101
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017; 91:510-518. [DOI: 10.1002/cyto.a.23110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 South Korea
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
- Tomocube, Inc; Daejeon 34051 South Korea
| |
Collapse
|
102
|
John S, Sivakumar KC, Mishra R. Extracellular Proton Concentrations Impacts LN229 Glioblastoma Tumor Cell Fate via Differential Modulation of Surface Lipids. Front Oncol 2017; 7:20. [PMID: 28299282 PMCID: PMC5331044 DOI: 10.3389/fonc.2017.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer with marginal survival rates. GBM extracellular acidosis can profoundly impact its cell fate heterogeneities and progression. However, the molecules and mechanisms that enable GBM tumor cells acid adaptation and consequent cell fate competencies are weakly understood. Since extracellular proton concentrations (pHe) directly intercept the tumor cell plasma membrane, surface lipids must play a crucial role in pHe-dependent tumor cell fate dynamics. Hence, a more detailed insight into the finely tuned pH-dependent modulation of surface lipids is required to generate strategies that can inhibit or surpass tumor cell acid adaptation, thereby forcing the eradication of heterogeneous oncogenic niches, without affecting the normal cells. Results By using image-based single cell analysis and physicochemical techniques, we made a small-scale survey of the effects of pH ranges (physiological: pHe 7.4, low: 6.2, and very low: 3.4) on LN229 glioblastoma cell line surface remodeling and analyzed the consequent cell fate heterogeneities with relevant molecular targets and behavioral assays. Through this basic study, we uncovered that the extracellular proton concentration (1) modulates surface cholesterol-driven cell fate dynamics and (2) induces ‘differential clustering’ of surface resident GM3 glycosphingolipid which together coordinates the proliferation, migration, survival, and death reprogramming via distinct effects on the tumor cell biomechanical homeostasis. A novel synergy of anti-GM3 antibody and cyclophilin A inhibitor was found to mimic the very low pHe-mediated GM3 supraclustered conformation that elevated the surface rigidity and mechano-remodeled the tumor cell into a differentiated phenotype which eventually succumbed to the anoikis type of cell death, thereby eradicating the tumorigenic niches. Conclusion and significance This work presents an initial insight into the physicochemical capacities of extracellular protons in the generation of glioblastoma tumor cell heterogeneities and cell death via the crucial interplay of surface lipids and their conformational changes. Hence, monitoring of proton–cholesterol–GM3 correlations in vivo through diagnostic imaging and in vitro in clinical samples may assist better tumor staging and prognosis. The emerged insights have further led to the translation of a ‘pH-dependent mechanisms of oncogenesis control’ into the surface targeted anti-GBM therapeutics.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
103
|
Dudka D, Meraldi P. Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results Probl Cell Differ 2017; 61:301-321. [PMID: 28409311 DOI: 10.1007/978-3-319-53150-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.
Collapse
Affiliation(s)
- Damian Dudka
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
104
|
Cellular Reorganization during Mitotic Entry. Trends Cell Biol 2017; 27:26-41. [DOI: 10.1016/j.tcb.2016.07.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
105
|
Chaigne A, Terret ME, Verlhac MH. Asymmetries and Symmetries in the Mouse Oocyte and Zygote. Results Probl Cell Differ 2017; 61:285-299. [PMID: 28409310 DOI: 10.1007/978-3-319-53150-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian oocytes grow periodically after puberty thanks to the dialogue with their niche in the follicle. This communication between somatic and germ cells promotes the accumulation, inside the oocyte, of maternal RNAs, proteins and other molecules that will sustain the two gamete divisions and early embryo development up to its implantation. In order to preserve their stock of maternal products, oocytes from all species divide twice minimizing the volume of their daughter cells to their own benefit. For this, they undergo asymmetric divisions in size where one main objective is to locate the division spindle with its chromosomes off-centred. In this chapter, we will review how this main objective is reached with an emphasis on the role of actin microfilaments in this process in mouse oocytes, the most studied example in mammals. This chapter is subdivided into three parts: I-General features of asymmetric divisions in mouse oocytes, II-Mechanism of chromosome positioning by actin in mouse oocytes and III-Switch from asymmetric to symmetric division at the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK.,Institute for the Physics of Living Systems, UCL, London, WC1E 6BT, UK
| | | | | |
Collapse
|
106
|
