101
|
Coursey TG, Chen PW, Niederkorn JY. IFN-γ-independent intraocular tumor rejection is mediated by a macrophage-dependent process that leaves the eye intact. J Leukoc Biol 2012; 92:939-50. [PMID: 22693246 DOI: 10.1189/jlb.0312122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intraocular tumors reside in an immune-privileged site, yet in certain circumstances, they can undergo immune rejection. Ocular tumor rejection can follow one of two pathways. One pathway is CD4(+) T cell-dependent and culminates in ischemic necrosis of the tumor and phthisis (atrophy) of the eye. A second pathway is also CD4(+) T cell-dependent but does not inflict collateral injury to ocular tissues, and the eye is preserved. We isolated two clones of a murine tumor, Ad5E1 that undergo profoundly different forms of immune rejection in the eye. Clone 2.1 tumors undergo an ischemic necrotizing form of rejection that requires IFN-γ, T cells, and ocular macrophages and culminates in destruction of the eye. By contrast, the second clone of Ad5E1, clone 4, undergoes rejection that also requires T cells and ocular macrophages, but leaves the eye in pristine condition (nonphthisical rejection). Here, we demonstrate that nonphthisical tumor rejection of clone 4 tumors is IFN-γ-independent but requires an ocular macrophage population that contains M1 and M2 macrophages. Clone 4 tumor-bearing eyes displayed ten- and 15-fold increases in M2- and M1-associated markers Arg1 and NO2, respectively. This is in sharp contrast to previous results with clone 2.1 tumor rejection, in which M2 markers were undetectable, and the eye was destroyed. These results suggest that the presence of M2 macrophages tempers the immune rejection of intraocular tumors and promotes immune effectors that inflict minimal injury to innocent bystander cells and thereby preserve the integrity and function of the eye.
Collapse
Affiliation(s)
- Terry G Coursey
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA
| | | | | |
Collapse
|
102
|
Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012; 13:395-406. [PMID: 22595785 DOI: 10.1038/nrn3228] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are cysteine proteases that mediate apoptosis, which is a form of regulated cell death that effectively and efficiently removes extra and unnecessary cells during development. In the mature nervous system, caspases are not only involved in mediating cell death but also regulatory events that are important for neural functions, such as axon pruning and synapse elimination, which are necessary to refine mature neuronal circuits. Furthermore, caspases can be reactivated to cause cell death as well as non-lethal changes in neurons during numerous pathological processes. Thus, although a global activation of caspases leads to apoptosis, restricted and localized activation may control normal physiology and pathophysiology in living neurons. This Review explores the multiple roles of caspase activity in neurons.
Collapse
Affiliation(s)
- Bradley T Hyman
- Neurology Service, Massachusetts General Hospital, 114 16th Street Charlestown, Massachusetts 01029, USA.
| | | |
Collapse
|
103
|
Abstract
Caspases are a family of cysteine proteases that play key roles in programmed cell death (apoptosis). Mounting evidence in recent years shows that caspases also have important non-apoptotic functions in multiple cellular processes, such as synaptic plasticity, dendritic development, learning and memory. In this article, we review the studies on the non-apoptotic functions of caspases in neurons, with a focus on their roles in synaptic plasticity, learning and memory and neurodegeneration.
Collapse
Affiliation(s)
- Zheng Li
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
104
|
Zhu Q, Gao L, Chen Z, Zheng S, Shu H, Li J, Jiang H, Liu S. A novel class of small-molecule caspase-3 inhibitors prepared by multicomponent reactions. Eur J Med Chem 2012; 54:232-8. [PMID: 22652225 DOI: 10.1016/j.ejmech.2012.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
A series of tetra- and pentasubstituted polyfunctional dihydropyrroles 5 and 6 were synthesized via practical multicomponent reactions (MCRs) for research on their structure-activity relationship as caspase-3 inhibitors. Among 39 compounds evaluated, 14 of them exhibited inhibition against caspase-3 with IC(50) ranging from 5 to 20 μM. The inhibitory activities of 5 and 6 depend on the nature of substituents on different positions. 5 and 6 possess a different scaffold from those previously reported and are the first caspase-3 inhibitors prepared via MCRs. The most active compounds 5k (IC(50) = 5.27 μM) could therefore be used as a lead for the development of highly potent caspase-3 inhibitors as drug candidates for therapeutic agents by taking advantage of MCRs.
Collapse
Affiliation(s)
- Qiuhua Zhu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Northern Guangzhou Road, Guangzhou, Guangdong 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Goldberg AA, Beach A, Davies GF, Harkness TAA, Leblanc A, Titorenko VI. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2012; 2:761-82. [PMID: 21992775 PMCID: PMC3248158 DOI: 10.18632/oncotarget.338] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, SK-n-SH, SK-n-MCIXC and Lan-1. In BE(2)-m17, SK-n-SH and SK-n-MCIXC cells, the LCA anti-tumor effect is due to apoptotic cell death. In contrast, the LCA-triggered death of Lan-1 cells is not caused by apoptosis. While low concentrations of LCA sensitize BE(2)-m17 and SK-n-MCIXC cells to hydrogen peroxide-induced apoptotic cell death controlled by mitochondria, these LCA concentrations make primary cultures of human neurons resistant to such a form of cell death. LCA kills BE(2)-m17 and SK-n-MCIXC cell lines by triggering not only the intrinsic (mitochondrial) apoptotic cell death pathway driven by mitochondrial outer membrane permeabilization and initiator caspase-9 activation, but also the extrinsic (death receptor) pathway of apoptosis involving activation of the initiator caspase-8. Based on these data, we propose a mechanism underlying a potent and selective anti-tumor effect of LCA in cultured human NB cells. Moreover, our finding that LCA kills cultured human breast cancer and rat glioma cells implies that it has a broad anti-tumor effect on cancer cells derived from different tissues and organisms.
Collapse
|
106
|
Mandel-Gutfreund Y, Kosti I, Larisch S. ARTS, the unusual septin: structural and functional aspects. Biol Chem 2012; 392:783-90. [PMID: 21824006 DOI: 10.1515/bc.2011.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human Septin 4 gene (Sept4) encodes two major protein isoforms; Sept4_i1 (H5/PNUTL2) and Sept4_i2/ARTS. Septins have been traditionally studied for their role in cytokinesis and their filament-forming abilities, but subsequently have been implicated in diverse functions, including membrane dynamics, cytoskeletal reorganization, vesicle trafficking, and tumorigenesis. ARTS is localized at mitochondria and promotes programmed cell death (apoptosis). These features distinguish ARTS from any other known human septin family member. This review compares the structural and functional properties of ARTS with other septins. In addition, it describes how a combination of two distinct promoters, differential splicing, and intron retention leads to the generation of two different Sept4 variants with diverse biological activity.
