101
|
Khalifeh-Soltani A, Gupta D, Ha A, Iqbal J, Hussain M, Podolsky MJ, Atabai K. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity. JCI Insight 2016; 1:e87418. [PMID: 27812539 DOI: 10.1172/jci.insight.87418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2-dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Deepti Gupta
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Arnold Ha
- Department of Medicine.,Cardiovascular Research Institute
| | - Jahangir Iqbal
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Mahmood Hussain
- Departments of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Michael J Podolsky
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| | - Kamran Atabai
- Department of Medicine.,Cardiovascular Research Institute.,Lung Biology Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
102
|
Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland. Proc Natl Acad Sci U S A 2016; 113:13408-13413. [PMID: 27810956 DOI: 10.1073/pnas.1614970113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development.
Collapse
|
103
|
Brinkmann BF, Steinbacher T, Hartmann C, Kummer D, Pajonczyk D, Mirzapourshafiyi F, Nakayama M, Weide T, Gerke V, Ebnet K. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation. Mol Biol Cell 2016; 27:2811-21. [PMID: 27466317 PMCID: PMC5025268 DOI: 10.1091/mbc.e16-02-0127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Blood vessel tubulogenesis requires the establishment of apicobasal polarity of endothelial cells. A novel interaction is described of the cell adhesion molecule VE-cadherin with the cell polarity protein Pals1. The activity of VE-cadherin in regulation of endothelial lumen formation depends on its interaction with both Pals1 and Par3. Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell–cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.
Collapse
Affiliation(s)
- Benjamin F Brinkmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany
| | - Christian Hartmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| | - Denise Pajonczyk
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany
| | - Fatemeh Mirzapourshafiyi
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Weide
- Department of Internal Medicine D, Division of Molecular Nephrology, University Hospital Münster, Albert-Schweitzer-Campus 1, University of Münster, 48419 Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity,", University of Münster, 48419 Münster, Germany Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 48419 Münster, Germany Interdisciplinary Clinical Research Center, University of Münster, 48419 Münster, Germany
| |
Collapse
|
104
|
de Vega S, Hozumi K, Suzuki N, Nonaka R, Seo E, Takeda A, Ikeuchi T, Nomizu M, Yamada Y, Arikawa-Hirasawa E. Identification of peptides derived from the C-terminal domain of fibulin-7 active for endothelial cell adhesion and tube formation disruption. Biopolymers 2016; 106:184-195. [PMID: 26491858 DOI: 10.1002/bip.22754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Despite the research done on pathological angiogenesis, there is still a need for the development of new therapies against angiogenesis-related diseases. Fibulin-7 (Fbln7) is a member of the extracellular matrix fibulin protein family. The Fbln7 C-terminal fragment, Fbln7-C, binds to endothelial cells and inhibits their tube formation in culture. In this study, we screened 12 synthetic peptides, covering the fibulin-globular domain of Fbln7-C, to identify active sites for endothelial cell adhesion and in vitro antiangiogenic activity. Three peptides, fc10, fc11, and fc12, promoted Human Umbilical Vein Endothelial Cells (HUVECs) adhesion, and the morphology of HUVECs on fc10 was similar to that on Fbln7-C. EDTA and the anti-integrin β1 function-blocking antibody inhibited HUVECs adhesion to both fc10 and fc12, and heparin inhibited HUVECs adhesion to both fc11 and fc12. fc10 and fc11 inhibited HUVECs tube formation. Our results suggest that three peptides from Fbln7-C are biologically active for endothelial cell adhesion and disrupt the tube formation, suggesting a potential therapeutic use of these peptides for angiogenesis-related diseases. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 184-195, 2016.
Collapse
Affiliation(s)
- Susana de Vega
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Kentaro Hozumi
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Nobuharu Suzuki
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Eimi Seo
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Anna Takeda
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Tomoko Ikeuchi
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20814
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Tokyo, 192-0392, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20814
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
105
|
Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth. Angiogenesis 2016; 19:173-90. [PMID: 26897025 DOI: 10.1007/s10456-016-9498-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/09/2023]
Abstract
Cardiovascular function depends on patent, continuous and stable blood vessel formation by endothelial cells (ECs). Blood vessel development initiates by vasculogenesis, as ECs coalesce into linear aggregates and organize to form central lumens that allow blood flow. Molecular mechanisms underlying in vivo vascular 'tubulogenesis' are only beginning to be unraveled. We previously showed that the GTPase-interacting protein called Rasip1 is required for the formation of continuous vascular lumens in the early embryo. Rasip1(-/-) ECs exhibit loss of proper cell polarity and cell shape, disrupted localization of EC-EC junctions and defects in adhesion of ECs to extracellular matrix. In vitro studies showed that Rasip1 depletion in cultured ECs blocked tubulogenesis. Whether Rasip1 is required in blood vessels after their initial formation remained unclear. Here, we show that Rasip1 is essential for vessel formation and maintenance in the embryo, but not in quiescent adult vessels. Rasip1 is also required for angiogenesis in three models of blood vessel growth: in vitro matrix invasion, retinal blood vessel growth and directed in vivo angiogenesis assays. Rasip1 is thus necessary in growing embryonic blood vessels, postnatal angiogenic sprouting and remodeling, but is dispensable for maintenance of established blood vessels, making it a potential anti-angiogenic therapeutic target.
