101
|
Tsuboi A, Ohsawa S, Umetsu D, Sando Y, Kuranaga E, Igaki T, Fujimoto K. Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology. Curr Biol 2018; 28:2115-2128.e5. [DOI: 10.1016/j.cub.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/09/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
|
102
|
ADAM-like Decysin-1 (ADAMDEC1) is a positive regulator of Epithelial Defense Against Cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells. Sci Rep 2018; 8:9639. [PMID: 29941981 PMCID: PMC6018119 DOI: 10.1038/s41598-018-27469-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/31/2018] [Indexed: 12/28/2022] Open
Abstract
Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelia via cell competition with the surrounding normal epithelial cells. However, it remains unknown whether and how soluble factors are involved in this cancer preventive phenomenon. By performing stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometric analyses, we have identified ADAM-like Decysin-1 (ADAMDEC1) as a soluble protein whose expression is upregulated in the mix culture of normal and RasV12-transformed epithelial cells. Expression of ADAMDEC1 is elevated in normal epithelial cells co-cultured with RasV12 cells. Knockdown of ADAMDEC1 in the surrounding normal cells substantially suppresses apical extrusion of RasV12 cells, suggesting that ADAMDEC1 secreted by normal cells positively regulate the elimination of the neighboring transformed cells. In addition, we show that the metalloproteinase activity of ADAMDEC1 is dispensable for the regulation of apical extrusion. Furthermore, ADAMDEC1 facilitates the accumulation of filamin, a crucial regulator of Epithelial Defense Against Cancer (EDAC), in normal cells at the interface with RasV12 cells. This is the first report demonstrating that an epithelial intrinsic soluble factor is involved in cell competition in mammals.
Collapse
|
103
|
Regulation and function of p53: A perspective from Drosophila studies. Mech Dev 2018; 154:82-90. [PMID: 29800619 DOI: 10.1016/j.mod.2018.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
Tp53 is a central regulator of cellular responses to stress and one of the most frequently mutated genes in human cancers. P53 is activated by a myriad of stress signals and drives specific cellular responses depending on stress nature, cell type and cellular context. Additionally to its classical functions in regulating cell cycle arrest, apoptosis and senescence, newly described non-canonical functions of p53 are increasingly coming under the spotlight as important functions not only for its role as a tumour suppressor but also for its non-cancer associated activities. Drosophila melanogaster is a valuable model to study multiple aspects of normal animal physiology, stress response and disease. In this review, we discuss the contribution of Drosophila studies to the current knowledge on p53 and highlight recent evidences pointing to p53 novel roles in promoting tissue homeostasis and metabolic adaptation.
Collapse
|
104
|
Akiyama T, User SD, Gibson MC. Somatic clones heterozygous for recessive disease alleles of BMPR1A exhibit unexpected phenotypes in Drosophila. eLife 2018; 7:35258. [PMID: 29745898 PMCID: PMC5963922 DOI: 10.7554/elife.35258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/02/2018] [Indexed: 01/02/2023] Open
Abstract
The majority of mutations studied in animal models are designated as recessive based on the absence of visible phenotypes in germline heterozygotes. Accordingly, genetic studies primarily rely on homozygous loss-of-function to determine gene requirements, and a conceptually-related ‘two-hit model’ remains the central paradigm in cancer genetics. Here we investigate pathogenesis due to somatic mutation in epithelial tissues, a process that predominantly generates heterozygous cell clones. To study somatic mutation in Drosophila, we generated inducible alleles that mimic human Juvenile polyposis-associated BMPR1A mutations. Unexpectedly, four of these mutations had no phenotype in heterozygous carriers but exhibited clear tissue-level effects when present in somatic clones of heterozygous cells. We conclude that these alleles are indeed recessive when present in the germline, but nevertheless deleterious when present in heterozygous clones. This unforeseen effect, deleterious heteromosaicism, suggests a ‘one-hit’ mechanism for disease initiation that may explain some instances of pathogenesis associated with spontaneous mutation.
