101
|
Agnusdei V, Minuzzo S, Pinazza M, Gasparini A, Pezzè L, Amaro AA, Pasqualini L, Bianco PD, Tognon M, Frasson C, Palumbo P, Ciribilli Y, Pfeffer U, Carella M, Amadori A, Indraccolo S. Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts. Haematologica 2019; 105:1317-1328. [PMID: 31467126 PMCID: PMC7193477 DOI: 10.3324/haematol.2019.217687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.
Collapse
Affiliation(s)
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova
| | | | | | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento
| | | | | | | | | | - Chiara Frasson
- Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova
| | - Pietro Palumbo
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento
| | - Ulrich Pfeffer
- Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova
| | - Massimo Carella
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Amadori
- Istituto Oncologico Veneto IOV - IRCCS, Padova.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova
| | | |
Collapse
|
102
|
Xu Y, Li Y, Liu X, Pan Y, Sun Z, Xue Y, Wang T, Dou H, Hou Y. SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy. Int J Nanomedicine 2019; 14:6779-6797. [PMID: 31692534 PMCID: PMC6711564 DOI: 10.2147/ijn.s215055] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Macrophages, which recognize microbial infections through identification of bacterial markers such as lipopolysaccharide (LPS), are crucial to the pathogenesis of sepsis-associated liver injury. However, the understanding of the SPIONs-mediated modulation of macrophage responses in LPS-induced sepsis and liver injury is limited. Materials and methods Superparamagnetic iron oxide nanoparticles (SPIONs) of γ-Fe2O3 nanoparticles were prepared, and their morphology and magnetic properties were characterized. Results Using a murine model of LPS-induced sepsis and liver injury, we found that SPIONs alleviated LPS-induced sepsis, preventing infiltration of inflammatory cells into the liver. SPIONs also increased the level of interleukin-10 (IL-10) in liver macrophages, while SPIONs’s effect on LPS-induced sepsis was abrogated in IL-10-/- mice, indicating that the protective effect of SPIONs is dependent on IL-10+ macrophages. Moreover, SPIONs activated macrophage autophagy to increase IL-10 production, which was markedly attenuated by autophagy inhibition. Furthermore, SPIONs upregulated the expression of Caveolin-1 (Cav1) in macrophages, which plays a role in cellular uptake of metallic nanoparticles. Interestingly, activation of Cav1 and Notch1/HES1 signaling was involved in SPIONs-induced autophagy in both RAW 264.7 cells and bone marrow-derived macrophages (BMDMs). Our data reveal a novel mechanism for SPIONs -induced autophagy in macrophages, which occurs through activation of the Cav1-Notch1/HES1 signaling pathway, which promotes the production of IL-10 in macrophages, leading to inhibition of inflammation in LPS-induced sepsis and liver injury. Conclusion Our results suggest that SPIONs may represent a potential therapeutic agent for the treatment of sepsis and sepsis-induced liver injury.
Collapse
Affiliation(s)
- Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhiheng Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yaxian Xue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
103
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
104
|
Zhang T, Zheng Y, Gao Y, Zhao T, Guo S, Yang L, Shi Y, Zhou L, Ye L. Exposure to PM 2.5 affects blood lipid levels in asthmatic rats through notch signaling pathway. Lipids Health Dis 2019; 18:160. [PMID: 31391046 PMCID: PMC6686462 DOI: 10.1186/s12944-019-1102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies have confirmed atmospheric PM2.5 could affect asthma, and dyslipidemia may be related to pathogenesis of asthma. Recent studies show Notch ligands had lipid combination domains which are responsible for regulating lipid levels. However, the effect of PM2.5 on asthmatic rats' lipid levels and the role of Notch signaling pathway is unclear. METHODS Rats were treat with ovalbumin (OVA) to establish asthma models. Notch signaling pathway inhibitor (DAPT) was injected intraperitoneally. Asthmatic and healthy rats were exposed to different concentrations of PM2.5. Lung tissues were collected and the expression of Hes1 protein was detected by Western Blot. Blood samples were collected to detect the serum lipid levels. RESULTS Hes1 expression levels in healthy and asthma pathway inhibition groups were lower than those in control groups. Compared with control group, rats exposed to PM2.5 in middle and high dose, the levels of TG and TC were decreased. Similar results were observed after exposure to the same concentration of PM2.5 in asthmatic rats. Rats, which were exposed to PM2.5 after being established the asthma model successfully, could exhibit more significant dyslipidemia than those with direct exposure. After Notch signaling pathway inhibited, TC and LDL in asthma pathway inhibition group were lower than those in healthy group. CONCLUSIONS PM2.5 can affect the lipid levels of asthmatic rats through the Notch signaling pathway.
Collapse
Affiliation(s)
- Tianrong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yan Zheng
- The Department of Cadre ward, the first Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yizhen Gao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuangyu Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
105
|
Zhang B, Zhu L, Dai Y, Li H, Huang K, Luo Y, Xu W. An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest. Epigenetics 2019; 15:199-214. [PMID: 31314649 DOI: 10.1080/15592294.2019.1644878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Precision toxicology evaluates the toxicity of certain substances by isolating a small group of cells with a typical phenotype of interest followed by a single cell sequencing-based analysis. In this in vitro attempt, ochratoxin A (OTA), a typical mycotoxin and food contaminant, is found to induce G0/G1 phase cell cycle arrest in human renal proximal tubular HKC cells at a concentration of 20 μM after a 24h-treatment. A small number of G0/G1 phase HKC cells are evaluated in both the presence and absence of OTA. These cells are sorted with a flow cytometer and subjected to mRNA and DNA methylation sequencing using Smart-Seq2 and single-cell reduced-representation bisulfite sequencing (scRRBS) technology, respectively. Integrated analysis of the transcriptome and methylome profiles reveals that OTA causes abnormal expression of the essential genes that regulate G1/S phase transition, act as signal transductors in G1 DNA damage checkpoints, and associate with the anaphase-promoting complex/cyclosome. The alteration of their DNA methylation status is a significant underlying epigenetic mechanism. Furthermore, Notch signaling and Ras/MAPK/CREB pathways are found to be suppressed by OTA. This attempt at precision toxicology paves the way for a deeper understanding of OTA toxicity and provides an innovative strategy to researchers in the toxicology and pharmacology field.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
106
|