Collapse
|
106
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
107
|
van Buul JD, Timmerman I. Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions. Small GTPases 2016; 7:21-31. [PMID: 26825121 DOI: 10.1080/21541248.2015.1131802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VE-cadherin-based cell-cell junctions form the major restrictive barrier of the endothelium to plasma proteins and blood cells. The function of VE-cadherin and the actin cytoskeleton are intimately linked. Vascular permeability factors and adherent leukocytes signal through small Rho GTPases to tightly regulate actin cytoskeletal rearrangements in order to open and re-assemble endothelial cell-cell junctions in a rapid and controlled manner. The Rho GTPases are activated by guanine nucleotide exchange factors (GEFs), conferring specificity and context-dependent control of cell-cell junctions. Although the molecular mechanisms that couple cadherins to actin filaments are beginning to be elucidated, specific stimulus-dependent regulation of the actin cytoskeleton at VE-cadherin-based junctions remains unexplained. Accumulating evidence has suggested that depending on the vascular permeability factor and on the subcellular localization of GEFs, cell-cell junction dynamics and organization are differentially regulated by one specific Rho GTPase. In this Commentary, we focus on new insights how the junctional actin cytoskeleton is specifically and locally regulated by Rho GTPases and GEFs in the endothelium.
Collapse
Affiliation(s)
- Jaap D van Buul
- a Department of Molecular Cell Biology , Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| | - Ilse Timmerman
- b Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
108
|
Norden PR, Kim DJ, Barry DM, Cleaver OB, Davis GE. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. PLoS One 2016; 11:e0147758. [PMID: 26812085 PMCID: PMC4728208 DOI: 10.1371/journal.pone.0147758] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.
Collapse
Affiliation(s)
- Pieter R. Norden
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| | - Dae Joong Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| | - David M. Barry
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Ondine B. Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - George E. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| |
Collapse
|
109
|
Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep 2016; 6:19404. [PMID: 26762853 PMCID: PMC4725875 DOI: 10.1038/srep19404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
The angiogenic switch is an important oncogenic step that determines whether microtumors remain dormant or progresses further. It has been generally perceived that the primary function of this tumorgenic event is to supply oxygen and nutrients through blood circulation. Using in vivo imaging of zebrafish and mouse tumor models, we showed that endothelial cords aggressively penetrated into microtumors and remained non-circulatory for several days before undergoing vascular blood perfusion. Unexpectedly, we found that initial tumor growth in both models was significantly reduced if endothelial cords were removed by blocking VEGF-VEGFR2 signaling or using a vascular deficient zebrafish mutant. It was further shown that soluble factors including IL-8, secreted by endothelial cells (ECs) were responsible for stimulating tumor cells proliferation. These findings establish that tumor angiogenesis play a much earlier and broader role in promoting tumor growth, which is independent of vascular circulation. Understanding this novel mechanism of angiogenic tumor progression offers new entry points for cancer therapeutics.
Collapse
|
110
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
111
|
Dubrac A, Genet G, Ola R, Zhang F, Pibouin-Fragner L, Han J, Zhang J, Thomas JL, Chedotal A, Schwartz MA, Eichmann A. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. Circulation 2015; 133:409-21. [PMID: 26659946 DOI: 10.1161/circulationaha.115.017537] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. METHODS AND RESULTS Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. CONCLUSIONS These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis.
Collapse
Affiliation(s)
- Alexandre Dubrac
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Gael Genet
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Roxana Ola
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Feng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Laurence Pibouin-Fragner
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jinah Han
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jiasheng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jean-Léon Thomas
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Alain Chedotal
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Martin A Schwartz
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Anne Eichmann
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.).
| |
Collapse
|
112
|
Minami T, Satoh K, Nogi M, Kudo S, Miyata S, Tanaka SI, Shimokawa H. Statins up-regulate SmgGDS through β1-integrin/Akt1 pathway in endothelial cells. Cardiovasc Res 2015; 109:151-61. [PMID: 26598509 DOI: 10.1093/cvr/cvv253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS The pleiotropic effects of HMG-CoA reductase inhibitors (statins) independent of cholesterol-lowering effects have attracted much attention. We have recently demonstrated that the pleiotropic effects of statins are partly mediated through up-regulation of small GTP-binding protein dissociation stimulator (SmgGDS) with a resultant Rac1 degradation and reduced oxidative stress. However, it remains to be elucidated what molecular mechanisms are involved. METHODS AND RESULTS To first determine in what tissue statins up-regulate SmgGDS expression, we examined the effects of two statins (atorvastatin 10 mg/kg per day and pravastatin 50 mg/kg per day for 1 week) on SmgGDS expression in mice in vivo. The two statins increased SmgGDS expression especially in the aorta. Atorvastatin also increased SmgGDS expression in cultured human umbilical venous endothelial cells (HUVEC) and human aortic endothelial cells, but not in human aortic vascular smooth muscle cells. Furthermore, Akt phosphorylation was transiently enhanced only in HUVEC in response to atorvastatin. Then, to examine whether Akt is involved for up-regulation of SmgGDS by statins, we knocked out Akt1 by its siRNA in HUVEC, which abolished the effects by atorvastatin to up-regulate SmgGDS. Furthermore, when we knocked down β1-integrin to elucidate the upstream molecule of Akt1, the effect of atorvastatin to up-regulate SmgGDS was abolished. Finally, we confirmed that Akt activator, SC79, significantly up-regulate SmgGDS in HUVEC. CONCLUSION These results indicate that statins selectively up-regulate SmgGDS in endothelial cells, for which the β1-integrin/Akt1 pathway may be involved, demonstrating the novel aspects of the pleiotropic effects of statins.