Collapse
Affiliation(s)
- Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sırma D User
- Stowers Institute for Medical Research, Kansas City, United States
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, United States
| |
Collapse
|
105
|
Bowling S, Di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, D Schneider M, Martinez-Barbera JP, Gil J, Rodríguez TA. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun 2018; 9:1763. [PMID: 29720666 PMCID: PMC5932021 DOI: 10.1038/s41467-018-04167-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ensuring the fitness of the pluripotent cells that will contribute to future development is important both for the integrity of the germline and for proper embryogenesis. Consequently, it is becoming increasingly apparent that pluripotent cells can compare their fitness levels and signal the elimination of those cells that are less fit than their neighbours. In mammals the nature of the pathways that communicate fitness remain largely unknown. Here we identify that in the early mouse embryo and upon exit from naive pluripotency, the confrontation of cells with different fitness levels leads to an inhibition of mTOR signalling in the less fit cell type, causing its elimination. We show that during this process, p53 acts upstream of mTOR and is required to repress its activity. Finally, we demonstrate that during normal development around 35% of cells are eliminated by this pathway, highlighting the importance of this mechanism for embryonic development.
Collapse
Affiliation(s)
- Sarah Bowling
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aida Di Gregorio
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Margarida Sancho
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Marieke Aarts
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Michael D Schneider
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
106
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
107
|
Marongiu F, Serra M, Laconi E. Development versus Evolution in Cancer Biology. Trends Cancer 2018; 4:342-348. [PMID: 29709258 DOI: 10.1016/j.trecan.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
The terms 'development' and 'evolution' are both used to describe the unfolding of the carcinogenic process. However, there is increasing awareness of an essential difference in the meanings of these two terms with reference to cancer. We discuss evidence suggesting that the concepts of development and evolution are both pertinent to the description of carcinogenesis; however, they appropriately apply to distinct phases of a multistep process. Such a distinction bears important implications for the study and management of cancer.
Collapse
Affiliation(s)
- Fabio Marongiu
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Monica Serra
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Ezio Laconi
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
108
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
109
|
Cadoni E, Marongiu F, Fanti M, Serra M, Laconi E. Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget 2018; 8:36020-36032. [PMID: 28415598 PMCID: PMC5482635 DOI: 10.18632/oncotarget.16421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Caloric restriction (CR) is an effective and consistent means to delay aging and the incidence of chronic diseases related to old age, including cancer. However, the precise mechanisms responsible for the beneficial effect of CR on carcinogenic process are yet to be identified. In the present studies the hypothesis was tested that the CR might delay carcinogenesis via modulatory effects exerted on the age-associated, neoplastic-prone tissue microenvironment. Using a well characterized, orthotopic cell transplantation (Tx) system in the rat, preneoplastic hepatocytes isolated from liver nodules were injected into either old syngeneic rats fed ad libitum (AL) or animals of the same age given a CR diet (70% of AL feeding). Analysis of donor-derived cell clusters performed at 10 weeks post-Tx revealed a significant shift towards smaller class sizes in the group receiving CR diet. Clusters comprising more than 50 cells, including large hepatic nodules, were thrice more frequent in AL vs. CR animals. Incidence of spontaneous endogenous nodules was also decreased by CR. Markers of cell senescence were equally expressed in the liver of AL and CR groups. However, higher levels of SIRT1 and FOXO1 proteins were detected in CR-exposed livers, while expression of HDAC1 and C/EBPβ were decreased. These results are interpreted to indicate that CR delays the emergence of age-associated neoplastic disease through effects exerted, at least in part, on the tissue microenvironment. Nutrient-sensing pathways might mediate such modulatory effect.
Collapse
Affiliation(s)
- Erika Cadoni
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| |
Collapse
|
110
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
111
|
Ramon Y Cajal S, Castellvi J, Hümmer S, Peg V, Pelletier J, Sonenberg N. Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene 2018; 37:2490-2501. [PMID: 29463861 PMCID: PMC5945578 DOI: 10.1038/s41388-018-0152-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
One of the daunting challenges facing modern medicine lies in the understanding and treatment of tumor heterogeneity. Most tumors show intra-tumor heterogeneity at both genomic and proteomic levels, with marked impacts on the responses of therapeutic targets. Therapeutic target-related gene expression pathways are affected by hypoxia and cellular stress. However, the finding that targets such as eukaryotic initiation factor (eIF) 4E (and its phosphorylated form, p-eIF4E) are generally homogenously expressed throughout tumors, regardless of the presence of hypoxia or other cellular stress conditions, opens the exciting possibility that malignancies could be treated with therapies that combine targeting of eIF4E phosphorylation with immune checkpoint inhibitors or chemotherapy.
