101
|
Chen Z, Mo J, Brosseau JP, Shipman T, Wang Y, Liao CP, Cooper JM, Allaway RJ, Gosline SJC, Guinney J, Carroll TJ, Le LQ. Spatiotemporal Loss of NF1 in Schwann Cell Lineage Leads to Different Types of Cutaneous Neurofibroma Susceptible to Modification by the Hippo Pathway. Cancer Discov 2018; 9:114-129. [PMID: 30348677 DOI: 10.1158/2159-8290.cd-18-0151] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a cancer predisposition disorder that results from inactivation of the tumor suppressor neurofibromin, a negative regulator of RAS signaling. Patients with NF1 present with a wide range of clinical manifestations, and the tumor with highest prevalence is cutaneous neurofibroma (cNF). Most patients harboring cNF suffer greatly from the burden of those tumors, which have no effective medical treatment. Ironically, none of the numerous NF1 mouse models developed so far recapitulate cNF. Here, we discovered that HOXB7 serves as a lineage marker to trace the developmental origin of cNF neoplastic cells. Ablating Nf1 in the HOXB7 lineage faithfully recapitulates both human cutaneous and plexiform neurofibroma. In addition, we discovered that modulation of the Hippo pathway acts as a "modifier" for neurofibroma tumorigenesis. This mouse model opens the doors for deciphering the evolution of cNF to identify effective therapies, where none exist today. SIGNIFICANCE: This study provides insights into the developmental origin of cNF, the most common tumor in NF1, and generates the first mouse model that faithfully recapitulates both human cutaneous and plexiform neurofibroma. The study also demonstrates that the Hippo pathway can modify neurofibromagenesis, suggesting that dampening the Hippo pathway could be an attractive therapeutic target.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jean-Philippe Brosseau
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tracey Shipman
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan M Cooper
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | - Thomas J Carroll
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
102
|
Ma Z, Li P, Hu X, Song H. Polarity protein Canoe mediates overproliferation via modulation of JNK, Ras-MAPK and Hippo signalling. Cell Prolif 2018; 52:e12529. [PMID: 30328653 PMCID: PMC6430484 DOI: 10.1111/cpr.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro‐ and anti‐tumorigenic functions in a context‐dependent manner, with the underlying mechanisms poorly understood. Materials and Methods With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. Results We show that overexpression of cno simultaneously activates JNK and Ras‐MEK‐ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. Conclusions Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.
Collapse
Affiliation(s)
- Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingjie Hu
- School of Public Health, Guangzhou Medical University, Guangdong, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
103
|
Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, Bin Zhang, Walsh M, Friedel RH, Zaslavsky E, Tsankova NM. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun 2018; 9:4020. [PMID: 30275445 PMCID: PMC6167382 DOI: 10.1038/s41467-018-06258-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
The intrinsic drivers of migration in glioblastoma (GBM) are poorly understood. To better capture the native molecular imprint of GBM and its developmental context, here we isolate human stem cell populations from GBM (GSC) and germinal matrix tissues and map their chromatin accessibility via ATAC-seq. We uncover two distinct regulatory GSC signatures, a developmentally shared/proliferative and a tumor-specific/migratory one in which TEAD1/4 motifs are uniquely overrepresented. Using ChIP-PCR, we validate TEAD1 trans occupancy at accessibility sites within AQP4, EGFR, and CDH4. To further characterize TEAD’s functional role in GBM, we knockout TEAD1 or TEAD4 in patient-derived GBM lines using CRISPR-Cas9. TEAD1 ablation robustly diminishes migration, both in vitro and in vivo, and alters migratory and EMT transcriptome signatures with consistent downregulation of its target AQP4. TEAD1 overexpression restores AQP4 expression, and both TEAD1 and AQP4 overexpression rescue migratory deficits in TEAD1-knockout cells, implicating a direct regulatory role for TEAD1–AQP4 in GBM migration. The intrinsic drivers of glioblastoma (GBM) migration are still poorly understood. Here the authors purify GBM stem cells (GSCs) from patients and profile chromatin accessibility in these cells, identifying TEAD1 as a regulator of migration in human glioblastoma.
Collapse
Affiliation(s)
- Jessica Tome-Garcia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parsa Erfani
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Igor Katsyv
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rut Tejero
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Center for RNA Biology and Medicine, New York, NY, 10029, USA
| | - Roland H Friedel
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
104
|
Razzell W, Bustillo ME, Zallen JA. The force-sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. J Cell Biol 2018; 217:3715-3730. [PMID: 30006462 PMCID: PMC6168262 DOI: 10.1083/jcb.201801171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.
Collapse
Affiliation(s)
- William Razzell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Maria E Bustillo
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
105
|
Elisi GM, Santucci M, D'Arca D, Lauriola A, Marverti G, Losi L, Scalvini L, Bolognesi ML, Mor M, Costi MP. Repurposing of Drugs Targeting YAP-TEAD Functions. Cancers (Basel) 2018; 10:cancers10090329. [PMID: 30223434 PMCID: PMC6162436 DOI: 10.3390/cancers10090329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway's terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.
Collapse
Affiliation(s)
- Gian Marco Elisi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Unit of Pathology, 41124 Modena, Italy.
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
106
|
Abstract
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.
Collapse
Affiliation(s)
- Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
107
|
Zülbahar S, Sieglitz F, Kottmeier R, Altenhein B, Rumpf S, Klämbt C. Differential expression of Öbek controls ploidy in the Drosophila blood-brain barrier. Development 2018; 145:dev.164111. [PMID: 30002129 DOI: 10.1242/dev.164111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
During development, tissue growth is mediated by either cell proliferation or cell growth, coupled with polyploidy. Both strategies are employed by the cell types that make up the Drosophila blood-brain barrier. During larval growth, the perineurial glia proliferate, whereas the subperineurial glia expand enormously and become polyploid. Here, we show that the level of ploidy in the subperineurial glia is controlled by the N-terminal asparagine amidohydrolase homolog Öbek, and high Öbek levels are required to limit replication. In contrast, perineurial glia express moderate levels of Öbek, and increased Öbek expression blocks their proliferation. Interestingly, other dividing cells are not affected by alteration of Öbek expression. In glia, Öbek counteracts fibroblast growth factor and Hippo signaling to differentially affect cell growth and number. We propose a mechanism by which growth signals are integrated differentially in a glia-specific manner through different levels of Öbek protein to adjust cell proliferation versus endoreplication in the blood-brain barrier.