Yu J, Siebel CW, Schilling L, Canalis E. An antibody to Notch3 reverses the skeletal phenotype of lateral meningocele syndrome in male mice. J Cell Physiol 2019; 235:210-220. [PMID: 31188489 DOI: 10.1002/jcp.28960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Lateral meningocele syndrome (LMS), a genetic disorder characterized by meningoceles and skeletal abnormalities, is associated with NOTCH3 mutations. We created a mouse model of LMS (Notch3tm1.1Ecan ) by introducing a tandem termination codon in the Notch3 locus upstream of the proline (P), glutamic acid (E), serine (S) and threonine (T) domain. Microcomputed tomography demonstrated that Notch3tm1.1Ecan mice exhibit osteopenia. The cancellous bone osteopenia was no longer observed after the intraperitoneal administration of antibodies directed to the negative regulatory region (NRR) of Notch3. The anti-Notch3 NRR antibody suppressed the expression of Hes1, Hey1, and Hey2 (Notch target genes), and decreased Tnfsf11 (receptor activator of NF Kappa B ligand) messenger RNA in Notch3tm1.1Ecan osteoblast (OB) cultures. Bone marrow-derived macrophages (BMMs) from Notch3tm1.1Ecan mutants exhibited enhanced osteoclastogenesis in culture, and this was increased in cocultures with Notch3tm1.1Ecan OB. Osteoclastogenesis was suppressed by anti-Notch3 NRR antibodies in Notch3tm1.1Ecan OB/BMM cocultures. In conclusion, the cancellous bone osteopenia of Notch3tm1.1Ecan mutants is reversed by anti-Notch3 NRR antibodies.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech, Inc, South San Francisco, California
| | - Lauren Schilling
- The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,The UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut
| |
Collapse
|
107
|
Cai J, Sun M, Hu B, Windle B, Ge X, Li G, Sun Y. Sorting Nexin 5 Controls Head and Neck Squamous Cell Carcinoma Progression by Modulating FBW7. J Cancer 2019; 10:2942-2952. [PMID: 31281471 PMCID: PMC6590026 DOI: 10.7150/jca.31055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide. Long-term survival rates in patients with HNSCC have not increased significantly in the past 30 years. Therefore, looking for novel molecular targets that control HNSCC progression is urgently required to improve the treatment of HNSCC. Here, we identified Sorting Nexin 5 (SNX5) as a new regulator that plays an oncogenic function in HNSCC progression. Analyzing HNSCC patients' data from the Cancer Genome Atlas (TCGA) indicates that the expression levels of SNX5 in HNSCC are significantly elevated compared to normal tissues. Furthermore, higher SNX5 expression correlates with a worse prognosis for HNSCC patients. These results suggest that SNX5 has an oncogenic role. Consistently, loss of SNX5 in HNSCC cells dramatically reduces colony formation and significantly decreases tumor growth in xenograft mouse models. SNX5 interacts with the tumor suppressor F-box/WD repeat-containing protein 7 (FBW7), an E3 ubiquitin ligase that mediates ubiquitination and degradation of oncoproteins such as c-Myc, NOTCH1, and Cyclin E1. By interacting with FBW7, SNX5 inhibits FBW7-mediated oncoproteins ubiquitination. In this way, SNX5 decreases the FBW7-mediated oncoproteins degradation to promote HNSCC progression.
Collapse
Affiliation(s)
- Jinyang Cai
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ming Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bin Hu
- Cancer Mouse Models Developing Shared Resource Core, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brad Windle
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xin Ge
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Guoping Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
108
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
109
|
Wang Y, Lu E, Bao R, Xu P, Feng F, Wen W, Dong Q, Hu C, Xiao L, Tang M, Li G, Wang J, Zhang C. Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells. Reprod Fertil Dev 2019; 31:1091-1103. [PMID: 30827331 DOI: 10.1071/rd18281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles invitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms' tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.
Collapse
Affiliation(s)
- Yishu Wang
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Ping Xu
- Second Clinical College, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Fen Feng
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Weihui Wen
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Qiming Dong
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chuan Hu
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Li Xiao
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Min Tang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Gang Li
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China; and Corresponding author.
| |
Collapse
|
110
|
Pastaki Khoshbin A, Eskian M, Keshavarz-Fathi M, Rezaei N. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2019; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
Affiliation(s)
- Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
111
|
Dean ZS, Jamilpour N, Slepian MJ, Wong PK. Decreasing Wound Edge Stress Enhances Leader Cell Formation during Collective Smooth Muscle Cell Migration. ACS Biomater Sci Eng 2019; 5:3864-3875. [DOI: 10.1021/acsbiomaterials.8b01222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Pak Kin Wong
- Departments of Biomedical Engineering, Mechanical Engineering, and Surgery, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
112
|
Xiao Y, Riahi R, Torab P, Zhang DD, Wong PK. Collective Cell Migration in 3D Epithelial Wound Healing. ACS NANO 2019; 13:1204-1212. [PMID: 30758172 DOI: 10.1021/acsnano.8b06305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Collective cell migration plays a pivotal role in development, wound healing, and metastasis, but little is known about the mechanisms and coordination of cell migration in 3D microenvironments. Here, we demonstrate a 3D wound healing assay by photothermal ablation for investigating collective cell migration in epithelial tissue structures. The nanoparticle-mediated photothermal technique creates local hyperthermia for selective cell ablation and induces collective cell migration of 3D tissue structures. By incorporating dynamic single cell gene expression analysis, live cell actin staining, and particle image velocimetry, we show that the wound healing response consists of 3D vortex motion moving toward the wound followed by the formation of multicellular actin bundles and leader cells with active actin-based protrusions. Inhibition of ROCK signaling disrupts the multicellular actin bundle and enhances the formation of leader cells at the leading edge. Furthermore, single cell gene expression analysis, pharmacological perturbation, and RNA interference reveal that Notch1-Dll4 signaling negatively regulates the formation of multicellular actin bundles and leader cells. Taken together, our study demonstrates a platform for investigating 3D collective cell migration and underscores the essential roles of ROCK and Notch1-Dll4 signaling in regulating 3D epithelial wound healing.
Collapse
Affiliation(s)
| | - Reza Riahi
- Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | - Pak Kin Wong
- Department of Surgery , The Pennsylvania State University , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
113
|
Huang Q, Li J, Zheng J, Wei A. The Carcinogenic Role of the Notch Signaling Pathway in the Development of Hepatocellular Carcinoma. J Cancer 2019; 10:1570-1579. [PMID: 31031867 PMCID: PMC6485212 DOI: 10.7150/jca.26847] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway, known to be a highly conserved signaling pathway in embryonic development and adult tissue homeostasis, participates in cell fate decisions that include cellular differentiation, cell survival and cell death. However, other studies have shown that aberrant in Notch signaling is pro-tumorigenic, particularly in hepatocellular carcinoma (HCC). HCC is one of the most common malignant tumors in the world and has a high mortality rate. Growing evidence supports that Notch signaling plays a critical role in the development of HCC by regulating the tumor microenvironment, tumorigenesis, progression, angiogenesis, invasion and metastasis. Accordingly, overexpression of Notch is closely associated with poor prognosis in HCC. In this review, we focus on the pro-tumorigenic role of Notch signaling in HCC, summarize the current knowledge of Notch signaling and its role in HCC development, and outline the therapeutic potential of targeting Notch signaling in HCC.