Collapse
Affiliation(s)
- Tatsuro Minami
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Nogi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Kudo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-ichi Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
113
|
|
114
|
Yu JA, Castranova D, Pham VN, Weinstein BM. Single-cell analysis of endothelial morphogenesis in vivo. Development 2015; 142:2951-61. [PMID: 26253401 PMCID: PMC4582182 DOI: 10.1242/dev.123174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
Abstract
Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo.
Collapse
Affiliation(s)
- Jianxin A Yu
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Castranova
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Van N Pham
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brant M Weinstein
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
115
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
116
|
Abstract
Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output. The first haematopoietic stem and progenitor cells arise from the hemogenic endothelium of arterial vascular beds. Here the authors describe the mechanism that regulates the endothelial-to-haematopoietic transition and show that Sox17 and Notch1, genes critical to arterial endothelium identity, are also crucial repressors of haematopoietic fate.
Collapse
|
117
|
Chaki SP, Barhoumi R, Rivera GM. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell 2015; 26:3047-60. [PMID: 26157164 PMCID: PMC4551318 DOI: 10.1091/mbc.e15-06-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023] Open
Abstract
Nck-dependent actin remodeling enables endothelial morphogenesis by promoting cell elongation and proper organization of VE-cadherin intercellular junctions. Nck determines spatiotemporal patterns of Cdc42/aPKC activation to regulate endothelial apical-basal polarity and lumen formation. Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| |
Collapse
|
118
|
Yang J, Yao W, Qian G, Wei Z, Wu G, Wang G. Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium. Cell Mol Life Sci 2015; 72:4849-66. [PMID: 26112597 PMCID: PMC4827161 DOI: 10.1007/s00018-015-1973-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
The small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization. In parallel, LPS challenge also induced abnormal cell polarity and dysfunction of the endothelial barrier in HPMECs. LPS stimulation promoted the translocation of VE-cadherin from the plasma membrane to intracellular compartments, and intracellularly expressed VE-cadherin was extensively colocalized with Rab5. Small interfering RNA (siRNA)-mediated depletion of Rab5a expression attenuated the disruption of LPS-induced internalization of VE-cadherin and the disorder of cell polarity. Furthermore, knockdown of Rab5 inhibited the vascular endothelial hyperpermeability and protected endothelial barrier function from LPS injury, both in vitro and in vivo. These results suggest that Rab5 is a critical mediator of LPS-induced endothelial barrier dysfunction, which is likely mediated through regulating VE-cadherin internalization. These findings provide evidence, implicating that Rab5a is a potential therapeutic target for preventing endothelial barrier disruption and vascular inflammation.
Collapse
Affiliation(s)
- Junjun Yang
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wei Yao
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guisheng Qian
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhenghua Wei
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, 30912, USA.
| | - Guansong Wang
- Institute of Respiratory Diseases and Critical Care, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
119
|
Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqour B. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 2015; 142:2364-74. [PMID: 26002917 DOI: 10.1242/dev.121913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.
Collapse
Affiliation(s)
- Hemabindu Chintala
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Izabela Krupska
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lulu Yan
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Lester Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | - Maria Grant
- Departments of Ophthalmology and Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brahim Chaqour
- State University of New York (SUNY) Eye Institute and Department of Cell Biology, Downstate Medical Center, Brooklyn, NY 11203, USA Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
120
|
Sasaki K, Kakuwa T, Akimoto K, Koga H, Ohno S. Regulation of epithelial cell polarity by PAR-3 depends on Girdin transcription and Girdin-Gαi3 signaling. J Cell Sci 2015; 128:2244-58. [PMID: 25977476 DOI: 10.1242/jcs.160879] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial apicobasal polarity has fundamental roles in epithelial physiology and morphogenesis. The PAR complex, comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC), is involved in determining cell polarity in various biological contexts, including in epithelial cells. However, it is not fully understood how the PAR complex induces apicobasal polarity. In this study, we found that PAR-3 regulates the protein expression of Girdin (also known as GIV or CCDC88A), a guanine-nucleotide-exchange factor (GEF) for heterotrimeric Gαi subunits, at the transcriptional level by cooperating with the AP-2 transcription factor. In addition, we confirmed that PAR-3 physically interacts with Girdin, and show that Girdin, together with the Gαi3 (also known as GNAI3), controls tight junction formation, apical domain development and actin organization downstream of PAR-3. Taken together, our findings suggest that transcriptional upregulation of Girdin expression and Girdin-Gαi3 signaling play crucial roles in regulating epithelial apicobasal polarity through the PAR complex.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Taku Kakuwa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazunori Akimoto
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Department of Molecular Medical Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hisashi Koga
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
121
|
Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Inform 2015; 14:15-28. [PMID: 25991909 PMCID: PMC4390136 DOI: 10.4137/cin.s18964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
122
|
Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:314178. [PMID: 25883953 PMCID: PMC4389985 DOI: 10.1155/2015/314178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022]
Abstract
Vasculature is present in all tissues and therefore is indispensable for development, biology, and pathology of multicellular organisms. Endothelial cells guarantee proper function of the vessels and are the original component in angiogenesis. Morphogenesis of the vascular system utilizes processes like cell adhesion, motility, proliferation, and survival that are closely related to the dynamics of actin filaments and actin-tethered adhesion complexes. Here we review involvement of actin cytoskeleton-associated junctional molecules of endothelial cells in angiogenesis and lymphangiogenesis. Particularly, we focus on F-actin binding protein afadin, an adaptor protein involved in broad range of signaling mechanisms. Afadin mediates the pathways of vascular endothelial growth factor- (VEGF-) and sphingosine 1-phosphate-triggered angiogenesis and is essential for embryonic development of lymph vessels in mice. We propose that targeting actin-tethered junctional molecules, including afadin, may present a new approach to angiogenic therapy that in combination with today used medications like VEGF inhibitors will benefit against development of pathological angiogenesis.