Collapse
Affiliation(s)
- Yael Mandel-Gutfreund
- Computational Molecular Biology Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
107
|
Ayyash M, Tamimi H, Ashhab Y. Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome. BMC Bioinformatics 2012; 13:14. [PMID: 22269041 PMCID: PMC3324375 DOI: 10.1186/1471-2105-13-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background Caspases are a family of cysteinyl proteases that regulate apoptosis and other biological processes. Caspase-3 is considered the central executioner member of this family with a wide range of substrates. Identification of caspase-3 cellular targets is crucial to gain further insights into the cellular mechanisms that have been implicated in various diseases including: cancer, neurodegenerative, and immunodeficiency diseases. To date, over 200 caspase-3 substrates have been identified experimentally. However, many are still awaiting discovery. Results Here, we describe a powerful bioinformatics tool that can predict the presence of caspase-3 cleavage sites in a given protein sequence using a Position-Specific Scoring Matrix (PSSM) approach. The present tool, which we call CAT3, was built using 227 confirmed caspase-3 substrates that were carefully extracted from the literature. Assessing prediction accuracy using 10 fold cross validation, our method shows AUC (area under the ROC curve) of 0.94, sensitivity of 88.83%, and specificity of 89.50%. The ability of CAT3 in predicting the precise cleavage site was demonstrated in comparison to existing state-of-the-art tools. In contrast to other tools which were trained on cleavage sites of various caspases as well as other similar proteases, CAT3 showed a significant decrease in the false positive rate. This cost effective and powerful feature makes CAT3 an ideal tool for high-throughput screening to identify novel caspase-3 substrates. The developed tool, CAT3, was used to screen 13,066 human proteins with assigned gene ontology terms. The analyses revealed the presence of many potential caspase-3 substrates that are not yet described. The majority of these proteins are involved in signal transduction, regulation of cell adhesion, cytoskeleton organization, integrity of the nucleus, and development of nerve cells. Conclusions CAT3 is a powerful tool that is a clear improvement over existing similar tools, especially in reducing the false positive rate. Human proteome screening, using CAT3, indicate the presence of a large number of possible caspase-3 substrates that exceed the anticipated figure. In addition to their involvement in various expected functions such as cytoskeleton organization, nuclear integrity and adhesion, a large number of the predicted substrates are remarkably associated with the development of nerve tissues.
Collapse
Affiliation(s)
- Muneef Ayyash
- Biotechnology Research Centre, Palestine Polytechnic University, Hebron, Palestine
| | | | | |
Collapse
|
108
|
Abstract
Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.
Collapse
|
109
|
Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. THE JOURNAL OF IMMUNOLOGY 2012; 188:1992-2000. [PMID: 22246630 DOI: 10.4049/jimmunol.1101620] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-1β and IL-18 are crucial regulators of inflammation and immunity. Both cytokines are initially expressed as inactive precursors, which require processing by the protease caspase-1 for biological activity. Caspase-1 itself is activated in different innate immune complexes called inflammasomes. In addition, caspase-1 activity regulates unconventional protein secretion of many other proteins involved in inflammation and repair. Human caspase-4 is a poorly characterized member of the caspase family, which is supposed to be involved in endoplasmic reticulum stress-induced apoptosis. However, its gene is located on the same locus as the caspase-1 gene, which raises the possibility that caspase-4 plays a role in inflammation. In this study, we show that caspase-4 expression is required for UVB-induced activation of proIL-1β and for unconventional protein secretion by skin-derived keratinocytes. These processes require expression of the nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 inflammasome, and caspase-4 physically interacts with its central molecule caspase-1. As the active site of caspase-4 is required for activation of caspase-1, the latter most likely represents a substrate of caspase-4. Caspase-4 expression is also essential for efficient nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 and for absent in melanoma 2 inflammasome-dependent proIL-1β activation in macrophages. These results demonstrate an important role of caspase-4 in inflammation and innate immunity through activation of caspase-1. Therefore, caspase-4 represents a novel target for the treatment of (auto)inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Sollberger
- Department of Biology, Institute of Cell Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
110
|
Moodley D, Mody GM, Chuturgoon AA. Initiation but no execution - modulation of peripheral blood lymphocyte apoptosis in rheumatoid arthritis - a potential role for heat shock protein 70. JOURNAL OF INFLAMMATION-LONDON 2011; 8:30. [PMID: 22047640 PMCID: PMC3215641 DOI: 10.1186/1476-9255-8-30] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/03/2011] [Indexed: 11/30/2022]
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease, which causes synovial damage. Persistence of lymphocyte infiltrates in the rheumatoid synovium has been attributed to abnormal apoptosis. While not comprehensively investigated, perturbations in peripheral blood lymphocyte (PBL) apoptosis may also be involved in perpetuation of autoimmune processes in RA. Methods We investigated total, CD4+ and CD19+ PBL apoptosis in our study cohort by monitoring the translocation of phosphatidylserine using the Annexin-V assay. To examine the role of death receptor mediated apoptosis as well as activation-induced-cell-death (AICD), PBLs were labeled with CD95/Fas and CD69 markers and enumerated by flow cytometry. Proteolytic activity of initiator and executioner caspases was determined by luminometry. DNA fragmentation assays were used to examine whether apoptotic signals were transduced to the nucleus. Quantitative PCR arrays were used to investigate apoptotic pathways associated with RA-PBLs. Since heat-shock-protein-70 (HSP70) is an inducible protein which modulates apoptotic signals, we determined HSP70 levels by intra-cellular flow cytometry and western blots. Results The RA-PBLs showed signs of elevated apoptosis whilst in circulation. These include increases in the loss of plasma membrane asymmetry, indicated by increased externalization of phosphatidylserine (especially in B-lymphocytes). RA-PBLs showed a bias to CD95/Fas mediated apoptotic pathways, but low levels of the CD69 marker suggested that this was not associated with immune activation. Although downstream markers of apoptosis such as caspase-3/7 activity, were increased, no DNA fragmentation was observed in RA-PBLs. Interestingly, elevated levels of apoptosis did not correlate with absolute lymphocyte counts in RA patients. Levels of HSP70 were highly elevated in RA-PBLs compared to controls. Conclusion The results suggest that while apoptosis may be initiated in RA-PBLs, they may lack commitment to fully executing the apoptotic program. This may be related to inhibition on apoptotic transduction by HSP70. This study provides evidence that abnormalities in RA-PBLs apoptosis may occur whilst still in circulation and may contribute to pathogenesis of the disease.