Collapse
Affiliation(s)
- Santiago Ramon Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain. .,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| | - Josep Castellvi
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Vicente Peg
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
112
|
Akai N, Igaki T, Ohsawa S. Wingless signaling regulates winner/loser status in Minute
cell competition. Genes Cells 2018; 23:234-240. [DOI: 10.1111/gtc.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Nanami Akai
- Laboratory of Genetics; Graduate School of Biostudies; Kyoto University; Kyoto Japan
- Division of Genetics; Kobe University Graduate School of Medicine; Kobe Japan
| | - Tatsushi Igaki
- Laboratory of Genetics; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Shizue Ohsawa
- Laboratory of Genetics; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| |
Collapse
|
113
|
Kasai N, Kadeer A, Kajita M, Saitoh S, Ishikawa S, Maruyama T, Fujita Y. The paxillin-plectin-EPLIN complex promotes apical elimination of RasV12-transformed cells by modulating HDAC6-regulated tubulin acetylation. Sci Rep 2018; 8:2097. [PMID: 29391412 PMCID: PMC5794774 DOI: 10.1038/s41598-018-20146-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Recent studies have revealed that newly emerging RasV12-transformed cells are often apically extruded from the epithelial layer. During this cancer preventive process, cytoskeletal proteins plectin and Epithelial Protein Lost In Neoplasm (EPLIN) are accumulated in RasV12 cells that are surrounded by normal cells, which positively regulate the apical elimination of transformed cells. However, the downstream regulators of the plectin-EPLIN complex remain to be identified. In this study, we have found that paxillin binds to EPLIN specifically in the mix culture of normal and RasV12-transformed cells. In addition, paxillin is accumulated in RasV12 cells surrounded by normal cells. Paxillin, plectin and EPLIN mutually influence their non-cell-autonomous accumulation, and paxillin plays a crucial role in apical extrusion of RasV12 cells. We also demonstrate that in RasV12 cells surrounded by normal cells, acetylated tubulin is accumulated. Furthermore, acetylation of tubulin is promoted by paxillin that suppresses the activity of histone deacetylase (HDAC) 6. Collectively, these results indicate that in concert with plectin and EPLIN, paxillin positively regulates apical extrusion of RasV12-transformed cells by promoting microtubule acetylation. This study shed light on the unexplored events occurring at the initial stage of carcinogenesis and would potentially lead to a novel type of cancer preventive medicine.
Collapse
Affiliation(s)
- Nobuhiro Kasai
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan
| | - Ailijiang Kadeer
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.,Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang, Medical University, Urumqi, 830011, China
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan
| | - Sayaka Saitoh
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan
| | - Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan. .,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan.
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan. .,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0815, Japan.
| |
Collapse
|
114
|
Kon S. Physiological and pathological relevance of cell competition in fly to mammals. Dev Growth Differ 2017; 60:14-20. [PMID: 29250773 DOI: 10.1111/dgd.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
In multicellular organisms, incidentally emerging suboptimal cells are removed to maintain homeostasis of tissues. The unfavorable cells are excluded by a process termed cell competition whereby the resident normal cells actively eliminate the unfit cells of the identical lineage. Although the phenomenon of cell competition was originally discovered in Drosophila, a number of recent studies have provided implications of cell competition in tissue regeneration, development and oncogenesis in mammals. Here the roles of cell competition in fly to mammals are discussed.
Collapse
Affiliation(s)
- Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| |
Collapse
|
115
|
Coloff JL, Brugge JS. Metabolic changes promote rejection of oncogenic cells. Nat Cell Biol 2017; 19:414-415. [PMID: 28446818 DOI: 10.1038/ncb3521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysfunctional cells are eliminated from epithelial monolayers by a process known as cell extrusion to maintain tissue homeostasis. Normal epithelial cells are now shown to induce the extrusion of oncogene-transformed cells by inducing metabolic changes in the oncogene-expressing cells through PDK4-mediated inhibition of PDH and mitochondrial metabolism.