Kale A, Rimesso G, Baker NE. Local Cell Death Changes the Orientation of Cell Division in the Developing Drosophila Wing Imaginal Disc Without Using Fat or Dachsous as Orienting Signals. PLoS One 2016; 11:e0167637. [PMID: 28030539 PMCID: PMC5193341 DOI: 10.1371/journal.pone.0167637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Drosophila imaginal disc cells exhibit preferred cell division orientations according to location within the disc. These orientations are altered if cell death occurs within the epithelium, such as is caused by cell competition or by genotypes affecting cell survival. Both normal cell division orientations, and their orientations after cell death, depend on the Fat-Dachsous pathway of planar cell polarity (PCP). The hypothesis that cell death initiates a planar polarity signal was investigated. When clones homozygous for the pineapple eye (pie) mutation were made to initiate cell death, neither Dachsous nor Fat was required in pie cells for the re-orientation of nearby cells, indicating a distinct signal for this PCP pathway. Dpp and Wg were also not needed for pie clones to re-orient cell division. Cell shapes were evaluated in wild type and mosaic wing discs to assess mechanical consequences of cell loss. Although proximal wing disc cells and cells close to the dorso-ventral boundary were elongated in their preferred cell division axes in wild type discs, cell shapes in much of the wing pouch were symmetrical on average and did not predict their preferred division axis. Cells in pie mutant clones were slightly larger than their normal counterparts, consistent with mechanical stretching following cell loss, but no bias in cell shape was detected in the surrounding cells. These findings indicate that an unidentified signal influences PCP-dependent cell division orientation in imaginal discs.
Collapse
Affiliation(s)
- Abhijit Kale
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- * E-mail:
| |
Collapse
|
107
|
C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci U S A 2016; 113:E8197-E8206. [PMID: 27911772 DOI: 10.1073/pnas.1605871113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.
Collapse
|
108
|
Wu BJ, Zhao LX, Zhu CC, Chen YL, Wei MY, Bao SQ, Sun SC, Li XH. Altered apoptosis/autophagy and epigenetic modifications cause the impaired postimplantation octaploid embryonic development in mice. Cell Cycle 2016; 16:82-90. [PMID: 27830977 DOI: 10.1080/15384101.2016.1252884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polyploids are pervasive in plants and have large impacts on crop breeding, but natural polyploids are rare in animals. Mouse diploid embryos can be induced to become tetraploid by blastomere fusion at the 2-cell stage and tetraploid embryos can develop to the blastocyst stage in vitro. However, there is little information regarding mouse octaploid embryonic development and precise mechanisms contributing to octaploid embryonic developmental limitations are unknown. To investigate the genetic and epigenetic mechanisms underlying octaploid embryonic development, we generated mouse octaploid embryos and evaluated the in vitro/in vivo developmental potential. Here we show that octaploid embryos can develop to the blastocyst stage in vitro, but all fetus impaired immediately after implantation. Our results indicate that cell lineage specification of octaploid embryo was disorganized. Furthermore, these octaploid embryos showed increased apoptosis as well as alterations in epigenetic modifications when compared with diploid embryos. Thus, our cumulative data provide cues for why mouse octaploid embryonic development is limited and its failed postimplantation development.
Collapse
Affiliation(s)
- Bao-Jiang Wu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China.,b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Li-Xia Zhao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Cheng-Cheng Zhu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Yang-Lin Chen
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Meng-Yi Wei
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Si-Qin Bao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xi-He Li
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| |
Collapse
|
109
|
Xiong C, Zhou X, He Q, Huang X, Wang J, Peng WP, Chang HC, Nie Z. Development of Visible-Wavelength MALDI Cell Mass Spectrometry for High-Efficiency Single-Cell Analysis. Anal Chem 2016; 88:11913-11918. [DOI: 10.1021/acs.analchem.6b03789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caiqiao Xiong
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xiaoyu Zhou
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing He
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xi Huang
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Jiyun Wang
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wen-Ping Peng
- Department
of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan
| | - Huan-Cheng Chang
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Zongxiu Nie
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
110
|
Seaman L, Meixner W, Snyder J, Rajapakse I. Periodicity of nuclear morphology in human fibroblasts. Nucleus 2016; 6:408-16. [PMID: 26734724 DOI: 10.1080/19491034.2015.1095432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION Morphology of the cell nucleus has been used as a key indicator of disease state and prognosis, but typically without quantitative rigor. It is also not well understood how nuclear morphology varies with time across different genetic backgrounds in healthy cells. To help answer these questions we measured the size and shape of nuclei in cell-cycle-synchronized primary human fibroblasts from 6 different individuals at 32 time points over a 75 hour period. RESULTS The nucleus was modeled as an ellipsoid and its dynamics analyzed. Shape and volume changed significantly over this time. Two prominent frequencies were found in the 6 individuals: a 17 hour period consistent with the cell cycle and a 26 hour period. Our findings suggest that the shape of the nucleus changes over time and thus any time-invariant shape property may provide a misleading characterization of cellular populations at different phases of the cell cycle. The proposed methodology provides a general method to analyze morphological change using multiple time points even for non-live-cell experiments.