Collapse
Affiliation(s)
- Devapregasan Moodley
- Discipline of Medical Biochemistry, Faculty of Health Sciences, University of KwaZulu-Natal, Private Bag 7, Congella, 4013, Durban, South Africa.
| | | | | |
Collapse
|
111
|
Häcker HG, Sisay MT, Gütschow M. Allosteric modulation of caspases. Pharmacol Ther 2011; 132:180-95. [DOI: 10.1016/j.pharmthera.2011.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022]
|
112
|
Abstract
The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2330, USA.
| | | |
Collapse
|
113
|
Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci 2011; 31:10494-505. [PMID: 21775595 DOI: 10.1523/jneurosci.0148-11.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with Z-VEID-FMK, a selective inhibitor of caspase-6, enhanced ganglion cell survival. Moreover, retinal explants treated with this drug extended neurites on myelin. We also show that caspase-6 inhibition resulted in improved ganglion cell survival and robust axonal regeneration following optic nerve injury in adult rats. The effects of Z-VEID-FMK were similar to other caspase inhibitory peptides including Z-LEHD-FMK and Z-VAD-FMK. In searching for downstream effectors for caspase-6, we identified caspase-8, whose expression pattern resembled that of caspase-6 in the injured eye. We then showed that caspase-8 is activated downstream of caspase-6 in the injured adult retina. Furthermore, we investigated the role of caspase-8 in RGC apoptosis and regenerative failure both in vitro and in vivo. We observed that caspase-8 inhibition by Z-IETD-FMK promoted survival and regeneration to an extent similar to that obtained with caspase-6 inhibition. Our results indicate that caspase-6 and caspase-8 are components of a cellular pathway that prevents neuronal survival and regeneration in the adult mammalian CNS.
Collapse
|
114
|
Groh KJ, Nesatyy VJ, Segner H, Eggen RIL, Suter MJF. Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:619-647. [PMID: 21229308 PMCID: PMC3146978 DOI: 10.1007/s10695-010-9464-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomics.
Collapse
Affiliation(s)
- Ksenia J. Groh
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Victor J. Nesatyy
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
- Present Address: EPFL, Station 15, 1015 Lausanne, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, Postbox 8466, 3001 Bern, Switzerland
| | - Rik I. L. Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Marc J.-F. Suter
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
115
|
Abstract
The caspases are a family of cysteine proteases that function as central regulators of cell death. Recent investigations in Caenorhabditis elegans, Drosophila, and mice indicate that caspases are essential not only in controlling the number of cells involved in sculpting or deleting structures in developing animals, but also in dynamic cell processes such as cell-fate determination, compensatory proliferation of neighboring cells, and actin cytoskeleton reorganization, in a non-apoptotic context during development. This review focuses primarily on caspase functions involving their enzymatic activity.
Collapse
Affiliation(s)
- Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
| |
Collapse
|
116
|
Abstract
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.
Collapse
Affiliation(s)
| | | | - Marcin DRAG
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, POLAND
| | - Jean-Bernard DENAULT
- Corresponding author: Jean-Bernard Denault, Université de Sherbrooke, Faculty of medicine and health sciences, Pharmacology department, 3001, 12th Avenue North, Sherbrooke QC, J1H 5N4, CANADA, Phone: +1-819-820-6868 x12789, Fax: +1-819-564-5400,
| |
Collapse
|
117
|
Zamyatnin AA, Lyamzaev KG, Zinovkin RA. A-to-I RNA editing: a contribution to diversity of the transcriptome and an organism's development. BIOCHEMISTRY (MOSCOW) 2011; 75:1316-23. [PMID: 21314598 DOI: 10.1134/s0006297910110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complexity of multicellular organisms requires both an increase in genetic information and fine tuning in regulation of gene expression. One of the mechanisms responsible for these functions is RNA editing. RNA editing is a complex process affecting the mechanism of changes in transcriptome sequences. The best studied example of this process is A-to-I RNA editing. On the organism's level, RNA editing plays a key role during ontogenesis and in the defense against pathogens. Disorders in A-to-I RNA editing lead to serious abnormalities. The importance of RNA editing increases with an increase in the organism's complexity. Correct RNA editing is an indispensable factor of an organism's development and probably determines the lifespan of higher eukaryotes.
Collapse
Affiliation(s)
- A A Zamyatnin
- Institute of Mitoengineering and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | |
Collapse
|
118
|
Affiliation(s)
- Shawn B Bratton
- Division of Pharmacology and Toxicology, College of Pharmacy, and Center for Molecular and Cellular Toxicology, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712-0125, USA.
| | | |
Collapse
|
119
|
Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov 2011; 10:221-37. [PMID: 21358741 DOI: 10.1038/nrd3373] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death has an important role in many human diseases, and strategies aimed at modulating the associated pathways have been successfully applied to treat various disorders. Indeed, several clinically promising cytotoxic and cytoprotective agents with potential applications in cancer, ischaemic and neurodegenerative diseases have recently been identified by high-throughput screening (HTS), based on appropriate cell death assays. Given that different cell death modalities may be dysregulated in different diseases, it is becoming increasingly clear that such assays need to not only quantify the extent of cell death, but they must also be able to distinguish between the various pathways. Here, we systematically describe approaches to accurately quantify distinct cell death pathways, discuss their advantages and pitfalls, and focus on those techniques that are amenable to HTS.