Collapse
Affiliation(s)
- Jonathan L Coloff
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachussetts, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachussetts, USA
| |
Collapse
|
116
|
Ramón Y Cajal S, Capdevila C, Hernandez-Losa J, De Mattos-Arruda L, Ghosh A, Lorent J, Larsson O, Aasen T, Postovit LM, Topisirovic I. Cancer as an ecomolecular disease and a neoplastic consortium. Biochim Biophys Acta Rev Cancer 2017; 1868:484-499. [PMID: 28947238 DOI: 10.1016/j.bbcan.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Current anticancer paradigms largely target driver mutations considered integral for cancer cell survival and tumor progression. Although initially successful, many of these strategies are unable to overcome the tremendous heterogeneity that characterizes advanced tumors, resulting in the emergence of resistant disease. Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in wide phenotypic and molecular heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells and the tumor microenvironment. In this context, cancer may be perceived as an "ecomolecular" disease that involves cooperation between several neoplastic clones and their interactions with immune cells, stromal fibroblasts, and other cell types present in the microenvironment. This collaboration is mediated by a variety of secreted factors. Cancer is therefore analogous to complex ecosystems such as microbial consortia. In the present article, we comment on the current paradigms and perspectives guiding the development of cancer diagnostics and therapeutics and the potential application of systems biology to untangle the complexity of neoplasia. In our opinion, conceptualization of neoplasia as an ecomolecular disease is warranted. Advances in knowledge pertinent to the complexity and dynamics of interactions within the cancer ecosystem are likely to improve understanding of tumor etiology, pathogenesis, and progression. This knowledge is anticipated to facilitate the design of new and more effective therapeutic approaches that target the tumor ecosystem in its entirety.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain.
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Leticia De Mattos-Arruda
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Abhishek Ghosh
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| |
Collapse
|
117
|
Lv WQ, Wang HC, Peng J, Wang YX, Jiang JH, Li CY. Gene editing of the extra domain A positive fibronectin in various tumors, amplified the effects of CRISPR/Cas system on the inhibition of tumor progression. Oncotarget 2017; 8:105020-105036. [PMID: 29285230 PMCID: PMC5739617 DOI: 10.18632/oncotarget.21136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background The low efficiency of clustered, regularly interspaced, palindromic repeats-associated Cas (CRISPR/Cas) system editing genes in vivo limits the application. A components of the extracellular matrix (ECM), the extra domain A positive fibronectin (EDA+FN), may be a target for CRISPR/Cas system for the pro-oncogenic effects. The exclusion of EDA exon would alter the microenvironment and inhibit tumor progression, even the frequency of gene editing is still limited. Results The pro-oncogenic effects were confirmed by the exclusion of EDA exon from the fibronectin gene, as illustrated by the down-regulated proliferation, migration and invasion of CNE-2Z or SW480 cells (P<0.05). Furthermore, although the efficacy of EDA exon knockout through CRISPR/Cas system was shown to be low in vivo, the EDA+FN protein levels decrease obviously, inhibiting the tumor growth rate significantly (P<0.05), which was accompanied by a decrease in Ki-67 expression and microvessel numbers, and increased E-cadherin or decreased Vimentin expression (P<0.05). Methods and materials Human nasopharyngeal carcinoma cell line CNE-2Z, and the colorectal carcinoma cell line SW480 were transfected with CRISPR/Cas9 plasmids targeting EDA exon. The effects of the exclusion of EDA on the cell proliferation, motility and epithelial-mesenchymal transition (EMT) were investigated, and the western blot and real-time PCR were performed to analyze the underlying mechanisms. Furthermore, CRISPR/Cas9 plasmids were injected into xenograft tumors to knockout EDA exon in vivo, and tumor growth, cell proliferation, EMT rate, or vascularization were investigated using western blot, PCR and immunohistochemistry. Conclusion CRISPR/Cas system targeting ECM components was shown to be an effective method for the inhibition of tumor progression, as these paracrine or autocrine molecules are necessary for various tumor cells. This may represent a novel strategy for overcoming the drug evasion or resistance, in addition, circumventing the low efficiency of CRISPR/Cas system in vivo.