Collapse
Affiliation(s)
- Laura Seaman
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA
| | - Walter Meixner
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA
| | | | - Indika Rajapakse
- a Department of Computational Medicine and Bioinformatics ; University of Michigan ; Ann Arbor , MI USA.,c Department of Mathematics ; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
111
|
Fykerud TA, Knudsen LM, Totland MZ, Sørensen V, Dahal-Koirala S, Lothe RA, Brech A, Leithe E. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding. Cell Cycle 2016; 15:2943-2957. [PMID: 27625181 PMCID: PMC5105929 DOI: 10.1080/15384101.2016.1231280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.
Collapse
Affiliation(s)
- Tone A Fykerud
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Lars M Knudsen
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Max Z Totland
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Vigdis Sørensen
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Shiva Dahal-Koirala
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway
| | - Ragnhild A Lothe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Andreas Brech
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Edward Leithe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
112
|
Moreira S, Morais-de-Sá E. Spatiotemporal phosphoregulation of Lgl: Finding meaning in multiple on/off buttons. BIOARCHITECTURE 2016; 6:29-38. [PMID: 26919260 DOI: 10.1080/19490992.2016.1149290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intracellular asymmetries, often termed cell polarity, determine how cells organize and divide to ultimately control cell fate and shape animal tissues. The tumor suppressor Lethal giant larvae (Lgl) functions at the core of the evolutionarily conserved cell polarity machinery that controls apico-basal polarization. This function relies on its restricted basolateral localization via phosphorylation by aPKC. Here, we summarize the spatial and temporal control of Lgl during the cell cycle, highlighting two ideas that emerged from our recent findings: 1) Aurora A directly phosphorylates Lgl during symmetric division to couple reorganization of epithelial polarity with the cell cycle; 2) Phosphorylation of Lgl within three conserved serines controls its localization and function in a site-specific manner. Considering the importance of phosphorylation to regulate the concentration of Lgl at the plasma membrane, we will further discuss how it may work as an on-off switch for the interaction with cortical binding partners, with implications on epithelial polarization and spindle orientation.
Collapse
Affiliation(s)
- Sofia Moreira
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| | - Eurico Morais-de-Sá
- a IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal.,b I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal
| |
Collapse
|
113
|
di Pietro F, Echard A, Morin X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 2016; 17:1106-30. [PMID: 27432284 DOI: 10.15252/embr.201642292] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités Université Pierre et Marie Curie-Université Paris 6, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Cell Biology and Infection Department, Institut Pasteur, Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3691, Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis Laboratory, Ecole Normale Supérieure CNRS Inserm Institut de Biologie de l'Ecole Normale Supérieure (IBENS) PSL Research University, Paris, France
| |
Collapse
|
114
|
Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun 2016; 7:ncomms11858. [PMID: 27292265 PMCID: PMC4910015 DOI: 10.1038/ncomms11858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. Studies imply that cell adhesion geometry during interphase dictates the orientation of the cell division axis. Here the authors show that accumulation of caveolin-1 to rapidly retracting regions during cell rounding sets the spindle orientation by recruiting Gαi1-LGN-NuMA to the cortex.
Collapse
|
115
|
Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J Cell Biol 2016; 211:757-63. [PMID: 26598613 PMCID: PMC4657169 DOI: 10.1083/jcb.201505058] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Suspended cells transiently increase their volume during mitosis because of ion exchange through the plasma membrane. Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro–B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.
Collapse
Affiliation(s)
- Sungmin Son
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - T J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Scott Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
116
|
Zlotek-Zlotkiewicz E, Monnier S, Cappello G, Le Berre M, Piel M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J Cell Biol 2016; 211:765-74. [PMID: 26598614 PMCID: PMC4657168 DOI: 10.1083/jcb.201505056] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.