Collapse
Affiliation(s)
- Selen Zülbahar
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Florian Sieglitz
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Rita Kottmeier
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Benjamin Altenhein
- Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sebastian Rumpf
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany
| |
Collapse
|
108
|
Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin Transl Med 2018; 7:23. [PMID: 30101371 PMCID: PMC6087706 DOI: 10.1186/s40169-018-0202-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Yes-associated protein (YAP) and its paralog WW domain containing transcription regulator 1 (TAZ) are important regulators of multiple cellular functions such as proliferation, differentiation, and survival. On the tissue level, YAP/TAZ are essential for embryonic development, organ size control and regeneration, while their deregulation leads to carcinogenesis or other diseases. As an underlying principle for YAP/TAZ-mediated regulation of biological functions, a growing body of research reveals that YAP/TAZ play a central role in delivering information of mechanical environments surrounding cells to the nucleus transcriptional machinery. In this review, we discuss mechanical cue-dependent regulatory mechanisms for YAP/TAZ functions, as well as their clinical significance in cancer progression and treatment.
Collapse
|
109
|
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two homologous transcriptional coactivators that promote cell proliferation, stem cell maintenance, and tissue homeostasis. Under favorable conditions, YAP and TAZ are active to promote cell growth through a transcriptional program mediated by the TEAD family transcription factors. Given the indispensability of cellular energy and metabolites for survival and growth, YAP and TAZ are inhibited when energy level is low. Indeed, glucose, fatty acids, hormones, and other metabolic factors have been recently revealed to regulate YAP and TAZ. Conversely, YAP and TAZ are also involved in metabolism regulation, such as to promote glycolysis, lipogenesis, and glutaminolysis, suggesting YAP and TAZ as emerging nodes in coordinating nutrient availability with cell growth and tissue homeostasis. In this Review, we summarize recent findings and provide a current overview of YAP and TAZ in metabolism by focusing on the role of YAP and TAZ as integrators for metabolic cues and cell growth.
Collapse
Affiliation(s)
- Ja Hyun Koo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
110
|
Tsuboi A, Ohsawa S, Umetsu D, Sando Y, Kuranaga E, Igaki T, Fujimoto K. Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology. Curr Biol 2018; 28:2115-2128.e5. [DOI: 10.1016/j.cub.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
|
111
|
Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila. Curr Biol 2018; 28:1756-1767.e6. [DOI: 10.1016/j.cub.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
|
112
|
Oku Y, Nishiya N, Tazawa T, Kobayashi T, Umezawa N, Sugawara Y, Uehara Y. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis. FEBS Open Bio 2018; 8:1001-1012. [PMID: 29928579 PMCID: PMC5986022 DOI: 10.1002/2211-5463.12440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023] Open
Abstract
The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes‐associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small‐molecule agents targeting cell cycle‐related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR‐8 ovarian cancer cell line to AZD1775, a small‐molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775‐based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775‐based therapy in the OVCAR‐8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.
Collapse
Affiliation(s)
- Yusuke Oku
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Naoyuki Nishiya
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Takaaki Tazawa
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Takaya Kobayashi
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Nanami Umezawa
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Yasuyo Sugawara
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| | - Yoshimasa Uehara
- Department of Integrated Information for Pharmaceutical Sciences Iwate Medical University School of Pharmacy Yahaba-cho Japan
| |
Collapse
|
113
|
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers (Basel) 2018; 10:cancers10050137. [PMID: 29734788 PMCID: PMC5977110 DOI: 10.3390/cancers10050137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Collapse
|
114
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
115
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
116
|
Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, Schroeder J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget 2018; 7:60776-60792. [PMID: 27542214 PMCID: PMC5308616 DOI: 10.18632/oncotarget.11320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that Llgl1 loss results in a gain of mesenchymal phenotypes and a loss of apicobasal and planar polarity. We now demonstrate that these changes represent a fundamental shift in cellular phenotype. Llgl1 regulates the expression of multiple cell identity markers, including CD44, CD49f, and CD24, and the nuclear translocation of TAZ and Slug. Cells lacking Llgl1 form mammospheres, where survival and transplantability is dependent upon the Epidermal Growth Factor Receptor (EGFR). Additionally, Llgl1 loss allows cells to grow in soft-agar and maintain prolonged survival as orthotopic transplants in NOD-SCIDmice. Lineage tracing and wound healing experiments demonstrate that mammosphere survival is due to enhanced EGF-dependent migration. The loss of Llgl1 drives EGFR mislocalization and an EGFR mislocalization point mutation (P667A) drives these same phenotypes, including activation of AKT and TAZ nuclear translocation. Together, these data indicate that the loss of Llgl1 results in EGFR mislocalization, promoting pre-neoplastic changes.
Collapse
Affiliation(s)
- Erin Greenwood
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Sabrina Maisel
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| | - David Ebertz
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Atlantis Russ
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona
| | - Ritu Pandey
- Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona.,BIO5 Institute, University of Arizona, Tucson, Arizona.,Genetics Program, University of Arizona, Tucson, Arizona.,Cancer Biology Program, University of Arizona, Tucson, Arizona
| |
Collapse
|
117
|
Abstract
The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings. The Hippo pathway is a major orchestrator of organ development and homeostasis. Here Azad and colleagues develop a biosensor to monitor the activity of the Hippo pathway component LATS and identify VEGF signalling as an upstream regulator of LATS, supporting a role for Hippo signalling during angiogenesis.