Collapse
Affiliation(s)
- Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jing Peng
- Department of Beijing Citident Stomatology Hospital, Beijing 100032, China
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
118
|
He L, Zhou H, Liu H, Qu H. Sas/PTP10D signaling drives tumor-suppressive cell competition. Acta Biochim Biophys Sin (Shanghai) 2017; 49:851-852. [PMID: 28910972 DOI: 10.1093/abbs/gmx070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lu He
- Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, University of South China, Hengyang 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Hong Liu
- Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Hongtao Qu
- Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
119
|
Marongiu F, Serra MP, Fanti M, Cadoni E, Serra M, Laconi E. Regenerative Medicine: Shedding Light on the Link between Aging and Cancer. Cell Transplant 2017; 26:1530-1537. [PMID: 29113461 PMCID: PMC5680953 DOI: 10.1177/0963689717721224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
The evidence linking aging and cancer is overwhelming. Findings emerging from the field of regenerative medicine reinforce the notion that aging and cancer are profoundly interrelated in their pathogenetic pathways. We discuss evidence to indicate that age-associated alterations in the tissue microenvironment contribute to the emergence of a neoplastic-prone tissue landscape, which is able to support the selective growth of preneoplastic cell populations. Interestingly, tissue contexts that are able to select for the growth of preneoplastic cells, including the aged liver microenvironment, are also supportive for the clonal expansion of normal, homotypic, transplanted cells. This suggests that the growth of normal and preneoplastic cells is possibly driven by similar mechanisms, implying that strategies based on principles of regenerative medicine might be applicable to modulate neoplastic disease.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Maria Paola Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Erika Cadoni
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
120
|
Pal B, Das B. In vitro Culture of Naïve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach. Front Cell Dev Biol 2017; 5:69. [PMID: 28884113 PMCID: PMC5572382 DOI: 10.3389/fcell.2017.00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human bone marrow derived mesenchymal stem cells (BM-MSCs) resides in their niches in close proximity to hematopoietic stem cells (HSCs). These naïve MSCs have tremendous potential in regenerative therapeutics, and may also be exploited by cancer and infectious disease agents. Hence, it is important to study the physiological and pathological roles of naïve MSC. However, our knowledge of naïve MSCs is limited by lack of appropriate isolation and in vitro culture methods. Established culture methods use serum rich media, and serial passaging for retrospective isolation of MSCs. These primed MSCs may not reflect the true physiological and pathological roles of naive MSCs (Figure 1). Therefore, there is a strong need for direct isolation and in vitro culture of naïve MSCs to study their stemness (self-renewal and undifferentiated state) and developmental ontogeny. We have taken a niche-based approach on stemness to better maintain naïve MSCs in vitro. In this approach, stemness is broadly divided as niche dependent (extrinsic), niche independent (intrinsic) and niche modulatory (altruistic or competitive). Using this approach, we were able to maintain naïve CD271+/CD133+ BM-MSCs for 2 weeks. Furthermore, this in vitro culture system helped us to identify naïve MSCs as a protective niche site for Mycobacterium tuberculosis, the causative organism of pulmonary tuberculosis. In this review, we discuss the in vitro culture of primed vs. naïve human BM derived MSCs with a special focus on how a stemness based approach could facilitate the study of naïve BM-MSCs.
Collapse
Affiliation(s)
- Bidisha Pal
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| | - Bikul Das
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| |
Collapse
|
121
|
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun 2017; 8:136. [PMID: 28743877 PMCID: PMC5526992 DOI: 10.1038/s41467-017-00145-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2017] [Indexed: 01/27/2023] Open
Abstract
Cell competition is a form of cell interaction that causes the elimination of less fit cells, or losers, by wild-type (WT) cells, influencing overall tissue health. Several mutations can cause cells to become losers; however, it is not known how. Here we show that Drosophila wing disc cells carrying functionally unrelated loser mutations (Minute and mahjong) display the common activation of multiple stress signalling pathways before cell competition and find that these pathways collectively account for the loser status. We find that JNK signalling inhibits the growth of losers, while JAK/STAT signalling promotes competition-induced winner cell proliferation. Furthermore, we show that losers display oxidative stress response activation and, strikingly, that activation of this pathway alone, by Nrf2 overexpression, is sufficient to prime cells for their elimination by WT neighbours. Since oxidative stress and Nrf2 are linked to several diseases, cell competition may occur in a number of pathological conditions.Cell competition causes the removal of less fit cells ('losers') but why some gene mutations turn cells into losers is unclear. Here, the authors show that Drosophila wing disc cells carrying some loser mutations activate Nrf2 and JNK signalling, which contribute to the loser status.