Collapse
|
120
|
Akagi T, Shimizu K, Takahama S, Iwasaki T, Sakamaki K, Endo Y, Sawasaki T. Caspase-8 cleavage of the interleukin-21 (IL-21) receptor is a negative feedback regulator of IL-21 signaling. FEBS Lett 2011; 585:1835-40. [DOI: 10.1016/j.febslet.2011.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/05/2011] [Accepted: 04/13/2011] [Indexed: 02/02/2023]
|
121
|
Cayman Ataxia-Related Protein is a Presynapse-Specific Caspase-3 Substrate. Neurochem Res 2011; 36:1304-13. [DOI: 10.1007/s11064-011-0430-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 11/25/2022]
|
122
|
Roy R, Kudryashov V, Binderman I, Boskey AL. The role of apoptosis in mineralizing murine versus avian micromass culture systems. J Cell Biochem 2011; 111:653-8. [PMID: 20589756 DOI: 10.1002/jcb.22748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chondrocyte apoptosis is thought to be an important step in the calcification of cartilage in vivo; however, there are conflicting reports as to whether or not this apoptosis is a necessary precursor to mineralization. The goal of this study was to determine whether or not apoptosis is necessary for mineralization in an in vitro murine micromass model of endochondral ossification. C3H10T1/2 murine mesenchymal stem cells were plated in micromass culture in the presence of 4 mM inorganic phosphate with the addition of the apoptogens, camptothecin, or staurosporine, to induce apoptosis. The rate and total accumulation of mineralization was measured with (45)Ca uptake. In these studies, both apoptogens increased the rate of mineralization, with staurosporine increasing (45)Ca accumulation by about 2.5 times that of controls and camptothecin increasing total amounts of mineralization about 1.5 times that of controls. Inhibiting cell apoptosis with the caspase inhibitor, ZVAD-fmk, to prevent apoptosis, caused slower rates of (45)Ca uptake; however, total amounts of (45)Ca accumulation reached the same values by day 30 of culture. FTIR data showed mineralization in all samples treated with 4 mM inorganic phosphate, with the highest mineral to matrix ratios in the camptothecin treated samples.
Collapse
Affiliation(s)
- Rani Roy
- Hospital for Special Surgery, 535 E 70th Street, Caspary Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
123
|
Chang LR, Liu JP, Song YZ, Lu T, Lu G, Wu Y. Expression of caspase-8 and caspase-9 in rat hippocampus during postnatal development. Microsc Res Tech 2011; 74:153-8. [DOI: 10.1002/jemt.20886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
124
|
Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation. Proc Natl Acad Sci U S A 2011; 108:2288-93. [PMID: 21262809 DOI: 10.1073/pnas.1014017108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Little is known about the respective contributions of cell proliferation and cell death to the control of vertebrate forebrain growth. The homeodomain protein barhl2 is expressed in the diencephalons of Xenopus, zebrafish, and mouse embryos, and we previously showed that Barhl2 overexpression in Xenopus neuroepithelial cells induces Caspase3-dependent apoptosis. Here, barhl2 is shown to act as a brake on diencephalic proliferation through an unconventional function of Caspase3. Depletion of Barhl2 or Caspase3 causes an increase in diencephalic cell number, a disruption of the neuroepithelium architecture, and an increase in Wnt activity. Surprisingly, these changes are not caused by decreased apoptosis but instead, are because of an increase in the amount and activation of β-catenin, which stimulates excessive neuroepithelial cell proliferation and induces defects in β-catenin intracellular localization and an up-regulation of axin2 and cyclinD1, two downstream targets of β-catenin/T-cell factor/lymphoïd enhancer factor signaling. Using two different sets of complementation experiments, we showed that, in the developing diencephalon, Caspase3 acts downstream of Barhl2 in limiting neuroepithelial cell proliferation by inhibiting β-catenin activation. Our data argue that Bar homeodomain proteins share a conserved function as cell type-specific regulators of Caspase3 activities.
Collapse
|
125
|
McComb S, Mulligan R, Sad S. Caspase-3 is transiently activated without cell death during early antigen driven expansion of CD8(+) T cells in vivo. PLoS One 2010; 5:e15328. [PMID: 21203525 PMCID: PMC3008739 DOI: 10.1371/journal.pone.0015328] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/08/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD8(+) T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8(+) T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8(+) T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8(+) T cell responses has yet to be examined. METHODS AND FINDINGS We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8(+) T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8(+) T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3(hi) and caspase-3(low) CD8(+) T cells. The expression of active caspase-3 peaked before effector phenotype (CD62L(low)) CD8(+) T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8(+) cells remained active caspase-3(low) throughout the contraction phase. CONCLUSIONS Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8(+) T cells. Furthermore, the contraction of CD8(+) T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3.
Collapse
Affiliation(s)
- Scott McComb
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Rebecca Mulligan
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Subash Sad
- NRC-Institute for Biological Sciences, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
126
|
Biswas S, Shi Q, Matise L, Cleveland S, Dave U, Zinkel S. A role for proapoptotic Bax and Bak in T-cell differentiation and transformation. Blood 2010; 116:5237-46. [PMID: 20813900 PMCID: PMC3012541 DOI: 10.1182/blood-2010-04-279687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/16/2010] [Indexed: 12/13/2022] Open
Abstract
Proapoptotic Bax and Bak are the key B-cell lymphoma-2 family members mediating apoptosis through the intrinsic pathway. Cells doubly deficient for Bax and Bak are profoundly resistant to apoptotic stimuli originating from multiple stimuli. Here we describe mice in which Bax and Bak have been deleted specifically in T-cells using Lck-Cre. In these T cell-specific BaxBak-deficient mice, early T-cell progenitors accumulate in the thymus, with relative depletion of more mature T cells. In addition, bone marrow progenitor cells fail to progress to the double positive stage when cultured on OP9 stromal cells expressing the Notch ligand Delta-like 1, consistent with a critical role for Bax and Bak in early T-cell development. Over time, T cell-specific BaxBak-deficient mice progress to an aggressive T-cell lymphoblastic leukemia/lymphoma. Interestingly, quantitative real-time polymerase chain reaction analysis of BaxBak-deficient T-cell lymphomas does not display amplification of the Notch signal transduction pathway, commonly activated in T-cell leukemia in both mouse and man. Bax and Bak, key regulators of the intrinsic pathway of apoptosis, are thus required to prevent T-cell malignancy, and for normal T-cell differentiation, regulating early T-cell development at the stage of early T-lineage progenitor cells.