Collapse
Affiliation(s)
| | - Sylvain Monnier
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France UMR 168, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | | - Mael Le Berre
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Matthieu Piel
- UMR 144, Institut Curie, Centre de Recherche, 75005 Paris, France
| |
Collapse
|
117
|
Swift LH, Golsteyn RM. Cytotoxic amounts of cisplatin induce either checkpoint adaptation or apoptosis in a concentration-dependent manner in cancer cells. Biol Cell 2016; 108:127-48. [PMID: 26871414 DOI: 10.1111/boc.201500056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND INFORMATION Checkpoint adaptation (entry into mitosis with damaged DNA) is a process that links arrest at the G2/M cell cycle checkpoint and cell death in cancer cells. It is not known, however, whether cells treated with the genotoxic agent, cisplatin, undergo checkpoint adaptation or if checkpoint adaptation is a major pathway leading to cell death or not. Therefore, we investigated the relationship between treatment with cisplatin and cytotoxicity in cancer cells. RESULTS Treatment of HT-29 human colorectal adenocarcinoma cells with cisplatin can induce cell death by one of two different mechanisms. Cells treated with a cytotoxic 30 μM amount of cisplatin died after undergoing checkpoint adaptation. Before dying, however, almost all treated cells were positive for histone γH2AX staining and contained high levels of cyclin B1. Rounded cells appeared that were positive for phospho-Ser10 histone H3, with low levels of phospho-Tyr15 cyclin-dependent kinase 1, high levels of cyclin-dependent kinase 1 activity, and checkpoint kinase 1 that was not phosphorylated on Ser345. These cells were in mitosis with damaged DNA. Strikingly, with 30 μM cisplatin, 81% of cells had entered mitosis before dying. By contrast, after treatment with 100 μM cisplatin, nearly all cells died but only 7% of cells had entered mitosis. Instead, these cells died by apoptosis; they were positive for annexin-V staining, contained cleaved caspase 3, cleaved caspase 9 and cleaved PARP and did not contain Mcl-1. CONCLUSIONS Our data demonstrate that cancer cells treated with cisplatin can undergo one of two modes of cell death depending upon concentration used. These findings suggest that checkpoint adaptation is likely a primary pathway in genotoxic cell death at pharmacological concentrations of cisplatin. SIGNIFICANCE Checkpoint adaptation might be a common biochemical pathway taken by human cancer cells in response to pharmacologically relevant, cytotoxic amounts of damaged DNA.
Collapse
Affiliation(s)
- Lucy H Swift
- Cancer Cell Laboratory, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roy M Golsteyn
- Cancer Cell Laboratory, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
118
|
Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 2016; 530:495-8. [PMID: 26886796 PMCID: PMC5450930 DOI: 10.1038/nature16970] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/05/2016] [Indexed: 12/24/2022]
Abstract
The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.
Collapse
|
119
|
Vanderpuye OA, Bell CL, Murray SA. Redistribution of connexin 43 during cell division. Cell Biol Int 2016; 40:387-96. [PMID: 26724787 DOI: 10.1002/cbin.10576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/23/2015] [Indexed: 11/05/2022]
Abstract
Gap junction channels, once clustered into gap junction plaques, allow communication of essential metabolites between cells. Gap junction plaques have been reported to be lost from the cell surface during cell division. The mechanism involved in this loss of gap junction plaques during mitosis is unclear, but we hypothesize that an endoexocytotic mechanism that results in cytoplasmic double-membraned annular gap junction vesicles is involved. In this study, gap junction plaque changes in dividing cells were examined in SW-13 adrenocortical tumor cells. Endogenous gap junction protein, connexin 43 (Cx43), was detected with immunofluorescence, and live cell imaging was used to monitor green fluorescent protein-tagged Cx43 (Cx43-GFP). Mitotic stages were identified by Hoechst chromosomal staining. During interphase, large gap junction plaques were detected; however, the presence of these plaques decreased, whereas cytoplasmic puncta increased beginning with prophase. The cytoplasmic puncta were demonstrated with immunoelectron microscopy to be Cx43- positive annular gap junction vesicles. As gap junction plaques reformed at cleavage furrows between daughter cells, the number of annular gap junctions decreased during cytokinesis. The data are consistent with the mechanism of gap junction plaque loss during mitosis relying on an endoexocytotic process that results in annular gap junction vesicles formation. The rapid formation of gap junction plaques during cytokinesis points to the intriguing possibility of connexin recycling from annular gap junction vesicles to form gap junction plaques as mitosis is completed.