Collapse
Affiliation(s)
- Qinfeng Huang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Junhong Li
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Jinghui Zheng
- Discipline Construction Office, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Ailing Wei
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
114
|
Dutta D, Mutsuddi M, Mukherjee A. Synergistic interaction of Deltex and Hrp48 leads to JNK activation. Cell Biol Int 2019; 43:350-357. [PMID: 30597717 DOI: 10.1002/cbin.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023]
Abstract
The communication among the cells plays a seminal role in metazoan development by coordinating multiple cellular processes that, in turn, helps in the maintenance of biological homeostasis. Our previous study demonstrated that Dx and Hrp48 together downregulate Notch signaling and induce cell death in Drosophila. To understand the signaling events behind the Dx and Hrp48-induced cell death in a greater detail, we performed a set of genetic experiments followed by immunocytochemical analyses. Our data revealed that Dx along with Hrp48 induced JNK activation and consequently cell death in the eye tissue. Additionally, using genetic and molecular approaches, we identified the domain of Dx protein responsible for its synergistic activity with Hrp48. Altogether, our analyses suggest that coexpression of Dx and Hrp48 activates JNK pathway to induce cell death in eye disc of Drosophila melanogaster.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
115
|
Saito N, Hirai N, Aoki K, Suzuki R, Fujita S, Nakayama H, Hayashi M, Ito K, Sakurai T, Iwabuchi S. The Oncogene Addiction Switch from NOTCH to PI3K Requires Simultaneous Targeting of NOTCH and PI3K Pathway Inhibition in Glioblastoma. Cancers (Basel) 2019; 11:cancers11010121. [PMID: 30669546 PMCID: PMC6356490 DOI: 10.3390/cancers11010121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 01/02/2023] Open
Abstract
The NOTCH pathway regulates neural stem cells and glioma initiating cells (GICs). However, blocking NOTCH activity with γ-secretase inhibitors (GSIs) fails to alter the growth of GICs, as GSIs seem to be active in only a fraction of GICs lines with constitutive NOTCH activity. Here we report loss of PTEN function as a critical event leading to resistance to NOTCH inhibition, which causes the transfer of oncogene addiction from the NOTCH pathway to the PI3K pathway. Drug cytotoxicity testing of eight GICs showed a differential growth response to GSI, and the GICs were thus stratified into two groups: sensitive and resistant. In the sensitive group, GICs with loss of PTEN function appeared less sensitive to GSI treatment. Here we show that NOTCH regulates PTEN expression and the activity of the PI3K pathway in GICs, as treatment with GSI attenuated the NOTCH pathway and increased PTEN expression. NOTCH regulates PTEN expression via Hes-1, as knockdown of Notch or Hes1 increased expression of PTEN. This novel observation suggests that both pathways must be simultaneously inhibited in order to improve therapeutic efficacy in human glioblastomas (GBMs).
Collapse
Affiliation(s)
- Norihiko Saito
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Nozomi Hirai
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Kazuya Aoki
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Ryo Suzuki
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Satoshi Fujita
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Haruo Nakayama
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Morito Hayashi
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Keisuke Ito
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Takatoshi Sakurai
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| | - Satoshi Iwabuchi
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
| |
Collapse
|
116
|
Nolin E, Gans S, Llamas L, Bandyopadhyay S, Brittain SM, Bernasconi-Elias P, Carter KP, Loureiro JJ, Thomas JR, Schirle M, Yang Y, Guo N, Roma G, Schuierer S, Beibel M, Lindeman A, Sigoillot F, Chen A, Xie KX, Ho S, Reece-Hoyes J, Weihofen WA, Tyskiewicz K, Hoepfner D, McDonald RI, Guthrie N, Dogra A, Guo H, Shao J, Ding J, Canham SM, Boynton G, George EL, Kang ZB, Antczak C, Porter JA, Wallace O, Tallarico JA, Palmer AE, Jenkins JL, Jain RK, Bushell SM, Fryer CJ. Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nat Chem Biol 2019; 15:179-188. [PMID: 30643281 DOI: 10.1038/s41589-018-0200-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.
Collapse
Affiliation(s)
- Erin Nolin
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sara Gans
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Luis Llamas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Kyle P Carter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Jason R Thomas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Yi Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ning Guo
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy Chen
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kevin X Xie
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Samuel Ho
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abhishek Dogra
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Haibing Guo
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Jian Shao
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Geoff Boynton
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Zhao B Kang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Owen Wallace
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Rishi K Jain
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Simon M Bushell
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Christy J Fryer
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
117
|
Charnley M, Ludford-Menting M, Pham K, Russell SM. A new role for Notch in the control of polarity and asymmetric cell division of developing T cells. J Cell Sci 2019; 133:jcs.235358. [DOI: 10.1242/jcs.235358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
A fundamental question in biology is how single cells can reliably produce progeny of different cell types. Notch signalling frequently facilitates fate determination. Asymmetric cell division (ACD) often controls segregation of Notch signalling by imposing unequal inheritance of regulators of Notch. Here, we assessed the functional relationship between Notch and ACD in mouse T cell development. To attain immunological specificity, developing T cells must pass through a pivotal stage termed β-selection, which involves Notch signalling and ACD. We assessed functional interactions between Notch1 and ACD during β-selection using direct presentation of Notch ligands, DL1 and DL4, and pharmacological inhibition of Notch signalling. Contrary to prevailing models, we demonstrate that Notch controls the distribution of Notch1 itself and cell fate determinants, α-Adaptin and Numb. Further, Notch and CXCR4 signalling cooperated to drive polarity during division. Thus, Notch signalling directly orchestrates ACD, and Notch1 is differentially inherited by sibling cells.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Biointerface Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Mandy Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Kim Pham
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah M. Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
118
|
Singh A, Paul MS, Dutta D, Mutsuddi M, Mukherjee A. Regulation of notch signaling by a chromatin modeling protein Hat-trick. Development 2019; 146:dev.170837. [DOI: 10.1242/dev.170837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Notch signaling plays pleiotropic role in astounding variety of cellular processes including cell fate determination, differentiation, proliferation and apoptosis. The increasingly complex regulatory mechanisms of Notch signaling account for the multitude of functions exhibited by Notch during development. We identified Hat-trick (Htk), a DNA binding protein, as an interacting partner of Notch-ICD in a yeast two-hybrid screen and their physical interaction was further validated by co-immunoprecipitation experiments. htk genetically interacts with Notch pathway components in trans-heterozygous combinations. Loss of htk function in htk mutant somatic clones showed down-regulation of Notch targets, whereas over-expression of htk caused ectopic expression of Notch target, without affecting the level of Notch protein. Immunocytochemical analysis has demonstrated that Htk co-localizes with over-expressed Notch-ICD in the same nuclear compartment. We have shown here that Htk cooperates with Notch-ICD and Suppressor of Hairless to form activation complex and binds to the regulatory sequences of Notch downstream targets, Enhancer of Split complex genes to direct their expression. Taken together, our results suggest a novel mode of regulation of Notch signaling by a chromatin modeling protein Htk.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Maimuna S. Paul
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
119
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
120
|
IL-4-dependent Jagged1 expression/processing is associated with survival of chronic lymphocytic leukemia cells but not with Notch activation. Cell Death Dis 2018; 9:1160. [PMID: 30478302 PMCID: PMC6255763 DOI: 10.1038/s41419-018-1185-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
As previously reported, chronic lymphocytic leukemia (CLL) cells show constitutive Notch1/2 activation and express the Notchligand Jagged1. Despite increasing knowledge of the impact of Notch alterations on CLL biology and pathogenesis, the role of Jagged1 expressed in CLL cells remains undefined. In other cell types, it has been shown that after Notch engagement, Jagged1 not only activates Notch in signal-receiving cell, but also undergoes proteolytic activation in signal-sending cell, triggering a signaling with biological effects. We investigated whether Jagged1 expressed in CLL cells undergoes proteolytic processing and/or is able to induce Notch activation through autocrine/paracrine loops, focusing on the effect that CLL prosurvival factor IL-4 could exert on the Notch-Jagged1 system in these cells. We found that Jagged1 was constitutively processed in CLL cells and generated an intracellular fragment that translocated into the nucleus, and an extracellular fragment released into the culture supernatant. IL-4 enhanced expression of Jagged1 and its intracellular fragments, as well as Notch1/2 activation. The IL-4-induced increase in Notch1/2 activation was independent of the concomitant upregulated Jagged1 levels. Indeed, blocking Notch-Jagged1 interactions among CLL cells with Jagged1 neutralizing antibodies did not affect the expression of the Notch target Hes1. Notably, anti-Jagged1 antibodies partially prevented the IL-4-induced increase in Jagged1 processing and cell viability, suggesting that Jagged1 processing is one of the events contributing to IL-4-induced CLL cell survival. Consistent with this, Jagged1 silencing by small interfering RNA partially counteracted the capacity of IL-4 to promote CLL cell survival. Investigating the pathways whereby IL-4 promoted Notch1/2 activation in CLL cells independent of Jagged1, we found that PI3Kδ/AKT and PKCδ were involved in upregulating Notch1 and Notch2 proteins, respectively. Overall, this study provides new insights into the Notch-ligand system in CLL cells and suggests that targeting this system may be exploited as a novel/additional therapy approach for CLL.