Collapse
|
118
|
O'Connell KS, McGregor NW, Lochner C, Emsley R, Warnich L. The genetic architecture of schizophrenia, bipolar disorder, obsessive-compulsive disorder and autism spectrum disorder. Mol Cell Neurosci 2018; 88:300-307. [PMID: 29505902 DOI: 10.1016/j.mcn.2018.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Considerable evidence suggests that autism spectrum disorders (ASD), schizophrenia (SCZ), bipolar disorder (BD) and obsessive-compulsive disorder (OCD) share a common molecular aetiology, despite their unique clinical diagnostic criteria. The aim of this study was therefore to determine and characterise the common and unique molecular architecture of ASD, SCZ, BD and OCD. Gene lists were obtained from previously published studies for ASD, BD, SCZ and for OCD. Genes identified to be common to all disorders, or unique to one specific disorder, were included for enrichment analyses using the web-server tool Enrichr. Ten genes were identified to be commonly associated with the aetiology of ASD, SCZ, BD and OCD. Enrichment analyses determined that these genes are predominantly involved in the dopaminergic and serotonergic pathways, the voltage-gated calcium ion channel gene network, folate metabolism, regulation of the hippo signaling pathway, and the regulation of gene silencing and expression. In addition to well-characterised and previously described pathways, regulation of the hippo signaling pathway was commonly associated with ASD, SCZ, BD and OCD, implicating neural development and neuronal maintenance as key in neuropsychiatric disorders. In contrast, a large number of previously associated genes were shown to be disorder-specific. And unique disorder-specific pathways and biological processes were presented for ASD, BD, SCZ and OCD aetiology. Considering the current global incidence and prevalence rates of mental health disorders, focus should be placed on cross-disorder commonalities in order to realise actionable and translatable results to combat mental health disorders.
Collapse
Affiliation(s)
- Kevin S O'Connell
- System Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa; Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Nathaniel W McGregor
- System Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa; Department of Genetics, Stellenbosch University, Stellenbosch, South Africa.
| | - Christine Lochner
- SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
119
|
Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine KD. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci 2018; 131:jcs214700. [PMID: 29440237 PMCID: PMC5897721 DOI: 10.1242/jcs.214700] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
Hippo signaling is regulated by biochemical and biomechanical cues that influence the cytoskeleton, but the mechanisms that mediate this have remained unclear. We show that all three mammalian Ajuba family proteins - AJUBA, LIMD1 and WTIP - exhibit tension-dependent localization to adherens junctions, and that both LATS family proteins, LATS1 and LATS2, exhibit an overlapping tension-dependent junctional localization. This localization of Ajuba and LATS family proteins is also influenced by cell density, and by Rho activation. We establish that junctional localization of LATS kinases requires LIMD1, and that LIMD1 is also specifically required for the regulation of LATS kinases and YAP1 by Rho. Our results identify a biomechanical pathway that contributes to regulation of mammalian Hippo signaling, establish that this occurs through tension-dependent LIMD1-mediated recruitment and inhibition of LATS kinases in junctional complexes, and identify roles for this pathway in both Rho-mediated and density-dependent regulation of Hippo signaling.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Elmira Kirichenko
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Benjamin Keepers
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Edward Enners
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Katelyn Fleisch
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
120
|
Xia H, Dai X, Yu H, Zhou S, Fan Z, Wei G, Tang Q, Gong Q, Bi F. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death Dis 2018; 9:269. [PMID: 29449645 PMCID: PMC5833379 DOI: 10.1038/s41419-018-0302-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
Abstract
The epidermal growth factor receptor (EGFR) pathway and Hippo signaling play an important role in the carcinogenesis of hepatocellular carcinoma (HCC). However, the crosstalk between these two pathways and its implications in targeted therapy remains unclear. We found that the activated EGFR signaling could bypass RhoA to promote the expression of YAP(Yes-associated protein), the core effector of the Hippo signaling, and its downstream target Cyr61. Further studies indicated that EGFR signaling mainly acted through the PI3K-PDK1 (Phosphoinositide 3-kinase-Phosphoinositide-dependent kinase-1) pathway to activate YAP, but not the AKT and MAPK pathways. While YAP knockdown hardly affected the EGFR signaling. In addition, EGF could promote the proliferation of HCC cells in a YAP-independent manner. Combined targeting of YAP and EGFR signaling by simvastatin and the EGFR signaling inhibitors, including the EGFR tyrosine kinase inhibitor (TKI) gefitinib, the RAF inhibitor sorafenib and the MEK inhibitor trametinib, presented strong synergistic cytotoxicities in HCC cells. Therefore, the EGFR-PI3K-PDK1 pathway could activate the YAP signaling, and the activated EGFR signaling could promote the HCC cell growth in a YAP-independent manner. Combined use of FDA-approved inhibitors to simultaneously target YAP and EGFR signaling presented several promising therapeutic approaches for HCC treatment.
Collapse
Affiliation(s)
- Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Xinyu Dai
- Department of Medical Oncology and Cancer Center, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Huangfei Yu
- Department of Medical Oncology and Cancer Center, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Sheng Zhou
- Department of Medical Oncology and Cancer Center, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Zhenghai Fan
- Department of Medical Oncology and Cancer Center, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Guoqing Wei
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China
| | - Feng Bi
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China.
- Department of Medical Oncology and Cancer Center, West China Hospital of Sichuan University, 610041, Chengdu, Sichuan Province, China.
| |
Collapse
|
121
|
Sriskanthadevan-Pirahas S, Deshpande R, Lee B, Grewal SS. Ras/ERK-signalling promotes tRNA synthesis and growth via the RNA polymerase III repressor Maf1 in Drosophila. PLoS Genet 2018; 14:e1007202. [PMID: 29401457 PMCID: PMC5814106 DOI: 10.1371/journal.pgen.1007202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/15/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
The small G-protein Ras is a conserved regulator of cell and tissue growth. These effects of Ras are mediated largely through activation of a canonical RAF-MEK-ERK kinase cascade. An important challenge is to identify how this Ras/ERK pathway alters cellular metabolism to drive growth. Here we report on stimulation of RNA polymerase III (Pol III)-mediated tRNA synthesis as a growth effector of Ras/ERK signalling in Drosophila. We find that activation of Ras/ERK signalling promotes tRNA synthesis both in vivo and in cultured Drosophila S2 cells. We also show that Pol III function is required for Ras/ERK signalling to drive proliferation in both epithelial and stem cells in Drosophila tissues. We find that the transcription factor Myc is required but not sufficient for Ras-mediated stimulation of tRNA synthesis. Instead we show that Ras signalling promotes Pol III function and tRNA synthesis by phosphorylating, and inhibiting the nuclear localization and function of the Pol III repressor Maf1. We propose that inhibition of Maf1 and stimulation of tRNA synthesis is one way by which Ras signalling enhances protein synthesis to promote cell and tissue growth.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan-Pirahas
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
122
|
Dutta S, Mana-Capelli S, Paramasivam M, Dasgupta I, Cirka H, Billiar K, McCollum D. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep 2018; 19:337-350. [PMID: 29222344 PMCID: PMC5797958 DOI: 10.15252/embr.201744777] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
The transcriptional co-activator YAP controls cell proliferation, survival, and tissue regeneration in response to changes in the mechanical environment. It is not known how mechanical stimuli such as tension are sensed and how the signal is transduced to control YAP activity. Here, we show that the LIM domain protein TRIP6 acts as part of a mechanotransduction pathway at adherens junctions to promote YAP activity by inhibiting the LATS1/2 kinases. Previous studies showed that vinculin at adherens junctions becomes activated by mechanical tension. We show that vinculin inhibits Hippo signaling by recruiting TRIP6 to adherens junctions and stimulating its binding to and inhibition of LATS1/2 in response to tension. TRIP6 competes with MOB1 for binding to LATS1/2 thereby blocking MOB1 from recruiting the LATS1/2 activating kinases MST1/2. Together, these findings reveal a novel pathway that responds to tension at adherens junctions to control Hippo pathway signaling.