Collapse
Affiliation(s)
| | - Cheryl L Bell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
120
|
Vuković LD, Jevtić P, Edens LJ, Levy DL. New Insights into Mechanisms and Functions of Nuclear Size Regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:1-59. [PMID: 26940517 DOI: 10.1016/bs.ircmb.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.
Collapse
Affiliation(s)
- Lidija D Vuković
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Lisa J Edens
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
121
|
Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 2015; 6:8872. [PMID: 26602832 PMCID: PMC4696517 DOI: 10.1038/ncomms9872] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.
Collapse
|
122
|
Aydogan V, Lenard A, Denes AS, Sauteur L, Belting HG, Affolter M. Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biol Open 2015; 4:1259-69. [PMID: 26369932 PMCID: PMC4610218 DOI: 10.1242/bio.012740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The vasculature of the zebrafish trunk is composed of tubes with different cellular architectures. Unicellular tubes form their lumen through membrane invagination and transcellular cell hollowing, whereas multicellular vessels become lumenized through a chord hollowing process. Endothelial cell proliferation is essential for the subsequent growth and maturation of the blood vessels. However, how cell division, lumen formation and cell rearrangement are coordinated during angiogenic sprouting has so far not been investigated at detailed cellular level. Reasoning that different tubular architectures may impose discrete mechanistic constraints on endothelial cell division, we analyzed and compared the sequential steps of cell division, namely mitotic rounding, cytokinesis, actin re-distribution and adherence junction formation, in different blood vessels. In particular, we characterized the interplay between cell rearrangement, mitosis and lumen dynamics within unicellular and multicellular tubes. The lumen of unicellular tubes becomes constricted and is ultimately displaced from the plane of cell division, where a de novo junction forms through the recruitment of junctional proteins at the site of abscission. By contrast, the new junctions separating the daughter cells within multicellular tubes form through the alteration of pre-existing junctions, and the lumen is retained throughout mitosis. We also describe variations in the progression of cytokinesis: while membrane furrowing between daughter cells is symmetric in unicellular tubes, we found that it is asymmetric in those multicellular tubes that contained a taut intercellular junction close to the plane of division. Our findings illustrate that during the course of normal development, the cell division machinery can accommodate multiple tube architectures, thereby avoiding disruptions to the vascular network.
Collapse
Affiliation(s)
- Vahap Aydogan
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | | | - Loic Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
123
|
Abstract
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.
Collapse
|
124
|
Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 2015; 4. [PMID: 26267307 PMCID: PMC4558647 DOI: 10.7554/elife.07455] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/11/2015] [Indexed: 01/27/2023] Open
Abstract
Cardiomyocyte (CM) maturation in mammals is accompanied by a sharp decline in their proliferative and regenerative potential shortly after birth. In this study, we explored the role of the mechanical properties of the underlying matrix in the regulation of CM maturation. We show that rat and mouse neonatal CMs cultured on rigid surfaces exhibited increased myofibrillar organization, spread morphology, and reduced cell cycle activity. In contrast, compliant elastic matrices induced features of CM dedifferentiation, including a disorganized sarcomere network, rounding, and conspicuous cell-cycle re-entry. The rigid matrix facilitated nuclear division (karyokinesis) leading to binucleation, while compliant matrices promoted CM mitotic rounding and cell division (cytokinesis), associated with loss of differentiation markers. Moreover, the compliant matrix potentiated clonal expansion of CMs that involves multiple cell divisions. Thus, the compliant microenvironment facilitates CM dedifferentiation and proliferation via its effect on the organization of the myoskeleton. Our findings may be exploited to design new cardiac regenerative approaches.