Collapse
|
121
|
Paul MS, Dutta D, Singh A, Mutsuddi M, Mukherjee A. Regulation of Notch signaling in the developing
Drosophila
eye by a T‐box containing transcription factor, Dorsocross. Genesis 2018; 56:e23251. [DOI: 10.1002/dvg.23251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Maimuna S. Paul
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Debdeep Dutta
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Ankita Singh
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Mousumi Mutsuddi
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| | - Ashim Mukherjee
- Department of Molecular and Human GeneticsBanaras Hindu University Varanasi India
| |
Collapse
|
122
|
Mori A, Masuda K, Ohtsuka H, Shijo M, Ariake K, Fukase K, Sakata N, Mizuma M, Morikawa T, Hayashi H, Nakagawa K, Motoi F, Naitoh T, Fujishima F, Unno M. FBXW7 modulates malignant potential and cisplatin-induced apoptosis in cholangiocarcinoma through NOTCH1 and MCL1. Cancer Sci 2018; 109:3883-3895. [PMID: 30302867 PMCID: PMC6272118 DOI: 10.1111/cas.13829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin ligase F‐box and WD repeat domain‐containing 7 (FBXW7) is responsible for degrading diverse oncoproteins and is considered a tumor suppressor in many human cancers. Inhibiting FBXW7 enhances the malignant potential of several cancers. In this study, we aimed to investigate the role of FBXW7 in cholangiocarcinoma. We found that FBXW7 expression was associated with clinicopathological outcomes in cholangiocarcinoma patients. Both disease‐free and overall survival were significantly worse in the low‐FBXW7 group than in the high‐FBXW7 group (P = .001 and P < .001, respectively). Multivariate analysis with the Cox proportional hazards model indicated that FBXW7 was the most important independent prognostic factor for disease‐free (P = .006) and overall (P = .0004) survival. We also showed that the two FBXW7 substrates, NOTCH1 and myeloid cell leukemia sequence 1 (MCL1), regulate cholangiocarcinoma progression. Depletion of FBXW7 resulted in NOTCH1 accumulation and increased cholangiocarcinoma cell migration and self‐renewal. Interestingly, when cells were stimulated with cis‐diamminedichloridoplatinum(II) (cisplatin), FBXW7 suppression induced MCL1 upregulation, which reduced the sensitivity of cholangiocarcinoma cells to apoptosis, indicating that FBXW7‐mediated ubiquitylation is context‐dependent. These results indicate that FBXW7 modulates the malignant potential of cholangiocarcinoma through independent regulation of NOTCH1 and MCL1.
Collapse
Affiliation(s)
- Akiko Mori
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Shijo
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
123
|
Pandey A, Li-Kroeger D, Sethi MK, Lee TV, Buettner FF, Bakker H, Jafar-Nejad H. Sensitized genetic backgrounds reveal differential roles for EGF repeat xylosyltransferases in Drosophila Notch signaling. Glycobiology 2018; 28:849-859. [PMID: 30169771 PMCID: PMC6454539 DOI: 10.1093/glycob/cwy080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, glycosylation regulates various developmental signaling pathways including the Notch pathway. One of the O-linked glycans added to epidermal growth factor-like (EGF) repeats in animal proteins including the Notch receptors is the xylose-xylose-glucose-O oligosaccharide. Drosophila glucoside xylosyltransferase (Gxylt) Shams negatively regulates Notch signaling in specific contexts. Since Shams adds the first xylose residue to O-glucose, its loss-of-function phenotype could be due to the loss of the first xylose, the second xylose or both. To examine the contribution of the second xylose residues to Drosophila Notch signaling, we have performed biochemical and genetic analysis on CG11388, which is the Drosophila homolog of human xyloside xylosyltransferase 1 (XXYLT1). Experiments in S2 cells indicated that similar to human XXYLT1, CG11388 can add the second xylose to xylose-glucose-O glycans. Flies lacking both copies of CG11388 (Xxylt) are viable and fertile and do not show gross phenotypes indicative of altered Notch signaling. However, genetic interaction experiments show that in sensitized genetic backgrounds with decreased or increased Notch pathway components, loss of Xxylt promotes Delta-mediated activation of Notch. Unexpectedly, we find that in such sensitized backgrounds, even loss of one copy of the fly Gxylt shams enhances Delta-mediated Notch activation. Taken together, these data indicate that while the first xylose plays a key role in tuning the Delta-mediated Notch signaling in Drosophila, the second xylose has a fine-tuning role only revealed in sensitized genetic backgrounds.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Maya K Sethi
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Falk Fr Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
124
|
Tao Z, Li T, Ma H, Yang Y, Zhang C, Hai L, Liu P, Yuan F, Li J, Yi L, Tong L, Wang Y, Xie Y, Ming H, Yu S, Yang X. Autophagy suppresses self-renewal ability and tumorigenicity of glioma-initiating cells and promotes Notch1 degradation. Cell Death Dis 2018; 9:1063. [PMID: 30337536 PMCID: PMC6194143 DOI: 10.1038/s41419-018-0957-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Autophagy is a vital process that involves degradation of long-lived proteins and dysfunctional organelles and contributes to cellular metabolism. Glioma-initiating cells (GICs) have the ability to self-renew, differentiate into heterogeneous types of tumor cells, and sustain tumorigenicity; thus, GICs lead to tumor recurrence. Accumulating evidence indicates that autophagy can induce stem cell differentiation and increase the lethality of temozolomide against GICs. However, the mechanism underlying the regulation of GIC self-renewal by autophagy remains uncharacterized. In the present study, autophagy induced by AZD8055 and rapamycin treatment suppressed GIC self-renewal in vitro. We found that autophagy inhibited Notch1 pathway activation. Moreover, autophagy activated Notch1 degradation, which is associated with maintenance of the self-renewal ability of GICs. Furthermore, autophagy abolished the tumorigenicity of CD133 + U87-MG neurosphere cells in an intracranial model. These findings suggest that autophagy regulating GICs self-renewal and tumorigenicity is probably bound up with Notch1 degradation. The results of this study could aid in the design of autophagy-based clinical trials for glioma treatments, which may be of great value.