Collapse
Affiliation(s)
- Shubham Dutta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Murugan Paramasivam
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ishani Dasgupta
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Heather Cirka
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Kris Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Dannel McCollum
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
123
|
The Hippo pathway as a drug target in gastric cancer. Cancer Lett 2018; 420:14-25. [PMID: 29408652 DOI: 10.1016/j.canlet.2018.01.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/08/2023]
Abstract
The Hippo tumor suppressor pathway is critical for balancing cellular differentiation and proliferation in response to cell-cell contact, mechanical signals and diffusible signals such as lysophosphatidic acid. Hippo pathway signaling is frequently dysregulated in gastric cancer (GC), as well as many other kinds of solid tumors, contributing to multiple aspects of malignant progression including unchecked cell division and metastasis. Considering the importance of this Hippo pathway in cancer, its pharmacological disruption may be of huge benefit in the fight against this disease. In this review, we summarize the components of the Hippo pathway, its crosstalk with other major oncogenic signaling pathways, common mechanisms of its dysregulation, as well as potential therapeutic approaches of targeting this pathway for cancer treatment, specifically in a GC context.
Collapse
|
124
|
Park GS, Oh H, Kim M, Kim T, Johnson RL, Irvine KD, Lim DS. An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2. Oncotarget 2018; 7:24063-75. [PMID: 27006470 PMCID: PMC5029684 DOI: 10.18632/oncotarget.8211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/06/2016] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway represses YAP oncoprotein activity through phosphorylation by LATS kinases. Although variety of upstream components has been found to participate in the Hippo pathway, the existence and function of negative feedback has remained uncertain. We found that activated YAP, together with TEAD transcription factors, directly induces transcription of LATS2, but not LATS1, to form a negative feedback loop. We also observed increased mRNA levels of Hippo upstream components upon YAP activation. To reveal the physiological role of this negative feedback regulation, we deleted Lats2 or Lats1 in the liver-specific Sav1-knockout mouse model which develops a YAP-induced tumor. Additional deletion of Lats2 severely enhanced YAP-induced tumorigenic phenotypes in a liver specific Sav1 knock-out mouse model while additional deletion of Lats1 mildly affected the phenotype. Only Sav1 and Lats2 double knock-down cells formed larger colonies in soft agar assay, thereby recapitulating accelerated tumorigenesis seen in vivo. Importantly, this negative feedback is evolutionarily conserved, as Drosophila Yorkie (YAP ortholog) induces transcription of Warts (LATS2 ortholog) with Scalloped (TEAD ortholog). Collectively, we demonstrated the existence and function of an evolutionarily conserved negative feedback mechanism in the Hippo pathway, as well as the functional difference between LATS1 and LATS2 in regulation of YAP.
Collapse
Affiliation(s)
- Gun-Soo Park
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyangyee Oh
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Brunswick, New Jersey, USA
| | - Minchul Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Tackhoon Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Brunswick, New Jersey, USA
| | - Dae-Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
125
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
126
|
Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget 2018; 7:28976-88. [PMID: 26716514 PMCID: PMC5045371 DOI: 10.18632/oncotarget.6721] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/21/2015] [Indexed: 12/24/2022] Open
Abstract
Survival for lung cancer patients remains dismal and is largely attributed to treatment resistance. To identify novel target genes the modulation of which could modify platinum resistance, we performed a high-throughput RNAi screen and identified Yes-associated protein (YAP1), a transcription coactivator and a known oncogene, as a potential actionable candidate. YAP1 ablation significantly improved sensitivities not only to cisplatin but also to ionizing radiation, both of which are DNA-damaging interventions, in non-small cell lung cancer (NSCLC) cells. Overall YAP1 was expressed in 75% of NSCLC specimens, whereas nuclear YAP1 which is the active form was present in 45% of 124 resected NSCLC. Interestingly, EGFR-mutated or KRAS-mutated NSCLC were associated with higher nuclear YAP1 staining in comparison to EGFR/KRAS wild-type. Relevantly, YAP1 downregulation improved sensitivity to erlotinib, an EGFR inhibitor. A pharmacological inhibitor of YAP1 signaling, verteporfin also synergized with cisplatin, radiation and erlotinib in NSCLC cells by potentiating cisplatin and radiation-related double-stranded breaks and decreasing expression of YAP1 and EGFR. Taken together, our study is the first to indicate the potential role of YAP1 as a common modulator of resistance mechanisms and a potential novel, actionable target that can improve responses to platinum, radiation and EGFR-targeted therapy in lung cancer.
Collapse
|
127
|
Thongon N, Castiglioni I, Zucal C, Latorre E, D'Agostino V, Bauer I, Pancher M, Ballestrero A, Feldmann G, Nencioni A, Provenzani A. The GSK3β inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level. Oncotarget 2018; 7:26551-66. [PMID: 27034169 PMCID: PMC5041998 DOI: 10.18632/oncotarget.8437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/06/2016] [Indexed: 12/16/2022] Open
Abstract
The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKCδ and GSK3β, caused YAP accumulation into the nucleus. Activation of β-catenin reporter and interfering experiments show that inhibition of the PKCδ/GSK3β pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3β by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines.