Collapse
|
123
|
Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519:425-30. [PMID: 25799996 DOI: 10.1038/nature14323] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2015] [Indexed: 11/09/2022]
Abstract
Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to β1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, α5β1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Philip Vitorino
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Stacey Yeung
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Ailey Crow
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Jesse Bakke
- Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tanya Smyczek
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Kristina West
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Erin McNamara
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | - Stephen Gould
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Seth F Harris
- Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Chudi Ndubaku
- Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Weilan Ye
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
124
|
Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat Commun 2015; 6:6429. [PMID: 25752958 DOI: 10.1038/ncomms7429] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/28/2015] [Indexed: 01/19/2023] Open
Abstract
Angiogenic blood vessel growth requires several distinct but integrated cellular activities. Endothelial cell sprouting and proliferation lead to the expansion of the vasculature and give rise to a highly branched, immature plexus, which is subsequently reorganized into a mature and stable network. Although it is known that integrin-mediated cell-matrix interactions are indispensable for embryonic angiogenesis, little is known about the function of integrins in different steps of vascular morphogenesis. Here, by investigating the integrin β1-subunit with inducible and endothelial-specific gene targeting in the postnatal mouse retina, we show that β1 integrin promotes endothelial sprouting but is a negative regulator of proliferation. In maturing vessels, integrin β1 is indispensable for proper localization of VE-cadherin and thereby cell-cell junction integrity. The sum of our findings establishes that integrin β1 has critical functions in the growing and maturing vasculature, and is required for the formation of stable, non-leaky blood vessels.
Collapse
|
125
|
Phng LK, Gebala V, Bentley K, Philippides A, Wacker A, Mathivet T, Sauteur L, Stanchi F, Belting HG, Affolter M, Gerhardt H. Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell 2015; 32:123-32. [PMID: 25584798 DOI: 10.1016/j.devcel.2014.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/31/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
During blood vessel formation, endothelial cells (ECs) establish cell-cell junctions and rearrange to form multicellular tubes. Here, we show that during lumen formation, the actin nucleator and elongation factor, formin-like 3 (fmnl3), localizes to EC junctions, where filamentous actin (F-actin) cables assemble. Fluorescent actin reporters and fluorescence recovery after photobleaching experiments in zebrafish embryos identified a pool of dynamic F-actin with high turnover at EC junctions in vessels. Knockdown of fmnl3 expression, chemical inhibition of formin function, and expression of dominant-negative fmnl3 revealed that formin activity maintains a stable F-actin content at EC junctions by continual polymerization of F-actin cables. Reduced actin polymerization leads to destabilized endothelial junctions and consequently to failure in blood vessel lumenization and lumen instability. Our findings highlight the importance of formin activity in blood vessel morphogenesis.
Collapse
Affiliation(s)
- Li-Kun Phng
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Véronique Gebala
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Katie Bentley
- Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Andrin Wacker
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Loïc Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK.
| |
Collapse
|
126
|
Davis GE, Norden PR, Bowers SLK. Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: functional roles of endothelial cells and pericytes in health and disease. Connect Tissue Res 2015; 56:392-402. [PMID: 26305158 PMCID: PMC4765926 DOI: 10.3109/03008207.2015.1066781] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review addresses fundamental mechanisms underlying how capillaries form in three-dimensional extracellular matrices and how endothelial cells (ECs) and pericytes co-assemble to form capillary networks. In addition to playing a critical role in supplying oxygen and nutrients to tissues, recent work suggests that blood vessels supply important signals to facilitate tissue development. Here, we hypothesize that another major function of capillaries is to supply signals to suppress major disease mechanisms including inflammation, infection, thrombosis, hemorrhage, edema, ischemic injury, fibrosis, autoimmune disease and tumor growth/progression. Capillary dysfunction plays a key pathogenic role in many human diseases, and thus, this suppressing function may be attenuated and central toward the initiation and progression of disease. We describe how capillaries form through creation of EC-lined tube networks and vascular guidance tunnels in 3D extracellular matrices. Pericytes recruit to the abluminal EC tube surface within these tunnel spaces, and work together to assemble the vascular basement membrane matrix. These processes occur under serum-free conditions in 3D collagen or fibrin matrices and in response to five key growth factors which are stem cell factor, interleukin-3, stromal-derived factor-1α, fibroblast growth factor-2 and insulin. In addition, we identified a key role for EC-derived platelet-derived growth factor-BB and heparin-binding epidermal growth factor in pericyte recruitment and proliferation to promote EC-pericyte tube co-assembly and vascular basement membrane matrix deposition. A molecular understanding of capillary morphogenesis and maturation should lead to novel therapeutic strategies to repair capillary dysfunction in major human disease contexts including cancer and diabetes.
