676 PMCID: PMC4586784 DOI: 10.3390/cancers7030851] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - Anette Szczepny
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
- UNSW Faculty of Medicine, Randwick, New South Wales 2031, Australia.
- Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia.
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
147
|
Glypican Is a Modulator of Netrin-Mediated Axon Guidance. PLoS Biol 2015; 13:e1002183. [PMID: 26148345 PMCID: PMC4493048 DOI: 10.1371/journal.pbio.1002183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor-expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration.
Collapse
|
148
|
Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS One 2015; 10:e0126562. [PMID: 25978455 PMCID: PMC4433180 DOI: 10.1371/journal.pone.0126562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of genes showed by expression profiling to the neoplastic transformation of human fibroblasts and human mesenchymal stem cells (hMSC).
Collapse
|
149
|
Ortmann C, Pickhinke U, Exner S, Ohlig S, Lawrence R, Jboor H, Dreier R, Grobe K. Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans. J Cell Sci 2015; 128:2374-85. [PMID: 25967551 DOI: 10.1242/jcs.170670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
All Hedgehog morphogens are released from producing cells, despite being synthesized as N- and C-terminally lipidated molecules, a modification that firmly tethers them to the cell membrane. We have previously shown that proteolytic removal of both lipidated peptides, called shedding, releases bioactive Sonic hedgehog (Shh) morphogens from the surface of transfected Bosc23 cells. Using in vivo knockdown together with in vitro cell culture studies, we now show that glypican heparan sulfate proteoglycans regulate this process, through their heparan sulfate chains, in a cell autonomous manner. Heparan sulfate specifically modifies Shh processing at the cell surface, and purified glycosaminoglycans enhance the proteolytic removal of N- and C-terminal Shh peptides under cell-free conditions. The most likely explanation for these observations is direct Shh processing in the extracellular compartment, suggesting that heparan sulfate acts as a scaffold or activator for Shh ligands and the factors required for their turnover. We also show that purified heparan sulfate isolated from specific cell types and tissues mediates the release of bioactive Shh from pancreatic cancer cells, revealing a previously unknown regulatory role for these versatile molecules in a pathological context.
Collapse
Affiliation(s)
- Corinna Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Ute Pickhinke
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Sebastian Exner
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hamodah Jboor
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rita Dreier
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| | - Kay Grobe
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
150
|
Song JY, Holtz AM, Pinskey JM, Allen BL. Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev Biol 2015; 402:239-52. [PMID: 25848697 DOI: 10.1016/j.ydbio.2015.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/03/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023]
Abstract
Proper levels of Hedgehog (HH) signaling are essential during embryonic development and adult tissue homeostasis. A central mechanism to control HH pathway activity is through the regulation of secreted HH ligands at the plasma membrane. Recent studies have revealed a collective requirement for the cell surface co-receptors GAS1, CDON and BOC in HH signal transduction. Despite their requirement in HH pathway function, the mechanisms by which these proteins act to promote HH signaling remain poorly understood. Here we focus on the function of the two structurally related co-receptors, CDON and BOC. We utilized an in vivo gain-of-function approach in the developing chicken spinal cord to dissect the structural requirements for CDON and BOC function in HH signal transduction. Notably, we find that although CDON and BOC display functional redundancy during HH-dependent ventral neural patterning, these molecules utilize distinct molecular mechanisms to execute their HH-promoting effects. Specifically, we define distinct membrane attachment requirements for CDON and BOC function in HH signal transduction. Further, we identify novel and separate extracellular motifs in CDON and BOC that are required to promote HH signaling. Together, these data suggest that HH co-receptors employ distinct mechanisms to mediate HH pathway activity.
Collapse
Affiliation(s)
- Jane Y Song
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justine M Pinskey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|