Collapse
Affiliation(s)
- Yfat Yahalom-Ronen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Rajchman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
125
|
Levy DL, Heald R. Biological Scaling Problems and Solutions in Amphibians. Cold Spring Harb Perspect Biol 2015; 8:a019166. [PMID: 26261280 DOI: 10.1101/cshperspect.a019166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
126
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
127
|
Han B, Chen L, Wang J, Wu Z, Yan L, Hou S. Constitutive Expresser of Pathogenesis Related Genes 1 Is Required for Pavement Cell Morphogenesis in Arabidopsis. PLoS One 2015; 10:e0133249. [PMID: 26193674 PMCID: PMC4508093 DOI: 10.1371/journal.pone.0133249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/24/2015] [Indexed: 12/28/2022] Open
Abstract
For over 50 years, researchers have focused on the mechanisms underlying the important roles of the cytoskeleton in controlling the cell growth direction and cell expansion. In our study, we performed ethyl methane sulfonate mutagenesis on Col-0 background and identified two new CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED GENES 1 (CPR1) alleles with pavement cell (PC) morphogenetic defects. Morphological characterizations showed that polar growth initiation and expansion of PCs are seriously suppressed in cpr1. Closer cytoskeleton investigation showed that the directional arrangement of microtubules (MTs) during PC development is defective and the cortical fine actin filaments cannot be aggregated effectively to form actin cable networks in cpr1 mutants. These results suggest that the abnormal PC morphogenesis in cpr1 is accompanying with the aberrant arrangement of cytoskeleton. Site-directed mutagenesis and knockout within the F-box-associated (FBA) domain, which is reported to be a motif for recognizing particular substrates of CPR1, proved that the FBA domain is indispensable for normal CPR1 regulation of the PC morphogenesis. Further genetic analysis indicated that the defects on PC morphogenesis of cpr1 depend on two lipase-like proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4. Our results provide further insights into the relationship between the cytoskeleton and PC morphogenesis, and suggest that the cytoskeleton-mediated PC morphogenesis control might be tightly linked to plant defense responses.
Collapse
Affiliation(s)
- Bing Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Liang Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Jing Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Zhongliang Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
- * E-mail:
| |
Collapse
|
128
|
Kiyomitsu T. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol 2015; 25:286-95. [DOI: 10.1016/j.tcb.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
129
|
Lázaro-Diéguez F, Ispolatov I, Müsch A. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum. Mol Biol Cell 2015; 26:1286-95. [PMID: 25657320 PMCID: PMC4454176 DOI: 10.1091/mbc.e14-08-1330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spindle confinement within the x-z plane occurs in cultured MDCK and HeLa cells due to incomplete cell rounding and yields nonrandom x-z spindle orientation when astral MTs are absent. On the other hand, astral MT–based rotation forces disrupt the core metaphase spindle in situations in which the metaphase plate does not clear the cortex. All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Iaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, 9170124 Santiago, Chile
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
130
|
A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun 2015; 6:6027. [PMID: 25597399 DOI: 10.1038/ncomms7027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023] Open
Abstract
Cell mechanics control the outcome of cell division. In mitosis, external forces applied on a stiff cortex direct spindle orientation and morphogenesis. During oocyte meiosis on the contrary, spindle positioning depends on cortex softening. How changes in cortical organization induce cortex softening has not yet been addressed. Furthermore, the range of tension that allows spindle migration remains unknown. Here, using artificial manipulation of mouse oocyte cortex as well as theoretical modelling, we show that cortical tension has to be tightly regulated to allow off-center spindle positioning: a too low or too high cortical tension both lead to unsuccessful spindle migration. We demonstrate that the decrease in cortical tension required for spindle positioning is fine-tuned by a branched F-actin network that triggers the delocalization of myosin-II from the cortex, which sheds new light on the interplay between actin network architecture and cortex tension.
Collapse
|
131
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
132
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
133
|
Wainstock D. New patterns and architectures. Dev Cell 2014; 29:129. [PMID: 24780730 DOI: 10.1016/j.devcel.2014.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Le Bras S, Le Borgne R. Epithelial cell division – multiplying without losing touch. J Cell Sci 2014; 127:5127-37. [DOI: 10.1242/jcs.151472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epithelia are compact tissues comprising juxtaposed cells that function as mechanical and chemical barriers between the body and the environment. This barrier relies, in part, on adhesive contacts within adherens junctions, which are formed and stabilized by E-cadherin and catenin proteins linked to the actomyosin cytoskeleton. During development and throughout adult life, epithelia are continuously growing or regenerating, largely as a result of cell division. Although persistence of adherens junctions is needed for epithelial integrity, these junctions are continually remodelled during cell division. In this Commentary, we will focus on cytokinesis, the final step of mitosis, a multiparty phenomenon in which the adherens junction belt plays an essential role and during which a new cell–cell interface is generated between daughter cells. This new interface is the site of intense remodelling, where new adhesive contacts are assembled and cell polarity is transmitted from mother to daughter cells, ultimately becoming the site of cell signalling.
Collapse
|