Collapse
Affiliation(s)
- Subhrajit Biswas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
127
|
Mayo L, Levy A, Jacob-Hirsch J, Amariglio N, Rechavi G, Stein R. Bid regulates the immunological profile of murine microglia and macrophages. Glia 2010; 59:397-412. [PMID: 21264947 DOI: 10.1002/glia.21109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 10/18/2010] [Indexed: 11/12/2022]
Abstract
Apoptosis is a controlled cell-death process mediated inter alia by proteins of the Bcl-2 family. Some proteins previously shown to promote the apoptotic process were found to have nonapoptotic functions as well. Microglia, the resident immune cells of the central nervous system, respond to brain derangements by becoming activated to contend with the brain damage. Activated microglia can also undergo activation-induced cell death. Previous studies have addressed the role of core apoptotic proteins in the death process, but whether these proteins also play a role or not in the activation process is not been reported. Here we explore the effect of the BH3-only protein Bid on the immunological features of microglia and macrophages. Our results showed that Bid regulates both the phagocytotic activities and the inflammatory profiles of these cells. Deficiency of Bid attenuated the phagocytotic activity of primary microglia and peritoneal macrophages. It also changed the expression profile of distinct inflammation-related genes in lipopolysaccharide-activated microglia and peritoneal macrophages in vitro and in an in vivo sepsis-like paradigm. Notably, similar changes followed downregulation of Bid in the N9 microglial cell line. Cell death could not be detected in any of the systems examined. Our findings demonstrate that Bid can regulate the immunological profiles of activated microglial and macrophages, via a novel nonapoptotic activity. In view of the critical role of these cells in various pathologies, including acute and chronic brain insults, our findings suggest that impairments in Bid expression may contribute to these pathologies also via a nonapoptotic activity.
Collapse
Affiliation(s)
- Lior Mayo
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
128
|
Hou W, Han J, Lu C, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010; 6:891-900. [PMID: 20724831 DOI: 10.4161/auto.6.7.13038] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptotic defects endow tumor cells with survival advantages. Such defects allow the cellular stress response to take the path of cytoprotective autophagy, which either precedes or effectively blocks an apoptotic cascade. Inhibition of the cytoprotective autophagic response shifts the cells toward apoptosis, by interfering with an underlying molecular mechanism of cytoprotection. The current study has identified such a mechanism that is centered on the regulation of caspase-8 activity. The study took advantage of Bax(-/-) Hct116 cells that are TRAIL-resistant despite significant DISC processing of caspase-8, and of the availability of a caspase-8-specific antibody that exclusively detects the caspase-8 large subunit or its processed precursor. Utilizing these biological tools, we investigated the expression pattern and subcellular localization of active caspase-8 in TRAIL-mediated autophagy and in the autophagy-to-apoptosis shift upon autophagy inhibition. Our results suggest that the TRAIL-mediated autophagic response counter-balances the TRAIL-mediated apoptotic response by the continuous sequestration of the large caspase-8 subunit in autophagosomes and its subsequent elimination in lysosomes. The current findings are the first to provide evidence for regulation of caspase activity by autophagy and thus broaden the molecular basis for the observed polarization between autophagy and apoptosis.
Collapse
Affiliation(s)
- Wen Hou
- Department of Pathology, The University of Pittsburgh School of Medicine, and The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
129
|
Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 2010; 142:637-46. [PMID: 20723762 DOI: 10.1016/j.cell.2010.07.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/06/2010] [Accepted: 06/18/2010] [Indexed: 12/23/2022]
Abstract
Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus (TEV) protease under small-molecule control, which we call the SNIPer, with caspase alleles containing genetically encoded TEV cleavage sites. These studies reveal that all three caspases are transiently activated but only activation of caspase-3 or -7 is sufficient to induce apoptosis. Proteomic analysis shown here and from others reveals that 20 of the 33 subunits of the 26S proteasome can be cut by caspases, and we demonstrate synergy between proteasome inhibition and dose-dependent caspase activation. We propose a model of proteolytic reciprocal negative regulation with mechanistic implications for the combined clinical use of proteasome inhibitors and proapoptotic drugs.
Collapse
Affiliation(s)
- Daniel C Gray
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
130
|
Trabalon M, Carapito C, Voinot F, Martrette JM, Van Dorsselaer A, Gilbert C, Bertile F. Differences in Brachypelma albopilosa (Theraphosidae) hemolymph proteome between subadult and adult females. ACTA ACUST UNITED AC 2010; 313:651-9. [PMID: 20717997 DOI: 10.1002/jez.636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/11/2022]
Abstract
The changes in the hemolymph proteome of mygalomorph Brachypelma albopilosa females were examined for the first time in relation to their developmental stage (subadult and adult period). Seven distinct subunits of hemocyanin (a, b, c, d, e, f, and g chains), as well as actin were clearly identified and their sequence partly characterized using a combination of one- and two-dimensional gel electrophoresis and mass spectrometry. The different structures determined along with possible post-translational modifications may reflect a role of hemocyanin in molting, immunity, and reproduction. In addition, despite no precise identification, additional peptide sequences from eight protein bands (four bands >200 kDa and four bands in the 95-200 kDa mass range) were determined. As reported in other spider species, the putative corresponding structures are the coagulogen protein and/or lipoproteins (HDL-1, HDL-2, VHDL) for which quantitative differences between adult and subadult individuals could be related to the molting process and/or cuticle lipid and protein composition according to the developmental stage.
Collapse
|
131
|
Gradients of a Ubiquitin E3 Ligase Inhibitor and a Caspase Inhibitor Determine Differentiation or Death in Spermatids. Dev Cell 2010; 19:160-73. [DOI: 10.1016/j.devcel.2010.06.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/25/2010] [Accepted: 05/04/2010] [Indexed: 11/21/2022]
|
132
|
Shen A. Allosteric regulation of protease activity by small molecules. MOLECULAR BIOSYSTEMS 2010; 6:1431-43. [PMID: 20539873 DOI: 10.1039/c003913f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteases regulate a plethora of biological processes. Because they irreversibly cleave peptide bonds, the activity of proteases is strictly controlled. While there are many ways to regulate protease activity, an emergent mechanism is the modulation of protease function by small molecules acting at allosteric sites. This mode of regulation holds the potential to allow for the specific and temporal control of a given biological process using small molecules. These compounds also serve as useful tools for studying protein dynamics and function. This review highlights recent advances in identifying and characterizing natural and synthetic small molecule allosteric regulators of proteases and discusses their utility in studies of protease function, drug discovery and protein engineering.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Pathology, Stanford School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
133
|
Bader M, Arama E, Steller H. A novel F-box protein is required for caspase activation during cellular remodeling in Drosophila. Development 2010; 137:1679-88. [PMID: 20392747 DOI: 10.1242/dev.050088] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terminal differentiation of male germ cells in Drosophila and mammals requires extensive cytoarchitectural remodeling, the elimination of many organelles, and a large reduction in cell volume. The associated process, termed spermatid individualization, is facilitated by the apoptotic machinery, including caspases, but does not result in cell death. From a screen for genes defective in caspase activation in this system, we isolated a novel F-box protein, which we termed Nutcracker, that is strictly required for caspase activation and sperm differentiation. Nutcracker interacts through its F-box domain with members of a Cullin-1-based ubiquitin ligase complex (SCF): Cullin-1 and SkpA. This ubiquitin ligase does not regulate the stability of the caspase inhibitors DIAP1 and DIAP2, but physically binds Bruce, a BIR-containing giant protein involved in apoptosis regulation. Furthermore, nutcracker mutants disrupt proteasome activity without affecting their distribution. These findings define a new SCF complex required for caspase activation during sperm differentiation and highlight the role of regulated proteolysis during this process.