Collapse
Affiliation(s)
- Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Haematology and Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael Dinan
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Golnar Kolahgar
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Eugenia Piddini
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
122
|
Maruyama T, Fujita Y. Cell competition in mammals - novel homeostatic machinery for embryonic development and cancer prevention. Curr Opin Cell Biol 2017; 48:106-112. [PMID: 28719866 DOI: 10.1016/j.ceb.2017.06.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 01/28/2023]
Abstract
In the multi-cellular community, cells with different properties often compete with each other for survival and space. This process is named cell competition and was originally discovered in Drosophila. Recent studies have revealed that comparable phenomena also occur in mammals under various physiological and pathological conditions. Within the epithelium, normal cells often recognize the presence of the neighboring transformed cells and actively eliminate them from the epithelium; a process termed EDAC (Epithelial Defense Against Cancer). Furthermore, physical force can play a crucial role in the intercellular recognition and elimination of loser cells during cell competition. Further studies are expected to reveal a variety of roles of cell competition in embryonic development and human diseases.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
123
|
Abstract
Epithelial cells expressing oncogenic Ras (RasV12) are detected by normal neighbors and are often extruded from tissues. We recently demonstrated that differential EphA2 signaling drives the segregation of mutant cells from normal monolayers via cell repulsion and increased RasV12 cell contractility. EphA2 signaling on RasV12 cells is triggered by ephrin-A ligands presented by normal cells. Here, we show that normal epithelial cells trigger the repulsion and enhanced contractility of Ras-transformed epithelial cells at the single cell level. We also reveal that ephrin-A ligands expressed on RasV12 cells are not required to drive RasV12 cell segregation following interaction with normal cells. Thus, normal-RasV12 cell-cell interaction triggers EphA2 forward signaling in RasV12 cells to drive repulsion and segregation of the transformed cells.
Collapse
Affiliation(s)
- William Hill
- a European Cancer Stem Cell Research Institute, School of Biosciences , Cardiff University , Cardiff , UK
| | - Catherine Hogan
- a European Cancer Stem Cell Research Institute, School of Biosciences , Cardiff University , Cardiff , UK
| |
Collapse
|
124
|
Shakiba N, Zandstra PW. Engineering cell fitness: lessons for regenerative medicine. Curr Opin Biotechnol 2017; 47:7-15. [PMID: 28551499 DOI: 10.1016/j.copbio.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
Abstract
Cell competition results in the loss of weaker cells and the dominance of stronger cells. So-called 'loser' cells are either removed by active elimination or by limiting their access to survival factors. Recently, competition has been shown to serve as a surveillance mechanism against emerging aberrant cells in both the developing and adult organism, contributing to overall organism fitness and survival. Here, we explore the origins and implications of cell competition in development, tissue homeostasis, and in vitro culture. We also provide a forward look on the use of cell competition to interpret multicellular dynamics while offering a perspective on harnessing competition to engineer cells with optimized and controllable fitness characteristics for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario M5S 3E1, Canada; The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario M5S 3E1, Canada; Medicine by Design, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
125
|
Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor. Proc Natl Acad Sci U S A 2017; 114:5467-5472. [PMID: 28490499 DOI: 10.1073/pnas.1703205114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Detection and manipulation of direct cell-cell contact in complex tissues is a fundamental and challenging problem in many biological studies. Here, we report an optimized Notch-based synthetic receptor (synNQ) useful to study direct cell-cell interactions in Drosophila With the synNQ system, cells expressing a synthetic receptor, which contains Notch activation machinery and a downstream transcriptional activator, QF, are activated by a synthetic GFP ligand expressed by contacting neighbor cells. To avoid cis-inhibition, mutually exclusive expression of the synthetic ligand and receptor is achieved using the "flippase-out" system. Expression of the synthetic GFP ligand is controlled by the Gal4/UAS system for easy and broad applications. Using synNQ, we successfully visualized cell-cell interactions within and between most fly tissues, revealing previously undocumented cell-cell contacts. Importantly, in addition to detection of cells in contact with one another, synNQ allows for genetic manipulation in all cells in contact with a targeted cell population, which we demonstrate in the context of cell competition in developing wing disks. Altogether, the synNQ genetic system will enable a broad range of studies of cell contact in developmental biology.