Collapse
Affiliation(s)
- Zhennan Tao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Chen Zhang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Long Hai
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Feng Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Luqing Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yingshuai Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
125
|
Information flow in the presence of cell mixing and signaling delays during embryonic development. Semin Cell Dev Biol 2018; 93:26-35. [PMID: 30261318 DOI: 10.1016/j.semcdb.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
Embryonic morphogenesis is organized by an interplay between intercellular signaling and cell movements. Both intercellular signaling and cell movement involve multiple timescales. A key timescale for signaling is the time delay caused by preparation of signaling molecules and integration of received signals into cells' internal state. Movement of cells relative to their neighbors may introduce exchange of positions between cells during signaling. When cells change their relative positions in a tissue, the impact of signaling delays on intercellular signaling increases because the delayed information that cells receive may significantly differ from the present state of the tissue. The time it takes to perform a neighbor exchange sets a timescale of cell mixing that may be important for the outcome of signaling. Here we review recent theoretical work on the interplay of timescales between cell mixing and signaling delays adopting the zebrafish segmentation clock as a model system. We discuss how this interplay can lead to spatial patterns of gene expression that could disrupt the normal formation of segment boundaries in the embryo. The effect of cell mixing and signaling delays highlights the importance of theoretical and experimental frameworks to understand collective cellular behaviors arising from the interplay of multiple timescales in embryonic developmental processes.
Collapse
|
126
|
Mattes B, Scholpp S. Emerging role of contact-mediated cell communication in tissue development and diseases. Histochem Cell Biol 2018; 150:431-442. [PMID: 30255333 PMCID: PMC6182708 DOI: 10.1007/s00418-018-1732-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Abstract
Cells of multicellular organisms are in continuous conversation with the neighbouring cells. The sender cells signal the receiver cells to influence their behaviour in transport, metabolism, motility, division, and growth. How cells communicate with each other can be categorized by biochemical signalling processes, which can be characterised by the distance between the sender cell and the receiver cell. Existing classifications describe autocrine signals as those where the sender cell is identical to the receiver cell. Complementary to this scenario, paracrine signalling describes signalling between a sender cell and a different receiver cell. Finally, juxtacrine signalling describes the exchange of information between adjacent cells by direct cell contact, whereas endocrine signalling describes the exchange of information, e.g., by hormones between distant cells or even organs through the bloodstream. In the last two decades, however, an unexpected communication mechanism has been identified which uses cell protrusions to exchange chemical signals by direct contact over long distances. These signalling protrusions can deliver signals in both ways, from sender to receiver and vice versa. We are starting to understand the morphology and function of these signalling protrusions in many tissues and this accumulation of findings forces us to revise our view of contact-dependent cell communication. In this review, we will focus on the two main categories of signalling protrusions, cytonemes and tunnelling nanotubes. These signalling protrusions emerge as essential structural components of a vibrant communication network in the development and tissue homeostasis of any multicellular organism.
Collapse
Affiliation(s)
- Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
127
|
A genetic mosaic screen identifies genes modulating Notch signaling in Drosophila. PLoS One 2018; 13:e0203781. [PMID: 30235233 PMCID: PMC6147428 DOI: 10.1371/journal.pone.0203781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Notch signaling is conserved in most multicellular organisms and plays critical roles during animal development. The core components and major signal transduction mechanism of Notch signaling have been extensively studied. However, our understanding of how Notch signaling activity is regulated in diverse developmental processes still remains incomplete. Here, we report a genetic mosaic screen in Drosophila melanogaster that leads to identification of Notch signali ng modulators during wing development. We discovered a group of genes required for the formation of the fly wing margin, a developmental process that is strictly dependent on the balanced Notch signaling activity. These genes encode transcription factors, protein phosphatases, vacuolar ATPases and factors required for RNA transport, stability, and translation. Our data support the view that Notch signaling is controlled through a wide range of molecular processes. These results also provide foundations for further study by showing that Me31B and Wdr62 function as two novel modulators of Notch signaling activity.
Collapse
|
128
|
LIN-12/Notch Regulates GABA Signaling at the Caenorhabditis elegans Neuromuscular Junction. G3-GENES GENOMES GENETICS 2018; 8:2825-2832. [PMID: 29950427 PMCID: PMC6071610 DOI: 10.1534/g3.118.200202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of Notch signaling in cell-fate decisions has been studied extensively; however, this pathway is also active in adult tissues, including the nervous system. Notch signaling modulates a wide range of behaviors and processes of the nervous system in the nematode Caenorhabditis elegans, but there is no evidence for Notch signaling directly altering synaptic strength. Here, we demonstrate Notch-mediated regulation of synaptic activity at the C. elegans neuromuscular junction (NMJ). For this, we used aldicarb, an inhibitor of the enzyme acetylcholinesterase, and assessed paralysis rates of animals with altered Notch signaling. Notch receptors LIN-12 and GLP-1 are required for normal NMJ function; they regulate NMJ activity in an opposing fashion. Complete loss of LIN-12 skews the excitation/inhibition balance at the NMJ toward increased activity, whereas partial loss of GLP-1 has the opposite effect. Specific Notch ligands and co-ligands are also required for proper NMJ function. The role of LIN-12 is independent of cell-fate decisions; manipulation of LIN-12 signaling through RNAi knockdown or overexpression of the co-ligand OSM-11 after development alters NMJ activity. We demonstrate that LIN-12 modulates GABA signaling in this paradigm, as loss of GABA signaling suppresses LIN-12 gain-of-function defects. Further analysis, in vivo and in silico, suggests that LIN-12 may modulate transcription of the GABAB receptor GBB-2 Our findings confirm a non-developmental role for the LIN-12/Notch receptor in regulating synaptic signaling and identify the GABAB receptor GBB-2 as a potential Notch transcriptional target in the C. elegans nervous system.