Collapse
Affiliation(s)
- George E Davis
- a Department of Medical Pharmacology and Physiology , Dalton Cardiovascular Research Center, University of Missouri School of Medicine , Columbia , MO , USA
| | - Pieter R Norden
- a Department of Medical Pharmacology and Physiology , Dalton Cardiovascular Research Center, University of Missouri School of Medicine , Columbia , MO , USA
| | - Stephanie L K Bowers
- a Department of Medical Pharmacology and Physiology , Dalton Cardiovascular Research Center, University of Missouri School of Medicine , Columbia , MO , USA
| |
Collapse
|
127
|
Pelton JC, Wright CE, Leitges M, Bautch VL. Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 2014; 141:4121-6. [PMID: 25336741 DOI: 10.1242/dev.110296] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood vessel polarization in the apical-basal axis is important for directed secretion of proteins and lumen formation; yet, when and how polarization occurs in the context of angiogenic sprouting is not well understood. Here, we describe a novel topology for endothelial cells at the tip of angiogenic sprouts in several mammalian vascular beds. Two cells that extend filopodia and have significant overlap in space and time were present at vessel tips, both in vitro and in vivo. The cell overlap is more extensive than predicted for tip cell switching, and it sets up a longitudinal cell-cell border that is a site of apical polarization and lumen formation, presumably via a cord-hollowing mechanism. The extent of cell overlap at the tip is reduced in mice lacking aPKCζ, and this is accompanied by reduced distal extension of both the apical border and patent lumens. Thus, at least two polarized cells occupy the distal tip of blood vessel sprouts, and topology, polarization and lumenization along the longitudinal border of these cells are influenced by aPKCζ.
Collapse
Affiliation(s)
- John C Pelton
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine E Wright
- Genetics and Molecular Biology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Genetics and Molecular Biology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
128
|
Bauer HC, Krizbai IA, Bauer H, Traweger A. "You Shall Not Pass"-tight junctions of the blood brain barrier. Front Neurosci 2014; 8:392. [PMID: 25520612 PMCID: PMC4253952 DOI: 10.3389/fnins.2014.00392] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.
Collapse
Affiliation(s)
- Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Department of Traumatology and Sports Injuries, Paracelsus Medical University Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| | - István A Krizbai
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences Szeged, Hungary ; Institute of Life Sciences, Vasile Goldis Western University of Arad Arad, Romania
| | - Hannelore Bauer
- Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| |
Collapse
|
129
|
Yonemura S. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment. PLoS One 2014; 9:e112922. [PMID: 25393292 PMCID: PMC4231087 DOI: 10.1371/journal.pone.0112922] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
130
|
Rodriguez-Fraticelli AE, Martin-Belmonte F. Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Curr Opin Cell Biol 2014; 30:83-90. [DOI: 10.1016/j.ceb.2014.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
|
131
|
Abstract
Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Jessica L Lee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
132
|
Abstract
Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems.
Collapse
Affiliation(s)
- Katie Bentley
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
133
|
Seidelmann SB, Lighthouse JK, Greif DM. Development and pathologies of the arterial wall. Cell Mol Life Sci 2014; 71:1977-99. [PMID: 24071897 PMCID: PMC11113178 DOI: 10.1007/s00018-013-1478-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/13/2023]
Abstract
Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/metabolism
- Animals
- Arteries/growth & development
- Arteries/metabolism
- Arteries/pathology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation, Developmental
- Humans
- Morphogenesis/genetics
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
Collapse
Affiliation(s)
- Sara B. Seidelmann
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Janet K. Lighthouse
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| | - Daniel M. Greif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, 300 George St., Rm 773J, New Haven, CT 06511 USA
| |
Collapse
|
134
|
Anderson LR, Owens TW, Naylor MJ. Integrins in development and cancer. Biophys Rev 2014; 6:191-202. [PMID: 28510181 PMCID: PMC5418411 DOI: 10.1007/s12551-013-0123-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023] Open
Abstract
The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell-cell and cell-extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of "stemness". We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
135
|
Abstract
The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology; Radboud University Medical Center; Nijmegen, the Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers; Department of Genitourinary Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Cancer Genomics Centre Netherlands; Utrecht, the Netherlands
| |
Collapse
|
136
|
AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun 2014; 5:3743. [PMID: 24806444 DOI: 10.1038/ncomms4743] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023] Open
Abstract
The assembly of individual endothelial cells into multicellular tubes is a complex morphogenetic event in vascular development. Extracellular matrix cues and cell-cell junctional communication are fundamental to tube formation. Together they determine the shape of endothelial cells and the tubular structures that they ultimately form. Little is known regarding how mechanical signals are transmitted between cells to control cell shape changes during morphogenesis. Here we provide evidence that the scaffold protein amotL2 is needed for aortic vessel lumen expansion. Using gene inactivation strategies in zebrafish, mouse and endothelial cell culture systems, we show that amotL2 associates to the VE-cadherin adhesion complex where it couples adherens junctions to contractile actin fibres. Inactivation of amotL2 dissociates VE-cadherin from cytoskeletal tensile forces that affect endothelial cell shape. We propose that the VE-cadherin/amotL2 complex is responsible for transmitting mechanical force between endothelial cells for the coordination of cellular morphogenesis consistent with aortic lumen expansion and function.
Collapse
|
137
|
Establishing the plane of symmetry for lumen formation and bilateral brain formation in the zebrafish neural rod. Semin Cell Dev Biol 2014; 31:100-5. [PMID: 24721474 DOI: 10.1016/j.semcdb.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/21/2022]
Abstract
The lumen of the zebrafish neural tube develops precisely at the midline of the solid neural rod primordium. This process depends on cell polarisation and cell rearrangements, both of which are manifest at the midline of the neural rod. The result of this cell polarisation and cell rearrangement is an epithelial tube that has overt mirror-symmetry, such that cell morphology and apicobasal polarisation are mirrored across the midline of the neural tube. This article discusses how this mirror-symmetry is established and proposes the hypothesis that positioning the cells' centrosomes to the midline of the neural rod is a key event in organising this process.