Collapse
Affiliation(s)
- Natthakan Thongon
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Ilaria Castiglioni
- Laboratory of Gene Expression and Muscular Dystrophy, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Zucal
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Elisa Latorre
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Vito D'Agostino
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Michael Pancher
- High Throughput Screening Facility, Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | - Georg Feldmann
- Laboratory of Pancreatic Cancer Translational Research, Clinic University of Bonn, Bonn, Germany
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
128
|
Shi X, Chen Z, Hu X, Luo M, Sun Z, Li J, Shi S, Feng X, Zhou C, Li Z, Yang W, Li Y, Wang P, Zhou F, Gao Y, He J. AJUBA promotes the migration and invasion of esophageal squamous cell carcinoma cells through upregulation of MMP10 and MMP13 expression. Oncotarget 2017; 7:36407-36418. [PMID: 27172796 PMCID: PMC5095009 DOI: 10.18632/oncotarget.9239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
The LIM-domain protein AJUBA has been reported to be involved in cell-cell adhesion, proliferation, migration and cell fate decision by acting as a scaffold or adaptor protein. We previously identified AJUBA as a putative cancer gene in esophageal squamous cell carcinoma (ESCC). However, the function and underlying mechanisms of AJUBA in ESCC remain largely unknown. In the present study, we detected AJUBA levels in ESCC tumor tissues and in corresponding adjacent non-tumor tissues by immunohistochemistry (IHC) and investigated the function and mechanism of AJUBA in ESCC cells. The IHC results showed that AJUBA levels were significantly higher in ESCC tissues compared with corresponding adjacent non-tumor tissues (P < 0.001). Both in vitro and in vivo experiments showed that AJUBA promoted cell growth and colony formation, inhibited cisplatin-induced apoptosis of ESCC cells, and promoted ESCC cell migration and invasion. RNA sequencing was used to reveal the oncogenic pathways of AJUBA that were involved, and MMP10 and MMP13 were identified as two of the downstream targets of AJUBA. Thus, AJUBA upregulates the levels of MMP10 and MMP13 by activating ERK1/2. Taken together, these findings revealed that AJUBA serves as oncogenic gene in ESCC and may serve as a new target for ESCC therapy.
Collapse
Affiliation(s)
- Xuejiao Shi
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueda Hu
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Luo
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zengmiao Sun
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiagen Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Susheng Shi
- Department of Pathology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zitong Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Yang
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Wang
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Zhou
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
129
|
Wang SP, Wang LH. Disease implication of hyper-Hippo signalling. Open Biol 2017; 6:rsob.160119. [PMID: 27805903 PMCID: PMC5090056 DOI: 10.1098/rsob.160119] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders.
Collapse
Affiliation(s)
- Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 114, Taiwan
| |
Collapse
|
130
|
Mao Y, Sun S, Irvine KD. Role and regulation of Yap in KrasG12D-induced lung cancer. Oncotarget 2017; 8:110877-110889. [PMID: 29340023 PMCID: PMC5762291 DOI: 10.18632/oncotarget.22865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 12/25/2022] Open
Abstract
The Hippo pathway and its downstream transcriptional co-activator Yap influence lung cancer, but the nature of the Yap contribution has been unclear. Using a genetically engineered mouse lung cancer model, we show that Yap deletion completely blocks KrasG12D and p53 loss-driven adenocarcinoma initiation and progression, whereas heterozygosity for Yap partially suppresses lung cancer growth and progression. We also characterize Yap expression during tumor progression and find that nuclear Yap can be detected from the earliest stages of lung carcinogenesis, but at levels comparable to that in aveolar type II cells, which are a cell of origin for lung adenocarcinoma. At later stages of tumorigenesis, variations in Yap levels are detected, which correlate with differences in cell proliferation within tumors. Our observations imply that Yap is not directly activated by oncogenic Kras during lung tumorigenesis, but is nonetheless absolutely required for this tumorigenesis, and support Yap as a therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yaopan Mao
- Waksman Institute, Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuguo Sun
- Waksman Institute, Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.,Waksman Institute, Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute, Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
131
|
Abstract
In his classic book On Growth and Form, D'Arcy Thompson discussed the necessity of a physical and mathematical approach to understanding the relationship between growth and form. The past century has seen extraordinary advances in our understanding of biological components and processes contributing to organismal morphogenesis, but the mathematical and physical principles involved have not received comparable attention. The most obvious entry of physics into morphogenesis is via tissue mechanics. In this Review, we discuss the fundamental role of mechanical interactions between cells induced by growth in shaping a tissue. Non-uniform growth can lead to accumulation of mechanical stress, which in the context of two-dimensional sheets of tissue can specify the shape it assumes in three dimensions. A special class of growth patterns - conformal growth - does not lead to the accumulation of stress and can generate a rich variety of planar tissue shapes. Conversely, mechanical stress can provide a regulatory feedback signal into the growth control circuit. Both theory and experiment support a key role for mechanical interactions in shaping tissues and, via mechanical feedback, controlling epithelial growth.
Collapse
Affiliation(s)
- Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Boris I Shraiman
- Department of Physics, Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93101, USA
| |
Collapse
|
132
|
Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO. YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res 2017; 78:168-181. [PMID: 29180467 DOI: 10.1158/0008-5472.can-17-0836] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB). Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance but mechanisms and intervention points are not completely understood. Here, we report that the proinflammatory COX2/PGE2 pathway and the YAP1 growth-regulatory pathway cooperate to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of let-7, resulting in its downregulation and subsequent SOX2 upregulation. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with coexpression of COX2 and YAP1 particularly commonly observed. Additional investigations suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to EGFR inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition. Our findings provide a preclinical rationale to target these pathways concurrently with systemic chemotherapy as a strategy to improve the clinical management of UCB.Significance: These findings offer a preclinical rationale to target the COX2 and YAP1 pathways concurrently with systemic chemotherapy to improve the clinical management of UCB, based on evidence that these two pathways expand cancer stem-like cell populations that mediate resistance to chemotherapy. Cancer Res; 78(1); 168-81. ©2017 AACR.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wikum Dinalankara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Zeshaan A Rasheed
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Shifeng Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
133
|
Watt KI, Harvey KF, Gregorevic P. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Front Physiol 2017; 8:942. [PMID: 29225579 PMCID: PMC5705614 DOI: 10.3389/fphys.2017.00942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field.