Collapse
|
129
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
130
|
Chammaa M, Malysa A, Redondo C, Jang H, Chen W, Bepler G, Fernandez-Valdivia R. RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. J Cell Physiol 2018; 233:9548-9562. [PMID: 29953591 DOI: 10.1002/jcp.26858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Recent comprehensive next-generation genome and transcriptome analyses in lung cancer patients, several clinical observations, and compelling evidence from mouse models of lung cancer have uncovered a critical role for Notch signaling in the initiation and progression of non-small-cell lung cancer (NSCLC). Notably, Rumi is a "protein O-glucosyltransferase" that regulates Notch signaling through O-glucosylation of Notch receptors, and is the only enzymatic regulator whose activity is required for both ligand-dependent and ligand-independent activation of Notch. We have conducted a detailed study on RUMI's involvement in NSCLC development and progression, and have further explored the therapeutic potential of its targeting in NSCLC. We have determined that Rumi is highly expressed in the alveolar and bronchiolar epithelia, including club cells and alveolar type II cells. Remarkably, RUMI maps to the region of chromosome 3q that corresponds to the major signature of neoplastic transformation in NSCLC, and is markedly amplified and overexpressed in NSCLC tumors. Notably, RUMI expression levels are predictive of poor prognosis and survival in NSCLC patients. Our data indicates that RUMI modulates Notch activity in NSCLC cells, and that its silencing dramatically decreases cell proliferation, migration, and survival. RUMI downregulation causes severe cell cycle S-phase arrest, increases genome instability, and induces late apoptotic-nonapoptotic cell death. Our studies demonstrate that RUMI is a novel negative prognostic factor with significant therapeutic potential in NSCLC, which embodies particular relevance especially when considering that, while current Notch inhibitory strategies target only ligand-dependent Notch activation, a large number of NSCLCs are driven by ligand-independent Notch activity.
Collapse
Affiliation(s)
- May Chammaa
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Agnes Malysa
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carlos Redondo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hyejeong Jang
- Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Biostatistics Core, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Gerold Bepler
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Rodrigo Fernandez-Valdivia
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
131
|
Mendoza-Ortíz MA, Murillo-Maldonado JM, Riesgo-Escovar JR. aaquetzalli is required for epithelial cell polarity and neural tissue formation in Drosophila. PeerJ 2018; 6:e5042. [PMID: 29942698 PMCID: PMC6015755 DOI: 10.7717/peerj.5042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
Morphogenetic movements during embryogenesis require dynamic changes in epithelial cell polarity and cytoskeletal reorganization. Such changes involve, among others, rearrangements of cell-cell contacts and protein traffic. In Drosophila melanogaster, neuroblast delamination during early neurogenesis is a well-characterized process requiring a polarized neuroepithelium, regulated by the Notch signaling pathway. Maintenance of epithelial cell polarity ensues proper Notch pathway activation during neurogenesis. We characterize here aaquetzalli (aqz), a gene whose mutations affect cell polarity and nervous system specification. The aqz locus encodes a protein that harbors a domain with significant homology to a proline-rich conserved domain of nuclear receptor co-activators. aqz expression occurs at all stages of the fly life cycle, and is dynamic. aqz mutants are lethal, showing a disruption of cell polarity during embryonic ventral neuroepithelium differentiation resulting in loss of epithelial integrity and mislocalization of membrane proteins (shown by mislocalization of Crumbs, DE-Cadherin, and Delta). As a consequence, aqz mutant embryos with compromised apical-basal cell polarity develop spotty changes of neuronal and epithelial numbers of cells.
Collapse
Affiliation(s)
- Miguel A Mendoza-Ortíz
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan M Murillo-Maldonado
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan R Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
132
|
Ireton K, Van Ngo H, Bhalla M. Interaction of microbial pathogens with host exocytic pathways. Cell Microbiol 2018; 20:e12861. [PMID: 29797532 DOI: 10.1111/cmi.12861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Many microbial pathogens co-opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell-cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll-like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Hoan Van Ngo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
133
|
Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia 2018; 183:739-749. [PMID: 29911286 DOI: 10.1007/s11046-018-0276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
The Notch signaling pathway participates in several cellular functional aspects. This signaling has an important role in targeting both DC maturation and DC-mediated T cell responses. Thus, it is essential to investigate the influence of this signaling pathway in the role played by DCs in the pathogenesis of experimental paracoccidioidomycosis. This disease is a granulomatous and systemic mycosis that mainly affects lung tissue and can spread to any other organ and system. In this study, we demonstrated that bone marrow-derived DCs infected with yeasts from Paracoccidioides brasiliensis strain 18 performed efficiently their maturation after the activation of Notch signaling, with an increase in CD80, CD86, CCR7, and CD40 expression and the release of cytokines such as IL-6 and TNF-α. We observed that the inhibition of the γ-secretase DAPT impaired the proliferation of T cells induced by DC stimulation. In conclusion, our data suggest that Notch signaling contributes effectively to the maturation of DCs and the DC-mediated activation of the T cell response in P. brasiliensis infections.
Collapse
|
134
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
135
|
MicroRNA‑92a‑3p inhibits the cell proliferation, migration and invasion of Wilms tumor by targeting NOTCH1. Oncol Rep 2018; 40:571-578. [PMID: 29845267 PMCID: PMC6072285 DOI: 10.3892/or.2018.6458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of miR-92a-3p has been shown to contribute to many tumorigenic processes, and is correlated with tumor progression and prognosis. However, the association between miR-92a-3p and the clinicopathological features of Wilms tumorand its regulatory mechanism remain unknown. In the present study, we demonstrated that miR-92a-3p was downregulated in Wilms tumor tissues and was significantly correlated with the lung metastasis of patients with Wilms tumor. Furthermore, miR-92a-3p mimics suppressed Wilms tumor cell proliferation, migration and invasion by in vitro assays. In addition, miR-92a-3p knockdown promoted tumor progression. Moreover, miR-92a-3p was shown to target directly the 3′-UTR of NOTCH1 mRNA by Dual-Luciferase reporter assays in Wilm's tumor cells. miR-92a-3p mimics decreased the expression of mRNA and protein of NOTCH1. miR-92a-3p inhibitor enhanced NOTCH1 expression by using western blotting and qPCR. In Wilms tumor tissues, NOTCH1 was highly expressed when compared with that in adjacent non-tumor tissues. NOTCH1 expression was found to be negatively correlated with miR-92a-3p in tumor tissues. Knockdown of NOTCH1 expression reversed the promotive effect of miR-92a-3p inhibitor on the cell proliferation, migration and invasion in Wilms tumor. In conclusion, miR-92a-3p blocks the progression of Wilms tumor by targeting NOTCH1.