Collapse
|
138
|
Neufeld S, Planas-Paz L, Lammert E. Blood and lymphatic vascular tube formation in mouse. Semin Cell Dev Biol 2014; 31:115-23. [PMID: 24631829 DOI: 10.1016/j.semcdb.2014.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
Abstract
The blood and lymphatic vasculatures are essential for nutrient delivery, gas exchange and fluid homeostasis in all tissues of higher vertebrates. They are composed of a hierarchical network of vessels, which are lined by vascular or lymphatic endothelial cells. For blood vascular lumen formation to occur, endothelial cell cords polarize creating apposing apical cell surfaces, which repulse each other and give rise to a small intercellular lumen. Following cell shape changes, the vascular lumen expands. Various junctional proteins, polarity complexes, extracellular matrix binding and actin remodelling molecules are required for blood vascular lumen formation. In contrast, little is known regarding the molecular mechanisms leading to lymphatic vascular tube formation. Current models agree that lymphatic vessels share a blood vessel origin, but they differ in identifying the mechanism by which a lymphatic lumen is formed. A ballooning mechanism was proposed, in which lymph sacs are connected via their lumen to the cardinal veins. Alternatively, a mechanism involving budding of streams of lymphatic endothelial cells from either the cardinal veins or both the cardinal veins and the intersomitic vessels, and subsequent assembly and lumenisation was recently described. Here, we discuss what is currently known about the molecular and cellular machinery that guides blood and lymphatic vascular tube formation in mouse.
Collapse
Affiliation(s)
- Sofia Neufeld
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| |
Collapse
|
139
|
Popson SA, Ziegler ME, Chen X, Holderfield MT, Shaaban CI, Fong AH, Welch-Reardon KM, Papkoff J, Hughes CCW. Interferon-induced transmembrane protein 1 regulates endothelial lumen formation during angiogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1011-9. [PMID: 24603679 DOI: 10.1161/atvbaha.114.303352] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE It is well established that angiogenesis is a complex and coordinated multistep process. However, there remains a lack of information about the genes that regulate individual stages of vessel formation. Here, we aimed to define the role of human interferon-induced transmembrane protein 1 (IFITM1) during blood vessel formation. APPROACH AND RESULTS We identified IFITM1 in a microarray screen for genes differentially regulated by endothelial cells (ECs) during an in vitro angiogenesis assay and found that IFITM1 expression was strongly induced as ECs sprouted and formed lumens. We showed by immunohistochemistry that human IFITM1 was expressed by stable blood vessels in multiple organs. siRNA-mediated knockdown of IFITM1 expression spared EC sprouting but completely disrupted lumen formation, in both in vitro and in an in vivo xeno-transplant model. ECs lacking IFITM1 underwent early stages of lumenogenesis (ie, intracellular vacuole formation) but failed to mature or expand lumens. Coimmunoprecipitation studies confirmed occludin as an IFITM1 binding partner in ECs, and immunocytochemistry showed a lack of occludin at endothelial tight junctions in the absence of IFITM1. Finally, time-lapse video microscopy revealed that IFITM1 is required for the formation of stable cell-cell contacts during endothelial lumen formation. CONCLUSIONS IFITM1 is essential for the formation of functional blood vessels and stabilizes EC-EC interactions during endothelial lumen formation by regulating tight junction assembly.
Collapse
Affiliation(s)
- Stephanie A Popson
- From the Department of Molecular Biology and Biochemistry (S.A.P., M.E.Z., M.T.H., C.I.S., A.H.F., K.M.W.-R., J.P., C.C.W.H.), Department of Biomedical Engineering (X.C., C.C.W.H.), Edwards Lifesciences Center for Advanced Cardiovascular Technology (C.C.W.H.), and Chao Family Comprehensive Cancer Center (C.C.W.H.), University of California Irvine
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lee MY, Skoura A, Park EJ, Landskroner-Eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 2014; 141:1465-72. [PMID: 24598168 DOI: 10.1242/dev.104539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Monica Y Lee
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 2014; 34:433-40. [PMID: 24346691 PMCID: PMC3948118 DOI: 10.1038/jcbfm.2013.213] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022]
Abstract
Wnt morphogens released by neural precursor cells were recently reported to control blood-brain barrier (BBB) formation during development. Indeed, in mouse brain endothelial cells, activation of the Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, was shown to stabilize endothelial tight junctions (TJs) through transcriptional regulation of the expression of TJ proteins. Because Wnt proteins activate several distinct β-catenin-dependent and independent signaling pathways, this study was designed to assess whether the noncanonical Wnt/Par/aPKC planar cell polarity (PCP) pathway might also control TJ integrity in brain endothelial cells. First we established, in the hCMEC/D3 human brain endothelial cell line, that the Par/aPKC PCP complex colocalizes with TJs and controls apicobasal polarization. Second, using an siRNA approach, we showed that the Par/aPKC PCP complex regulates TJ stability and reassembling after osmotic shock. Finally, we provided evidence that Wnt5a signals in hCMEC/D3 cells through activation of the Par/aPKC PCP complex, independently of the Wnt canonical β-catenin-dependent pathway and significantly contributes to TJ integrity and endothelial apicobasal polarity. In conclusion, this study suggests that the Wnt/Par/aPKC PCP pathway, in addition to the Wnt/β-catenin canonical pathway, is a key regulator of the BBB.