Collapse
Affiliation(s)
- Kevin I Watt
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Kieran F Harvey
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
134
|
Gao J, He L, Shi Y, Cai M, Xu H, Jiang J, Zhang L, Wang H. Cell contact and pressure control of YAP localization and clustering revealed by super-resolution imaging. NANOSCALE 2017; 9:16993-17003. [PMID: 29082393 DOI: 10.1039/c7nr05818g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Yes-associated protein (YAP) is well known for being an effecter of the Hippo signaling cascade that plays a critical role in organ size control, tumorigenesis, and regeneration. As YAP is a transcriptional coactivator, nuclear accumulation is a crucial determinant of its function. Numerous investigations have provided insights into the regulation of YAP, such as upstream molecules of the Hippo pathway, cell contact inhibition, and mechanical forces. However, detailed information regarding YAP spatial localization and organization in cells remains uncertain, and how mechanical signals control YAP distribution and function is not fully known. Therefore, we used one of the super-resolution imaging techniques, direct stochastic optical reconstruction microscopy (dSTORM), combined with confocal microscopy, to solve these problems. We found that YAP is mainly distributed in clusters in the cells, and that both cell contact and pressure on cell surfaces promote the nuclear-to-cytoplasm translocation of YAP and its phosphorylation, but weaken the clustering of nuclear YAP and its transcriptional activity. Moreover, we found that pressure regulation may be more effective on YAP from cancer cells as compared to normal cells, which could help open a door to target YAP for anticancer drug design.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5626 Renmin Street, Changchun, Jilin 130022, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Bi L, Ma F, Tian R, Zhou Y, Lan W, Song Q, Cheng X. AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer. Gene 2017; 644:148-154. [PMID: 29126926 DOI: 10.1016/j.gene.2017.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times.
Collapse
Affiliation(s)
- Lihong Bi
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Feng Ma
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China.
| | - Rui Tian
- Department of Gynecology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Yanli Zhou
- Department of Pharmacy, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Weiguang Lan
- Department of Oncology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Quanmao Song
- Department of Oncology, PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
136
|
Abstract
Normal organ growth requires precise signaling from key developmental pathways, as well as careful coordination between these pathways. In this issue of Developmental Cell, Pascual and colleagues (2017) investigate the dire consequences of simultaneous deregulation of both the Ras and Hippo pathways.
Collapse
|
137
|
Que K, Tong Y, Que G, Li L, Lin H, Huang S, Wang R, Tang L. Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncol Rep 2017; 38:3376-3386. [PMID: 29039607 PMCID: PMC5783584 DOI: 10.3892/or.2017.6041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming resistance to chemotherapy is an arduous challenge in the treatment of colorectal cancer (CRC), particularly since the underlying molecular mechanisms remain obscure. In the present study, we reported that miR-874-3p was markedly downregulated in CRC tissues compared with that in adjacent normal colorectal epithelial tissues. Upregulation of miR-874-3p attenuated the chemoresistance of CRC cells to 5-fluorouracil (5-FU) in vitro and in vivo. Conversely, inhibition of miR-874-3p yielded an opposite effect. Furthermore, our results demonstrated that miR-874-3p directly inhibited the expression of transcriptional co-activators YAP and TAZ of the Hippo signaling pathway, resulting in the inactivation of the TEAD transcription. Thus, our findings clarify a novel mechanism by which miR-874-3p restores chemotherapeutic sensitivity of CRC to 5-FU, indicating that offering miR-874-3p mimics in combination with 5-FU may serve as a new therapeutic strategy to circumvent the chemoresistance in CRC.
Collapse
Affiliation(s)
- Kaiqian Que
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yuanhe Tong
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Ganbo Que
- Department of Critical Care Medicine, The Second Hospital of Longyan, Longyan, Fujian, P.R. China
| | - Li Li
- Department of Pelvic Floor Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Hongcheng Lin
- Department of Chinese Integrative Medicine Anorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Ruoyu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, P.R. China
| | - Langlang Tang
- Department of Radiology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
138
|
Hülter-Hassler D, Wein M, Schulz SD, Proksch S, Steinberg T, Jung BA, Tomakidi P. Biomechanical strain-induced modulation of proliferation coincides with an ERK1/2-independent nuclear YAP localization. Exp Cell Res 2017; 361:93-100. [PMID: 29017756 DOI: 10.1016/j.yexcr.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023]
Abstract
Biomechanical strain induces activation of the transcriptional co-activator yes-associated protein (YAP) by nuclear re-distribution. Recent findings indicate that the mechanically responsive mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) 1/2 is involved in the amount of nuclear YAP, reflecting its activation. In this context, we conducted experiments to detect how biomechanical strain acts on the subcellular localization of YAP in periodontal cells. To this end, cells were subjected to 2.5% static equiaxial strain for different time periods. Western blot and fluorescence imaging-based analyses revealed a clear modulation of nuclear YAP localization. This modulation fairly coincided with the altered course of the KI-67 protein amount in conjunction with the percentage of KI-67-positive and thus proliferating cells. The inhibition of the ERK1/2 activity via U0126 yielded an unchanged strain-related modulation of nuclear YAP localization, while YAP amount in whole cell extracts of strained cells was decreased. Administration of the YAP-inhibiting drug Verteporfin evoked a clear reduction of KI-67-positive and thus proliferating cells by approximately 65%, irrespective of strain. Our data reveal YAP as a regulator of strain-modulated proliferation which occurs in a MAPK-independent fashion.
Collapse
Affiliation(s)
- Diana Hülter-Hassler
- Department of Orthodontics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | - Martin Wein
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Simon D Schulz
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Britta A Jung
- Department of Orthodontics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
139
|
Bae JS, Kim SM, Lee H. The Hippo signaling pathway provides novel anti-cancer drug targets. Oncotarget 2017; 8:16084-16098. [PMID: 28035075 PMCID: PMC5362547 DOI: 10.18632/oncotarget.14306] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.