Collapse
|
136
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
137
|
Histone deacetylase 6 controls Notch3 trafficking and degradation in T-cell acute lymphoblastic leukemia cells. Oncogene 2018; 37:3839-3851. [PMID: 29643474 PMCID: PMC6041259 DOI: 10.1038/s41388-018-0234-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/30/2017] [Accepted: 02/18/2018] [Indexed: 12/02/2022]
Abstract
Several studies have revealed that endosomal sorting controls the steady-state levels of Notch at the cell surface in normal cells and prevents its inappropriate activation in the absence of ligands. However, whether this highly dynamic physiologic process can be exploited to counteract dysregulated Notch signaling in cancer cells remains unknown. T-ALL is a malignancy characterized by aberrant Notch signaling, sustained by activating mutations in Notch1 as well as overexpression of Notch3, a Notch paralog physiologically subjected to lysosome-dependent degradation in human cancer cells. Here we show that treatment with the pan-HDAC inhibitor Trichostatin A (TSA) strongly decreases Notch3 full-length protein levels in T-ALL cell lines and primary human T-ALL cells xenografted in mice without substantially reducing NOTCH3 mRNA levels. Moreover, TSA markedly reduced the levels of Notch target genes, including pTα, CR2, and DTX-1, and induced apoptosis of T-ALL cells. We further observed that Notch3 was post-translationally regulated following TSA treatment, with reduced Notch3 surface levels and increased accumulation of Notch3 protein in the lysosomal compartment. Surface Notch3 levels were rescued by inhibition of dynein with ciliobrevin D. Pharmacologic studies with HDAC1, 6, and 8-specific inhibitors disclosed that these effects were largely due to inhibition of HDAC6 in T-ALL cells. HDAC6 silencing by specific shRNA was followed by reduced Notch3 expression and increased apoptosis of T-ALL cells. Finally, HDAC6 silencing impaired leukemia outgrowth in mice, associated with reduction of Notch3 full-length protein in vivo. These results connect HDAC6 activity to regulation of total and surface Notch3 levels and suggest HDAC6 as a potential novel therapeutic target to lower Notch signaling in T-ALL and other Notch3-addicted tumors.
Collapse
|
138
|
Skarmoutsou E, Bevelacqua V, D' Amico F, Russo A, Spandidos DA, Scalisi A, Malaponte G, Guarneri C. FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. Int J Mol Med 2018; 42:392-404. [PMID: 29620159 PMCID: PMC5979787 DOI: 10.3892/ijmm.2018.3618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability.
Collapse
Affiliation(s)
- Eva Skarmoutsou
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Fabio D' Amico
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Angela Russo
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP‑Catania, 95100 Catania, Italy
| | - Grazia Malaponte
- Research Unit of the Catania Section of the Italian League Against Cancer, 95122 Catania, Italy
| | - Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| |
Collapse
|
139
|
Wang Z, Plasschaert LW, Aryal S, Renaud NA, Yang Z, Choo-Wing R, Pessotti AD, Kirkpatrick ND, Cochran NR, Carbone W, Maher R, Lindeman A, Russ C, Reece-Hoyes J, McAllister G, Hoffman GR, Roma G, Jaffe AB. TRRAP is a central regulator of human multiciliated cell formation. J Cell Biol 2018; 217:1941-1955. [PMID: 29588376 PMCID: PMC5987713 DOI: 10.1083/jcb.201706106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022] Open
Abstract
Multiciliated cells (MCCs) function to promote directional fluid flow across epithelial tissues. Wang et al. show that TRRAP, a component of multiple histone acetyltransferase complexes, is required for airway MCC formation and regulates a network of genes involved in MCC differentiation and function. The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.
Collapse
Affiliation(s)
- Zhao Wang
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Lindsey W Plasschaert
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Shivani Aryal
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Nicole A Renaud
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Zinger Yang
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Rayman Choo-Wing
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Angelica D Pessotti
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | | | - Nadire R Cochran
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rob Maher
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Alicia Lindeman
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Carsten Russ
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - John Reece-Hoyes
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Gregory McAllister
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Gregory R Hoffman
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Aron B Jaffe
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA
| |
Collapse
|
140
|
Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer. Mol Neurobiol 2018; 55:8637-8650. [PMID: 29582397 DOI: 10.1007/s12035-018-1002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/-)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/-) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aβ) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/-) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aβ in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aβ pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.
Collapse
|
141
|
Actin cytoskeleton regulator Arp2/3 complex is required for DLL1 activating Notch1 signaling to maintain the stem cell phenotype of glioma initiating cells. Oncotarget 2018; 8:33353-33364. [PMID: 28380416 PMCID: PMC5464873 DOI: 10.18632/oncotarget.16495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Actin cytoskeleton regulator Arp2/3 complex stimulates glioma cell motility and migration, and thus triggers tumor invasion. However, little is known regarding the role of actin cytoskeleton in maintaining the stem cell phenotype. Here, we showed that Arp2/3 complex improved stem cell phenotype maintenance through sustaining the activated Notch signaling. ShRNA targeting Notch ligand Delta-like 1 (DLL1) decreased CD133 and Nestin expression, and impaired the self-renewal ability of CD133+ U87-MG and U251-MG glioma cells, indicating DLL1/Notch1 signaling promoted stem cell phenotype maintenance. Interestingly, inhibiting Arp2/3 complex also induced the similar effect of shDLL1. Silencing DLL1 in the Arp2/3 inhibited CD133+ cells did not further abrogate the stem cell phenotype, suggesting DLL1 function requires Arp2/3 complex in glioma initiating cells (GICs). However, exogenous soluble DLL1 (sDLL1) instead of endogenous DLL1 rescued the Arp2/3 inhibition-induced stem cell phenotype suppression. The underlying mechanism was that Arp2/3 inhibition impeded DLL1 vesicular transport from cytoplasm to cell membrane, which resulted in DLL1 unable to activate Notch pathway. Furthermore, we illustrated that Arp2/3 inhibition abolished the tumorigenicity of CD133+ U87-MG neurosphere cells in the intracranial model. These findings suggested that cytoskeleton maintained the stem cell phenotype in GBM, which provide novel therapeutic strategy that anti-invasive targeted therapies may help eliminate GICs.
Collapse
|
142
|
Fang H, Chu Q, Zhang J, Wang H, Yu X, Ge S, Song M, Wu L, Lang M, Chang N, Wang Y, Wang W. Human CAP10-Like Protein 46 kDa Gene Promotes Malignancy in Colorectal Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:266-274. [PMID: 28481732 DOI: 10.1089/omi.2017.0037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Colon cancer patients have major unmet needs in terms of robust diagnostics and molecular biomarkers for personalized therapeutics. We have previously reported that human CAP10-like protein 46 kDa (hCLP46) is overexpressed in human acute myelogenous leukemia, T acute lymphoblastic leukemia, and leukemia cell lines. We extend this line of biomarker and diagnostic discovery research by investigating hCLP46 expression in colorectal cancer (CRC) tissues and examine the possibility of hCLP46 as a candidate biomarker for diagnosis and prognosis of CRC. Using a tissue microarray analysis approach, we found that hCLP46 is (1) overexpressed in 90 CRC tissues compared with 90 matched noncancerous tissues and (2) positively correlated with higher tumor-node-metastasis (TNM) stage, lymph node metastasis, and shorter survival time. Moreover, in vitro experiments demonstrated that downregulation of hCLP46 in CRC cells results in proliferation arrest and adhesion enhancement, while apoptosis is unchanged. Further transcriptome profile analysis corroborated that the adhesion pathway is related to hCLP46 downregulation. This report for the first time, to the best of our knowledge, demonstrates that hCLP46 promotes tumor malignancy in CRC cells. We suggest that hCLP46 is warranted for further research as a candidate biomarker for clinical phenotypes related to colon cancer.