Collapse
Affiliation(s)
- Maya Bader
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
134
|
The cleavage of HuR interferes with its transportin-2-mediated nuclear import and promotes muscle fiber formation. Cell Death Differ 2010; 17:1588-99. [PMID: 20379198 DOI: 10.1038/cdd.2010.34] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although the function of posttranscriptional processes in regulating the expression of genes involved in muscle fiber formation (myogenesis) is well accepted, the mechanisms by which these effects are mediated remain elusive. Here, we uncover such a mechanism and show that during myogenesis, a fraction of the posttranscriptional regulator human antigen R (HuR) is cleaved in a caspase-dependent manner in both cell culture and animal models. Disruption of caspase activity in cultured myoblasts or knocking out the caspase-3 gene in mice significantly reduced HuR cleavage and the cytoplasmic accumulation of HuR in muscle fibers. The non-cleavable isoform of HuR, HuRD226A, failed to reestablish the myogenic potential of HuR-depleted myoblasts. HuR cleavage generates two fragments: HuR-cleavage product 1 (HuR-CP1) (24 kDa) and HuR-CP2 (8 kDa). Here, we show that one of these fragments (HuR-CP1) binds to the HuR import factor transportin-2 (TRN2) allowing HuR to accumulate in the cytoplasm. As this cytoplasmic accumulation is required for the promyogenic function of HuR, our data support a model, whereby during the transition phase from myoblasts to myotubes, a proportion of HuR is cleaved to generate HuR-CP1. By interfering with the TRN2-mediated import of HuR, this CP helps non-cleaved HuR accumulate in the cytoplasm thus promoting myogenesis.
Collapse
|
135
|
Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 2010; 3:re4. [PMID: 20354226 DOI: 10.1126/scisignal.3115re4] [Citation(s) in RCA: 461] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic molecule with a crucial role in cellular stress and inflammation during infection, tissue damage, and cancer. TNF signaling can lead to three distinct outcomes, each of which is initiated by different signaling complexes: the gene induction or survival mode, the apoptosis mode, and the necrosis mode. The kinases receptor-interacting protein 1 (RIP1) and RIP3 are key signaling molecules in necrosis and are regulated by caspases and ubiquitination. Moreover, TNF stimulation induces the formation of a necrosome in which RIP3 is activated and interacts with enzymes that control glycolytic flux and glutaminolysis. The necrosome induces mitochondrial complex I-mediated production of reactive oxygen species (ROS) and cytotoxicity, which suggest a functional link between increased bioenergetics and necrosis. In addition, other effector mechanisms also contribute to TNF-induced necrosis, such as recruitment of NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate) oxidases and subsequent ROS production at the membrane-associated TNF receptor complex I; calcium mobilization; activation of phospholipase A(2), lipoxygenases, and acid sphingomyelinases; and lysosomal destabilization. However, the link between RIP1 and RIP3 and these subcellular events remains to be established. The regulation of RIP1 and RIP3 and their downstream signaling cascades opens new therapeutic avenues for treatment of pathologies associated with cell loss, such as ischemia-reperfusion damage and neurodegeneration, and ways to stimulate alternative immunogenic cell death pathways in cancer.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, 9052 Zwijnaarde, Belgium.
| | | | | | | |
Collapse
|
136
|
Haupt C, Kloos K, Faus-Kessler T, Huber AB. Semaphorin 3A-Neuropilin-1 signaling regulates peripheral axon fasciculation and pathfinding but not developmental cell death patterns. Eur J Neurosci 2010; 31:1164-72. [PMID: 20345923 DOI: 10.1111/j.1460-9568.2010.07154.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In early development, an excess of neurons is generated, of which later about half will be lost by cell death due to a limited supply of trophic support by their respective target areas. However, some of the neurons die when their axons have not yet reached their target, thus suggesting that additional causes of developmental cell death exist. Semaphorin 3A (Sema3A), in addition to its function as a guidance cue and mediator of timing and fasciculation of motor and sensory axon outgrowth, can also induce death of sensory neurons in vitro. However, it is unknown whether Neuropilin-1 (Npn-1), its binding receptor in axon guidance, also mediates the death-inducing activity. We show here that abolished Sema3A-Npn-1 signaling does not influence the cell death patterns of motor or sensory neurons in mouse during the developmental wave of programmed cell death. The number of motor and sensory neurons was unchanged at embryonic day 15.5 when this wave is concluded. Interestingly, the defasciculation of early motor and sensory projections that is observed in the absence of Sema3A or Npn-1 persists to postnatal stages. Thus, Sema3A-Npn-1 signaling plays an important role in the guidance and fasciculation of motor and sensory axons but does not contribute to the developmental elimination of these neurons.
Collapse
Affiliation(s)
- Corinna Haupt
- Institute of Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Munich/Neuherberg, Germany
| | | | | | | |
Collapse
|
137
|
|
138
|
Amer AO. Modulation of caspases and their non-apoptotic functions byLegionella pneumophila. Cell Microbiol 2010; 12:140-7. [DOI: 10.1111/j.1462-5822.2009.01401.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
139
|
Abstract
Beclin 1 has a key role in the initiation of autophagy, a process of self-cannibalism in which cytoplasmic constituents are sequestered and targeted for lysosomal degradation. In a recent issue of Cell Death & Disease, Wirawan et al. report the significant finding that caspases can cleave Beclin 1, thereby destroying its pro-autophagic activity. Moreover, the C-terminal fragment of Beclin 1 that results from this cleavage acquires a new function and can amplify mitochondrion-mediated apoptosis. Of note, the BH3 domain of Beclin 1 remains within the N-terminal fragment, which has no detectable pro-apoptotic activity. These findings provide important insights into the molecular cross talk between autophagy and apoptosis.