Collapse
Affiliation(s)
- June Sung Bae
- Biomolecular Function Research Branch, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun Mi Kim
- Biomolecular Function Research Branch, National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
140
|
Jia J, Qiao Y, Pilo MG, Cigliano A, Liu X, Shao Z, Calvisi DF, Chen X. Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS One 2017; 12:e0184068. [PMID: 28877210 PMCID: PMC5587291 DOI: 10.1371/journal.pone.0184068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Previous data indicate that Tankyrase inhibitors exert anti-growth functions in many cancer cell lines due to their ability to inactivate the YAP protooncogene. In the present manuscript, we investigated the effect of Tankyrase inhibitors on the growth of hepatocellular carcinoma (HCC) cell lines and the molecular mechanisms involved. For this purpose, we performed cell proliferation assay by colony-forming ability in seven human HCC cells subjected to XAV-939 and G007-LK Tankyrase inhibitors. Noticeably, the two Tankyrase inhibitors suppressed the HCC cell growth in a dose-dependent manner. Furthermore, we found that Tankyrase inhibitors synergized with MEK and AKT inhibitors to suppress HCC cell proliferation. At the molecular level, Tankyrase inhibitors significantly decreased YAP protein levels, reduced the expression of YAP target genes, and inhibited YAP/TEAD luciferase reporter activity. In addition, Tankyrase inhibitors administration was accompanied by upregulation of Angiomotin-like 1 (AMOTL1) and Angiomotin-like 2 (AMOTL2) proteins, two major negative regulators of YAP. Altogether, the present data indicate that XAV-939 and G007-LK Tankyrase inhibitors could suppress proliferation of hepatocellular carcinoma cells and downregulate YAP/TAZ by stabilizing AMOTL1 and AMOTL2 proteins, thus representing new potential anticancer drugs against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaoyuan Jia
- Department of Oncology and Hematology, The Second Hospital, Jilin University, Changchun, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, United States of America
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, United States of America
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Maria G. Pilo
- Institue of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institue of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Xianqiong Liu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, United States of America
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zixuan Shao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, United States of America
- Lowell High School, San Francisco, California, United States of America
| | - Diego F. Calvisi
- Institue of Pathology, University Medicine Greifswald, Greifswald, Germany
- * E-mail: (XC); (DFC)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, United States of America
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- * E-mail: (XC); (DFC)
| |
Collapse
|
141
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
142
|
Zhang S, Liu Z, Wu L, Wang Y. MiR-361 targets Yes-associated protein (YAP) mRNA to suppress cell proliferation in lung cancer. Biochem Biophys Res Commun 2017; 492:468-473. [PMID: 28837805 DOI: 10.1016/j.bbrc.2017.08.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
Yes-associated protein (YAP) contributes to the development of multiple tumors, but the post-transcription modulation of YAP remains unexplored. Here, we present a new regulatory microRNA of YAP, miR-361, which directly targets YAP to inhibit cell proliferation in lung cancer. We used bioinformatics to predict that miR-361 could target 3'-untranslated region (3'UTR) of YAP mRNA. Luciferase reporter gene assays demonstrated that miR-361 could decrease the luciferase activities of 3'UTR vector of YAP. Furthermore, YAP expression was obviously abated by miR-361 using RT-PCR and immunoblotting in lung cancer A549 cells. In terms of function, MTT and colony formation analysis showed that ectopic miR-361 expression significantly suppressed cell proliferation in lung cancer. Notably, overexpressed YAP accelerated miR-361-bated proliferation of lung cancer cells. MiR-361 inhibitor promoted cell proliferation in lung cancer, but YAP RNA interference reversed miR-361 inhibitor-driven cell proliferation. Interestingly, miR-361 was capable of affecting the cell cycle in lung cancer progression. Finally, the negative correlation of miR-361 with YAP was found in clinical human lung cancer tissues. In conclusion, miR-361 targets 3'UTR of YAP mRNA to depress the proliferation of lung cancer cells.
Collapse
Affiliation(s)
- Suning Zhang
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China.
| | - Zongang Liu
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| | - Lin Wu
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| | - Yudong Wang
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| |
Collapse
|
143
|
A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3-GENES GENOMES GENETICS 2017; 7:2497-2509. [PMID: 28611255 PMCID: PMC5555457 DOI: 10.1534/g3.117.043513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.
Collapse
|
144
|
Lee TF, Tseng YC, Chang WC, Chen YC, Kao YR, Chou TY, Ho CC, Wu CW. YAP1 is essential for tumor growth and is a potential therapeutic target for EGFR-dependent lung adenocarcinomas. Oncotarget 2017; 8:89539-89551. [PMID: 29163769 PMCID: PMC5685690 DOI: 10.18632/oncotarget.19647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are found in lung adenocarcinomas leading to tumor cells proliferation and survival. EGFR tyrosine kinase inhibitors (TKIs) that block EGFR activity are effective therapeutics for EGFR-mutant lung adenocarcinoma patients, but TKI-resistance inevitably occurs. The YES-associated protein (YAP1) transcription coactivator has been implicated as an oncogene and is amplified in human cancers and provides tumor cells strong proliferation and survival cues. This study investigated the roles of YAP1 in lung adenocarcinoma by exploring its regulation and functions mediated by EGFR signaling. In this study, we detected a correlation between YAP1 level and EGFR mutation status in lung adenocarcinoma tissues. Using lung adenocarcinoma cell lines, enhanced YAP1 expression and activity mediated by EGFR signaling was detected through enhanced protein stability. A SRC family protein, YES, was involved in EGFR-regulated YAP1 expression and this pathway was crucial for proliferation in EGFR-dependent cells. Small molecules that reduced YAP1 levels by mechanisms bypassing EGFR signaling were effective in reducing viability in EGFR-dependent cells including those with EGFR T790M, the major cause of TKI-resistance. These observations unveiled the significance of YAP1 in EGFR mutant lung adenocarcinomas and identified YAP1 as a promising therapeutic target for EGFR-dependent lung adenocarcinoma patients, including those with EGFR T790M-caused TKI resistance.
Collapse
Affiliation(s)
- Ting-Fang Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chi Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
145
|
Woodard GA, Yang YL, You L, Jablons DM. Drug development against the hippo pathway in mesothelioma. Transl Lung Cancer Res 2017; 6:335-342. [PMID: 28713678 DOI: 10.21037/tlcr.2017.06.02] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the treatments for malignant pleural mesothelioma (MPM) have been disappointing until recently. Conventional cytotoxic drugs fail in MPM in part because they do not address the cancer stem cell population or stem cell pathways that drive tumor resistance and resurgence following treatment. The Hippo stem cell pathway regulates cell contact inhibition with tumor suppressor genes such as NF2 (Neurofibromatosis 2) upstream controlling YAP (Yes-associated protein 1) oncogenes. NF2 is mutated in 40-50% of all MPM and downstream YAP is constitutively active in greater than 70% of MPM, making the downstream YAP/TEAD (transcriptional enhancer associate domain) complex the ultimate target. Novel small molecule YAP inhibitors are showing promising results in preclinical studies and may prove to be effective chemotherapy drugs in MPM.