Collapse
Affiliation(s)
- Honghong Fang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China
| | - Qiaoyun Chu
- 2 Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University , Beijing, China
| | - Jie Zhang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China
| | - Hao Wang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China
| | - Xinwei Yu
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China .,3 Department of Global Health and Genomics, School of Medical and Health Sciences, Edith Cowan University , Perth, Australia
| | - Siqi Ge
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China .,3 Department of Global Health and Genomics, School of Medical and Health Sciences, Edith Cowan University , Perth, Australia
| | - Manshu Song
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China
| | - Lijuan Wu
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China
| | - Minglin Lang
- 4 Laboratory of Molecular Nutrition and Genetics, College of Life Science, University of Chinese Academy of Sciences , Beijing, China
| | - Naibai Chang
- 5 Department of Hematology, Beijing Hospital , Beijing, China
| | - Youxin Wang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China .,3 Department of Global Health and Genomics, School of Medical and Health Sciences, Edith Cowan University , Perth, Australia
| | - Wei Wang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University , Beijing, China .,3 Department of Global Health and Genomics, School of Medical and Health Sciences, Edith Cowan University , Perth, Australia
| |
Collapse
|
143
|
Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 2018; 7:29804-23. [PMID: 26934331 PMCID: PMC5045435 DOI: 10.18632/oncotarget.7772] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway.
Collapse
|
144
|
Yang SW, Ping YF, Jiang YX, Luo X, Zhang X, Bian XW, Yu PW. ATG4A promotes tumor metastasis by inducing the epithelial-mesenchymal transition and stem-like properties in gastric cells. Oncotarget 2018; 7:39279-39292. [PMID: 27276686 PMCID: PMC5129932 DOI: 10.18632/oncotarget.9827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/14/2016] [Indexed: 02/07/2023] Open
Abstract
The metastasis of tumor cells to distant organs is an ominous feature of gastric cancer. However, the molecular mechanisms underlying the invasion and metastasis of gastric cancer cells remain elusive. In this study, we found that the expression of ATG4A, an autophagy-regulating molecule, was significantly increased in gastric cancer tissues and was significantlycorrelated with the gastric cancer differentiation degree, tumor invasion and lymph node metastasis. ATG4A over-expression significantly promoted gastric cancer cell migration and invasion in vitro and metastasis in vivo, as well as promoted gastric cancer cell stem-like properties and the epithelial-mesenchymal transition (EMT) phenotype. By contrast, ATG4A knockdown inhibited the migration, invasion and metastasis of cancer cells, as well as the stem-like properties and EMT phenotype. Mechanistically, ATG4A promotes gastric cancer cell stem-like properties and the EMT phenotype through the activation of Notch signaling not via autophagy, and using the Notch signaling inhibitor DAPT attenuated the effects of ATG4A on gastric cancer cells. Taken together, these findings demonstrated that ATG4A promotes the metastasis of gastric cancer cells via the Notch signaling pathway, which is an autophagy-independent mechanism.
Collapse
Affiliation(s)
- Shi-Wei Yang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Yi-Fang Ping
- Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Xing Jiang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Luo
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xia Zhang
- Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiu-Wu Bian
- Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pei-Wu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
145
|
Luna-Escalante JC, Formosa-Jordan P, Ibañes M. Redundancy and cooperation in Notch intercellular signaling. Development 2018; 145:dev.154807. [PMID: 29242285 DOI: 10.1242/dev.154807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, whereas antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.
Collapse
Affiliation(s)
- Juan C Luna-Escalante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pau Formosa-Jordan
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain .,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
146
|
Bala Tannan N, Collu G, Humphries AC, Serysheva E, Weber U, Mlodzik M. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007153. [PMID: 29309414 PMCID: PMC5785023 DOI: 10.1371/journal.pgen.1007153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/25/2018] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
AKAP200 is a Drosophila melanogaster member of the “A Kinase Associated Protein” family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling. AKAP200 belongs to a family of scaffolding proteins best known for their regulation of PKA localization. In this study, we have identified a novel role of AKAP200 in Notch protein stability and signaling. In Drosophila melanogaster, AKAP200’s loss and gain-of-function (LOF/GOF) phenotypes are characteristic of Notch signaling defects. Furthermore, we demonstrated genetic interactions between AKAP200 and Notch. Consistent with this, AKAP200 stabilizes the endogenous Notch protein and limits its ubiquitination. AKAP200 exerts its effects on Notch by antagonizing Cbl-mediated ubiquitination and thus lysosome targeting of Notch. Based on these data, we postulate a novel PKA independent mechanism of AKAP200 to achieve optimal Notch protein levels, with AKAP200 preventing Cbl-mediated lysosomal degradation of Notch.
Collapse
Affiliation(s)
- Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giovanna Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ashley C. Humphries
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ekatherina Serysheva
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ursula Weber
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
147
|
Pandey A, Jafar-Nejad H. Cell Aggregation Assays to Evaluate the Binding of the Drosophila Notch with Trans-Ligands and its Inhibition by Cis-Ligands. J Vis Exp 2018. [PMID: 29364239 DOI: 10.3791/56919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-cell communication system used broadly in animal development and adult maintenance. Interaction of the Notch receptor with ligands from neighboring cells induces activation of the signaling pathway (trans-activation), while interaction with ligands from the same cell inhibits signaling (cis-inhibition). Proper balance between trans-activation and cis-inhibition helps establish optimal levels of Notch signaling in some contexts during animal development. Because of the overlapping expression domains of Notch and its ligands in many cell types and the existence of feedback mechanisms, studying the effects of a given post-translational modification on trans- versus cis-interactions of Notch and its ligands in vivo is difficult. Here, we describe a protocol for using Drosophila S2 cells in cell-aggregation assays to assess the effects of knocking down a Notch pathway modifier on the binding of Notch to each ligand in trans and in cis. S2 cells stably or transiently transfected with a Notch-expressing vector are mixed with cells expressing each Notch ligand (S2-Delta or S2-Serrate). Trans-binding between the receptor and ligands results in the formation of heterotypic cell aggregates and is measured in terms of the number of aggregates per mL composed of >6 cells. To examine the inhibitory effect of cis-ligands, S2 cells co-expressing Notch and each ligand are mixed with S2-Delta or S2-Serrate cells and the number of aggregates is quantified as described above. The relative decrease in the number of aggregates due to the presence of cis-ligands provides a measure of cis-ligand-mediated inhibition of trans-binding. These straightforward assays can provide semi-quantitative data on the effects of genetic or pharmacological manipulations on the binding of Notch to its ligands, and can help deciphering the molecular mechanisms underlying the in vivo effects of such manipulations on Notch signaling.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine; Program in Developmental Biology, Baylor College of Medicine;
| |
Collapse
|
148
|
Macarak E, Rosenbloom J. The Pathogenesis of Intraabdominal Adhesions: Similarities and Differences to Luminal Fibrosis. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:319-346. [DOI: 10.1007/978-3-319-90578-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
149
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
150
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|