Collapse
|
142
|
Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta Gen Subj 2014; 1840:2403-13. [PMID: 24576673 DOI: 10.1016/j.bbagen.2014.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extracellular matrix (ECM) is constituted by diverse composite structures, which determine the specific to each organ, histological architecture and provides cells with biological information, mechanical support and a scaffold for adhesion and migration. The pleiotropic effects of the ECM stem from the dynamic changes in its molecular composition and the ability to remodel in order to effectively regulate biological outcomes. Besides collagens, fibronectin and laminin are two major fiber-forming constituents of various ECM structures. SCOPE OF REVIEW This review will focus on the properties and the biological functions of non-collagenous extracellular matrix especially on laminin and fibronectin that are currently emerging as important regulators of blood vessel formation and function in health and disease. MAJOR CONCLUSIONS The ECM is a fundamental component of the microenvironment of blood vessels, with activities extending beyond providing a vascular scaffold; extremely versatile it directly or indirectly modulates all essential cellular functions crucial for angiogenesis, including cell adhesion, migration, proliferation, differentiation and lumen formation. Specifically, fibronectin and laminins play decisive roles in blood vessel morphogenesis both during embryonic development and in pathological conditions, such as cancer. GENERAL SIGNIFICANCE Emerging evidence demonstrates the importance of ECM function during embryonic development, organ formation and tissue homeostasis. A wealth of data also illustrates the crucial role of the ECM in several human pathophysiological processes, including fibrosis, skeletal diseases, vascular pathologies and cancer. Notably, several ECM components have been identified as potential therapeutic targets for various diseases, including cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Vassiliki Kostourou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| | - Vassilis Papalazarou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| |
Collapse
|
143
|
Enhanced assay of endothelial exocytosis using extracellular matrix components. Anal Biochem 2014; 452:19-24. [PMID: 24561025 DOI: 10.1016/j.ab.2014.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/05/2023]
Abstract
Vascular inflammation plays a key role in the pathogenesis of atherosclerosis. The first step in vascular inflammation is endothelial exocytosis, in which endothelial granules fuse with the plasma membrane, releasing prothrombotic and proinflammatory messenger molecules. The development of cell culture models to study endothelial exocytosis has been challenging because the factors that modulate exocytosis in vitro are not well understood. Here we report a method for studying endothelial exocytosis that optimizes extracellular matrix components, cell density, and duration of culture. Human umbilical vein endothelial cells plated on collagen I-coated plates and cultured in the confluent state for 7-12 days in low-serum medium showed robust secretion of von Willebrand factor when stimulated with various agonists. This exocytosis assay is rapid and applicable to high-throughput screening.
Collapse
|
144
|
Khalifeh-Soltani A, McKleroy W, Sakuma S, Cheung YY, Tharp K, Qiu Y, Turner SM, Chawla A, Stahl A, Atabai K. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids. Nat Med 2014; 20:175-83. [PMID: 24441829 DOI: 10.1038/nm.3450] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022]
Abstract
Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8(-/-)) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin- and αvβ5 integrin-dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications.
Collapse
Affiliation(s)
- Amin Khalifeh-Soltani
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - William McKleroy
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Stephen Sakuma
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Yuk Yin Cheung
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kevin Tharp
- 1] Metabolic Biology, University of California, Berkeley, Berkeley, California, USA. [2] Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Yifu Qiu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | - Ajay Chawla
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [3] Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Andreas Stahl
- 1] Metabolic Biology, University of California, Berkeley, Berkeley, California, USA. [2] Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California, USA
| | - Kamran Atabai
- 1] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA. [2] Lung Biology Center, University of California, San Francisco, San Francisco, California, USA. [3] Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
145
|
Boas SEM, Merks RMH. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 2014; 11:20131049. [PMID: 24430123 PMCID: PMC3899873 DOI: 10.1098/rsif.2013.1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences Group, Centrum Wiskunde and Informatica (CWI), , Amsterdam, The Netherlands
| | | |
Collapse
|
146
|
Potiron VA, Abderrahmani R, Clément-Colmou K, Marionneau-Lambot S, Oullier T, Paris F, Supiot S. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS One 2013; 8:e84076. [PMID: 24391887 PMCID: PMC3877206 DOI: 10.1371/journal.pone.0084076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
Although endothelial cell apoptosis participates in the tumor shrinkage after single high-dose radiotherapy, little is known regarding the vascular response after conventionally fractionated radiation therapy. Therefore, we evaluated hypoxia, perfusion and vascular microenvironment changes in an orthotopic prostate cancer model of conventionally fractionated radiation therapy at clinically relevant doses (2 Gy fractions, 5 fractions/week). First, conventionally fractionated radiation therapy decreased tumor cell proliferation and increased cell death with kinetics comparable to human prostate cancer radiotherapy. Secondly, the injection of Hoechst 33342 or fluorescent-dextrans showed an increased tumor perfusion within 14 days in irradiated tumors, which was correlated with a clear reduction of hypoxia. Improved perfusion and decreased hypoxia were not explained by increased blood vessel density, size or network morphology. However, a tumor vascular maturation defined by perivascular desmin+/SMA+ cells coverage was clearly observed along with an increase in endothelial, zonula occludens (ZO)-1 positive, intercellular junctions. Our results show that, in addition to tumor cell killing, vascular maturation plays an uncovered role in tumor reoxygenation during fractionated radiation therapy.