Collapse
|
140
|
Reina S, Sterin-Borda L, Passafaro D, Borda E. Muscarinic cholinoceptor activation by pilocarpine triggers apoptosis in human skin fibroblast cells. J Cell Physiol 2010; 222:640-7. [PMID: 19927300 DOI: 10.1002/jcp.21981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to examine the role of muscarinic acetylcholine receptors (mAChRs) on apoptosis in human skin fibroblast cells. Neonatal human skin fibroblast cultures were stimulated with pilocarpine in the presence or absence of specific antagonists. Pilocarpine stimulates apoptosis, total inositol phosphates (InsP) accumulation and nitric oxide synthase (NOS) activity. All these effects were inhibited by atropine, mustard hydrochloride (4-DAMP) and pirenzepine, indicating that M(1) and M(3) mAChRs are implicated in pilocarpine action. Pilocarpine apoptotic action is accompanied by caspase-3 and JNK activation. The intracellular pathway leading to pilocarpine-induced biological effects involved phospholipase C, calcium/calmodulin and extracellular calcium as U-73122, W-7, verapamil, BAPTA and BAPTA-AM blocked pilocarpine effects. L-NMMA, a NOS inhibitor, had no effect, indicating that the enzyme does not participate in the apoptosis phenomenon. These results may contribute to a better understanding of the modulatory role of the parasympathetic muscarinic system on the apoptotic human skin fibroblast process.
Collapse
Affiliation(s)
- Silvia Reina
- Argentine National Research Council (CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
141
|
Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16:425-38. [PMID: 19878874 PMCID: PMC3023165 DOI: 10.1016/j.ccr.2009.09.026] [Citation(s) in RCA: 750] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/14/2009] [Accepted: 09/22/2009] [Indexed: 12/11/2022]
Abstract
Hippo-Lats-Yorkie signaling regulates tissue overgrowth and tumorigenesis in Drosophila. We show that the Mst1 and Mst2 protein kinases, the mammalian Hippo orthologs, are cleaved and constitutively activated in the mouse liver. Combined Mst1/2 deficiency in the liver results in loss of inhibitory Ser127 phosphorylation of the Yorkie ortholog, Yap1, massive overgrowth, and hepatocellular carcinoma (HCC). Reexpression of Mst1 in HCC-derived cell lines promotes Yap1 Ser127 phosphorylation and inactivation and abrogates their tumorigenicity. Notably, Mst1/2 inactivates Yap1 in liver through an intermediary kinase distinct from Lats1/2. Approximately 30% of human HCCs show low Yap1(Ser127) phosphorylation and a majority exhibit loss of cleaved, activated Mst1. Mst1/2 inhibition of Yap1 is an important pathway for tumor suppression in liver relevant to human HCC.
Collapse
Affiliation(s)
- Dawang Zhou
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Diabetes unit, Harvard Medical School, Boston, MA USA 02114
| | - Claudius Conrad
- Medical services, Cancer Center, Harvard Medical School, Boston, MA USA 02114
- Surgical services, Harvard Medical School, Boston, MA USA 02114
| | - Fan Xia
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Diabetes unit, Harvard Medical School, Boston, MA USA 02114
| | - Ji-Sun Park
- Medical services, Cancer Center, Harvard Medical School, Boston, MA USA 02114
| | - Bernhard Payer
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Howard Hughes Medical Institute, Massachusetts General Hospital; Departments of Medicine, Pathology and Genetics, Harvard Medical School, Boston, MA USA 02114
| | - Yi Yin
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Diabetes unit, Harvard Medical School, Boston, MA USA 02114
| | | | - Wolfgang Thasler
- Department of Surgery, LM University Munich, Hospital Grosshadern, Munich Germany
| | - Jeannie T. Lee
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Howard Hughes Medical Institute, Massachusetts General Hospital; Departments of Medicine, Pathology and Genetics, Harvard Medical School, Boston, MA USA 02114
| | - Joseph Avruch
- Department of Molecular Biology, Harvard Medical School, Boston, MA USA 02114
- Diabetes unit, Harvard Medical School, Boston, MA USA 02114
- Address correspondence to: Nabeel Bardeesy Ph.D., Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, CPZN4216, 185 Cambridge Street, Boston, Massachusetts 02114, Tel:617-643-2579, Fax:617-643-3170, or Joseph Avruch M.D., Diabetes Research Lab, Department of Molecular Biology, Massachusetts General Hospital, Simches Research Bldg, 6408, 185 Cambridge St., Boston, MA 02114, Tel:617-726-6909, Fax:617-726-5649,
| | - Nabeel Bardeesy
- Medical services, Cancer Center, Harvard Medical School, Boston, MA USA 02114
- Address correspondence to: Nabeel Bardeesy Ph.D., Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, CPZN4216, 185 Cambridge Street, Boston, Massachusetts 02114, Tel:617-643-2579, Fax:617-643-3170, or Joseph Avruch M.D., Diabetes Research Lab, Department of Molecular Biology, Massachusetts General Hospital, Simches Research Bldg, 6408, 185 Cambridge St., Boston, MA 02114, Tel:617-726-6909, Fax:617-726-5649,
| |
Collapse
|
142
|
Abstract
Virtually all of the 560 human proteases are stored as inactive proenyzmes and are strictly regulated. We report the identification and characterization of the first small molecules that directly activate proenzymes, the apoptotic procaspases-3 and -6. It is surprising that these compounds induce autoproteolytic activation by stabilizing a conformation that is both more active and more susceptible to intermolecular proteolysis. These procaspase activators bypass the normal upstream proapoptotic signaling cascades and induce rapid apoptosis in a variety of cell lines. Systematic biochemical and biophysical analyses identified a cluster of mutations in procaspase-3 that resist small-molecule activation both in vitro and in cells. Compounds that induce gain of function are rare, and the activators reported here will enable direct control of the executioner caspases in apoptosis and in cellular differentiation. More generally, these studies presage the discovery of other proenzyme activators to explore fundamental processes of proenzyme activation and their fate-determining roles in biology.