Collapse
Affiliation(s)
- Gavitt A Woodard
- Department of Surgery, University of California, San Francisco, USA
| | - Yi-Lin Yang
- Department of Surgery, University of California, San Francisco, USA
| | - Liang You
- Department of Surgery, University of California, San Francisco, USA
| | - David M Jablons
- Department of Surgery, University of California, San Francisco, USA
| |
Collapse
|
146
|
Kaan HYK, Sim AYL, Tan SKJ, Verma C, Song H. Targeting YAP/TAZ-TEAD protein-protein interactions using fragment-based and computational modeling approaches. PLoS One 2017; 12:e0178381. [PMID: 28570566 PMCID: PMC5453487 DOI: 10.1371/journal.pone.0178381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway, which is implicated in the regulation of organ size, has emerged as a potential target for the development of cancer therapeutics. YAP, TAZ (transcription co-activators) and TEAD (transcription factor) are the downstream transcriptional machinery and effectors of the pathway. Formation of the YAP/TAZ-TEAD complex leads to transcription of growth-promoting genes. Conversely, disrupting the interactions of the complex decreases cell proliferation. Herein, we screened a 1000-member fragment library using Thermal Shift Assay and identified a hit fragment. We confirmed its binding at the YAP/TAZ-TEAD interface by X-ray crystallography, and showed that it occupies the same hydrophobic pocket as a conserved phenylalanine of YAP/TAZ. This hit fragment serves as a scaffold for the development of compounds that have the potential to disrupt YAP/TAZ-TEAD interactions. Structure-activity relationship studies and computational modeling were also carried out to identify more potent compounds that may bind at this validated druggable binding site.
Collapse
Affiliation(s)
- Hung Yi Kristal Kaan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore
| | - Adelene Y. L. Sim
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Siew Kim Joyce Tan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore
| | - Chandra Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore
- * E-mail: (HS); (CV)
| | - Haiwei Song
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore
- Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore
- * E-mail: (HS); (CV)
| |
Collapse
|
147
|
Jiménez AP, Traum A, Boettger T, Hackstein H, Richter AM, Dammann RH. The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth. Oncotarget 2017; 8:88437-88452. [PMID: 29179447 PMCID: PMC5687617 DOI: 10.18632/oncotarget.18177] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway regulates organ size, growth and comprises several tumor related factors, including the oncoprotein YAP1 and the tumor suppressor RASSF1A. RASSF1A is frequently epigenetically inactivated in cancer. In our study, we analyzed the effect of RASSF1A on the function of YAP1. Expression of YAP1 resulted in the downregulation of several tumor suppressor genes and induction of S-phase. Co-expression with RASSF1A normalized the expression levels of these tumor suppressors and induced a G0-G1 arrest and apoptosis. This effect was associated with the reduction of MDM2 and the increase of p53. These data suggest that the tumor suppressor RASSF1A inhibits the oncogenic potential of YAP1. Additionally, we could show that ANKRD1 is a YAP1 target gene that is induced by RASSF1A. Further analysis revealed that ANKRD1 is epigenetically inactivated in human cancer. ANKRD1 expression induced the expression of TP53 as well as BAX and CDKN1A and reduced colony formation of cancer cells. We found that ANKRD1 interacts with p53 and is involved in the destabilization of MDM2. Additionally, our data indicate that the tumor-suppressive effect of ANKRD1 depends on the presence of p53. These results suggest that ANKRD1 is a tumor-suppressive downstream target of the Hippo pathway that is epigenetically silenced in human cancer.
Collapse
Affiliation(s)
- Adriana P Jiménez
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Annalena Traum
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Thomas Boettger
- Department I-Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Holger Hackstein
- Clinical Immunology, Biomedizinisches Forschungszentrum Seltersberg, D-35392 Giessen, Germany
| | - Antje M Richter
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany
| | - Reinhard H Dammann
- Institute for Genetics, Justus-Liebig University Giessen, D-35392 Giessen, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, D-35392 Giessen, Germany
| |
Collapse
|
148
|
Moeller ME, Nagy S, Gerlach SU, Soegaard KC, Danielsen ET, Texada MJ, Rewitz KF. Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Curr Biol 2017; 27:1652-1659.e4. [PMID: 28528906 DOI: 10.1016/j.cub.2017.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022]
Abstract
Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
Collapse
Affiliation(s)
- Morten E Moeller
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stephan U Gerlach
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Karen C Soegaard
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kim F Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
149
|
Kaan HYK, Chan SW, Tan SKJ, Guo F, Lim CJ, Hong W, Song H. Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex. Sci Rep 2017; 7:2035. [PMID: 28515457 PMCID: PMC5435683 DOI: 10.1038/s41598-017-02219-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is a tumor suppressor pathway that is implicated in the regulation of organ size. The pathway has three components: the upstream regulatory factors, the kinase core, and the downstream transcriptional machinery, which consists of YAP, TAZ (transcription co-activators) and TEAD (transcription factor). Formation of YAP/TAZ-TEAD complexes leads to the transcription of growth-promoting genes. Herein, we report the crystal structure of TAZ-TEAD4 complex, which reveals two binding modes. The first is similar to the published YAP-TEAD structure. The second is a unique binding mode, whereby two molecules of TAZ bind to and bridge two molecules of TEAD4. We validated the latter using cross-linking and multi-angle light scattering. Using siRNA, we showed that TAZ knockdown leads to a decrease in TEAD4 dimerization. Lastly, results from luciferase assays, using YAP/TAZ transfected or knockdown cells, give support to the non-redundancy of YAP/TAZ co-activators in regulating gene expression in the Hippo pathway.
Collapse
Affiliation(s)
- Hung Yi Kristal Kaan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Siew Kim Joyce Tan
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Fusheng Guo
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Chun Jye Lim
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Haiwei Song
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Resesarch), 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
150
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|