Collapse
Affiliation(s)
- Vincent A. Potiron
- Inserm, UMR892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR6299, Nantes, France
| | - Rym Abderrahmani
- Inserm, UMR892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR6299, Nantes, France
| | - Karen Clément-Colmou
- Inserm, UMR892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR6299, Nantes, France
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | | | | | - François Paris
- Inserm, UMR892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR6299, Nantes, France
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
| | - Stéphane Supiot
- Inserm, UMR892, Nantes, France
- Université de Nantes, Nantes, France
- CNRS, UMR6299, Nantes, France
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Saint-Herblain, France
- * E-mail:
| |
Collapse
|
147
|
Charpentier MS, Conlon FL. Cellular and molecular mechanisms underlying blood vessel lumen formation. Bioessays 2013; 36:251-9. [PMID: 24323945 DOI: 10.1002/bies.201300133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The establishment of a functional vascular system requires multiple complex steps throughout embryogenesis, from endothelial cell (EC) specification to vascular patterning into venous and arterial hierarchies. Following the initial assembly of ECs into a network of cord-like structures, vascular expansion and remodeling occur rapidly through morphogenetic events including vessel sprouting, fusion, and pruning. In addition, vascular morphogenesis encompasses the process of lumen formation, critical for the transformation of cords into perfusable vascular tubes. Studies in mouse, zebrafish, frog, and human endothelial cells have begun to outline the cellular and molecular requirements underlying lumen formation. Although the lumen can be generated through diverse mechanisms, the coordinated participation of multiple conserved molecules including transcription factors, small GTPases, and adhesion and polarity proteins remains a fundamental principle, leading us closer to a more thorough understanding of this complex event.
Collapse
Affiliation(s)
- Marta S Charpentier
- McAllister Heart Institute, Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
148
|
Shi L, Fisslthaler B, Zippel N, Frömel T, Hu J, Elgheznawy A, Heide H, Popp R, Fleming I. MicroRNA-223 Antagonizes Angiogenesis by Targeting β1 Integrin and Preventing Growth Factor Signaling in Endothelial Cells. Circ Res 2013; 113:1320-30. [DOI: 10.1161/circresaha.113.301824] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rationale:
Endothelial cells in situ are largely quiescent, and their isolation and culture are associated with the switch to a proliferative phenotype.
Objective:
To identify antiangiogenic microRNAs expressed by native endothelial cells that are altered after isolation and culture, as well as the protein targets that regulate responses to growth factors.
Methods and Results:
Profiling studies revealed that miR-223 was highly expressed in freshly isolated human, murine, and porcine endothelial cells, but those levels decreased in culture. In primary cultures of endothelial cells, vascular endothelial cell growth factor and basic fibroblast growth factor further decreased miR-223 expression. The overexpression of precursor-miR-223 did not affect basal endothelial cell proliferation but abrogated vascular endothelial cell growth factor–induced and basic fibroblast growth factor–induced proliferation, as well as migration and sprouting. Inhibition of miR-223 in vivo using specific antagomirs potentiated postnatal retinal angiogenesis in wild-type mice, whereas recovery of perfusion after femoral artery ligation and endothelial sprouting from aortic rings from adult miR-223
−/y
animals were enhanced. MiR-223 overexpression had no effect on the growth factor–induced activation of ERK1/2 but inhibited the vascular endothelial cell growth factor–induced and basic fibroblast growth factor–induced phosphorylation of their receptors and activation of Akt. β1 integrin was identified as a target of miR-223 and its downregulation reproduced the defects in growth factor receptor phosphorylation and Akt signaling seen after miR-223 overexpression. Reintroduction of β1 integrin into miR-223–ovexpressing cells was sufficient to rescue growth factor signaling and angiogenesis.
Conclusions:
These results indicate that miR-223 is an antiangiogenic microRNA that prevents endothelial cell proliferation at least partly by targeting β1 integrin.
Collapse
Affiliation(s)
- Lei Shi
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Beate Fisslthaler
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Nina Zippel
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Timo Frömel
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Jiong Hu
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Amro Elgheznawy
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Heinrich Heide
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Rüdiger Popp
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| | - Ingrid Fleming
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, Frankfurt, Germany (L.S., B.F., N.Z., T.F., J.H., A.E., R.P., I.F.); and Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany (H.H.)
| |
Collapse
|
149
|
Porat-Shliom N, Weigert R, Donaldson JG. Endosomes derived from clathrin-independent endocytosis serve as precursors for endothelial lumen formation. PLoS One 2013; 8:e81987. [PMID: 24282620 PMCID: PMC3839925 DOI: 10.1371/journal.pone.0081987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Clathrin-independent endocytosis (CIE) is a form of bulk plasma membrane (PM) endocytosis that allows cells to sample and evaluate PM composition. Once in endosomes, the internalized proteins and lipids can be recycled back to the PM or delivered to lysosomes for degradation. Endosomes arising from CIE contain lipid and signaling molecules suggesting that they might be involved in important biological processes. During vasculogenesis, new blood vessels are formed from precursor cells in a process involving internalization and accumulation of endocytic vesicles. Here, we found that CIE has a role in endothelial lumen formation. Specifically, we found that human vascular endothelial cells (HUVECs) utilize CIE for internalization of distinct cargo molecules and that in three-dimensional cultures CIE membranes are delivered to the newly formed lumen.
Collapse
Affiliation(s)
- Natalie Porat-Shliom
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie G. Donaldson
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
150
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|