Collapse
Affiliation(s)
- Dennis W. Wolan
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, Byers Hall, 1700 4 Street, San Francisco, CA 94158, USA
| | - Julie A. Zorn
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, Byers Hall, 1700 4 Street, San Francisco, CA 94158, USA
| | - Daniel C. Gray
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, Byers Hall, 1700 4 Street, San Francisco, CA 94158, USA
| | - James A. Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, Byers Hall, 1700 4 Street, San Francisco, CA 94158, USA
| |
Collapse
|
143
|
Koto A, Kuranaga E, Miura M. Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development. ACTA ACUST UNITED AC 2009; 187:219-31. [PMID: 19822670 PMCID: PMC2768825 DOI: 10.1083/jcb.200905110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Caspase activation is regulated by the turnover of E3 ubiquitin ligase, DIAP1, and depends on cell type and maturity. The caspases comprise a family of cysteine proteases that function in various cellular processes, including apoptosis. However, how the balance is struck between the caspases’ role in cell death and their nonapoptotic functions is unclear. To address this issue, we monitored the protein turnover of an endogenous caspase inhibitor, Drosophila IAP1 (DIAP1). DIAP1 is an E3 ubiquitin ligase that promotes the ubiquitination of caspases and thereby prevents caspase activation. For this study, we developed a fluorescent probe to monitor DIAP1 turnover in the external sensory organ precursor (SOP) lineage of living Drosophila. The SOP divides asymmetrically to make the shaft, socket, and sheath cells, and the neuron that comprise each sensory organ. We found that the quantity of DIAP1 changed dramatically depending on the cell type and maturity, and that the temporal regulation of DIAP1 turnover determines whether caspases function nonapoptotically in cellular morphogenesis or cause cell death.
Collapse
Affiliation(s)
- Akiko Koto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
144
|
Bulat N, Widmann C. Caspase substrates and neurodegenerative diseases. Brain Res Bull 2009; 80:251-67. [DOI: 10.1016/j.brainresbull.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 02/08/2023]
|
145
|
Abstract
Cell death by the process of apoptosis plays important roles in development, tissue homeostasis, diseases and drug responses. The cysteine aspartyl protease caspase-9 plays a central role in the mitochondrial or intrinsic apoptotic pathway that is engaged in response to many apoptotic stimuli. Caspase-9 is activated in a large multimeric complex, the apoptosome, which is formed with apoptotic peptidase activating factor 1 (Apaf-1) in response to the release of cytochrome c from mitochondria. Once activated, caspase-9 cleaves and activates the effector caspases 3 and 7 to bring about apoptosis. This pathway is tightly regulated at multiple steps, including apoptosome formation and caspase-9 activation. Recent work has shown that caspase-9 is the direct target for regulatory phosphorylation by multiple protein kinases activated in response to extracellular growth/survival factors, osmotic stress or during mitosis. Here, we review these advances and discuss the possible roles of caspase-9 phosphorylation in the regulation of apoptosis during development and in pathological states, including cancer.
Collapse
Affiliation(s)
- Lindsey A Allan
- Biomedical Research Institute, School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | |
Collapse
|
146
|
Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 2009; 136:2223-34. [PMID: 19502484 DOI: 10.1242/dev.034603] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for fertilization and the major sperm protein (MSP) hormone is present. Reduction-of-function mutations in glp-1 cause oocytes to grow abnormally large when MSP is present and Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells is active. By contrast, gain-of-function glp-1 mutations lead to the production of small oocytes. Surprisingly, proper oocyte growth depends on distal tip cell signaling involving the redundant function of GLP-1 ligands LAG-2 and APX-1. GLP-1 signaling also affects two cellular oocyte growth processes, actomyosin-dependent cytoplasmic streaming and oocyte cellularization. glp-1 reduction-of-function mutants exhibit elevated rates of cytoplasmic streaming and delayed cellularization. GLP-1 signaling in oocyte growth depends in part on the downstream function of the FBF-1/2 PUF RNA-binding proteins. Furthermore, abnormal oocyte growth in glp-1 mutants, but not the inappropriate differentiation of germline stem cells, requires the function of the cell death pathway. The data support a model in which GLP-1 function in MSP-dependent oocyte growth is separable from its role in the proliferation versus meiotic entry decision. Thus, two major germline signaling centers, distal GLP-1 activation and proximal MSP signaling, coordinate several spatially and temporally distinct processes by which germline stem cells differentiate into functional oocytes.
Collapse
Affiliation(s)
- Saravanapriah Nadarajan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
147
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
148
|
Krumschnabel G, Manzl C, Villunger A. Caspase-2: killer, savior and safeguard--emerging versatile roles for an ill-defined caspase. Oncogene 2009; 28:3093-6. [PMID: 19581929 PMCID: PMC3272399 DOI: 10.1038/onc.2009.173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 05/24/2009] [Indexed: 11/09/2022]
Abstract
Despite the early discovery of caspase-2, its physiological function has long remained an enigma. A number of recent publications now suggest not just one, but multiple functions, including roles in apoptosis, DNA repair and tumor suppression. How can one enzyme have so many talents? Considering the diversity of interaction partners and the specific mode of pro-apoptotic action proposed in these studies, caspase-2 might in fact represent a primordial protease serving numerous pathways, established before the advent of a more elaborate functionally diversified caspases system.
Collapse
Affiliation(s)
- G Krumschnabel
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
149
|
Methods for the proteomic identification of protease substrates. Curr Opin Chem Biol 2009; 13:503-9. [PMID: 19729334 DOI: 10.1016/j.cbpa.2009.07.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/31/2009] [Indexed: 01/07/2023]
Abstract
Proteolysis is a key regulatory post-translational modification in diverse cellular processes including programed cell death, immune function, and development. Tracking proteolytic events has become a focus of researchers assessing the downstream consequences of protease activation. In this review we summarize unbiased methods for identifying protease substrates and tracking the extent of cleavage, a field termed 'degradomics'. These include one-dimensional and two-dimensional gel-based methods for identifying protease substrates, N-terminal peptide identification methods for simultaneously identifying substrates and cleavage sites, and approaches for the quantitation of cleavage events during endogenous proteolysis. Individual methods have identified more than 300 caspase-cleaved targets during apoptosis suggesting broad future applications for these technologies.
Collapse
|
150
|
Abstract
Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury.
Collapse
Affiliation(s)
- Peter M Price
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| | | | | |
Collapse
|