Collapse
|
126
|
The Stearoyl-CoA Desaturase-1 (Desat1) in Drosophila cooperated with Myc to Induce Autophagy and Growth, a Potential New Link to Tumor Survival. Genes (Basel) 2017; 8:genes8050131. [PMID: 28452935 PMCID: PMC5448005 DOI: 10.3390/genes8050131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/19/2023] Open
Abstract
Lipids are an important energy supply in our cells and can be stored or used to produce macromolecules during lipogenesis when cells experience nutrient starvation. Our proteomic analysis reveals that the Drosophila homologue of human Stearoyl-CoA desaturase-1 (Desat1) is an indirect target of Myc in fat cells. Stearoyl-CoA desaturases are key enzymes in the synthesis of monounsaturated fatty acids critical for the formation of complex lipids such as triglycerides and phospholipids. Their function is fundamental for cellular physiology, however in tumors, overexpression of SCD-1 and SCD-5 has been found frequently associated with a poor prognosis. Another gene that is often upregulated in tumors is the proto-oncogene c-myc, where its overexpression or increased protein stability, favor cellular growth. Here, we report a potential link between Myc and Desat1 to control autophagy and growth. Using Drosophila, we found that expression of Desat1, in metabolic tissues like the fat body, in the gut and in epithelial cells, is necessary for Myc function to induce autophagy a cell eating mechanism important for energy production. In addition, we observed that reduction of Desat1 affects Myc ability to induce growth in epithelial cells. Our data also identify, in prostatic tumor cells, a significant correlation between the expression of Myc and SCD-1 proteins, suggesting the existence of a potential functional relationship between the activities of these proteins in sustaining tumor progression.
Collapse
|
127
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
128
|
Plectin is a novel regulator for apical extrusion of RasV12-transformed cells. Sci Rep 2017; 7:44328. [PMID: 28281696 DOI: 10.1038/srep44328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence have revealed that newly emerging transformed cells are often eliminated from the epithelium, though the underlying molecular mechanisms of this cancer preventive phenomenon still remain elusive. In this study, using mammalian cell culture systems we have identified plectin, a versatile cytoskeletal linker protein, as a novel regulator for apical extrusion of RasV12-transformed cells. Plectin is accumulated in RasV12 cells when they are surrounded by normal epithelial cells. Similarly, cytoskeletal proteins tubulin, keratin, and Epithelial Protein Lost In Neoplasm (EPLIN) are also accumulated in the transformed cells surrounded by normal cells. Knockdown or functional disruption of one of these molecules diminishes the accumulation of the others, indicating that the accumulation process of the individual protein mutually depends on each other. Furthermore, plectin-knockdown attenuates caveolin-1 (Cav-1) enrichment and PKA activity in RasV12 cells and profoundly suppresses the apical extrusion. These results indicate that the plectin-microtubules-EPLIN complex positively regulates apical elimination of RasV12-transformed cells from the epithelium in a coordinated fashion. Further development of this study would open a new avenue for cancer preventive medicine.
Collapse
|
129
|
Snyder JC, Rochelle LK, Ray C, Pack TF, Bock CB, Lubkov V, Lyerly HK, Waggoner AS, Barak LS, Caron MG. Inhibiting clathrin-mediated endocytosis of the leucine-rich G protein-coupled receptor-5 diminishes cell fitness. J Biol Chem 2017; 292:7208-7222. [PMID: 28275053 PMCID: PMC5409487 DOI: 10.1074/jbc.m116.756635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/β-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear. Therefore, a natural product library was screened to discover LGR5 internalization inhibitors and gain mechanistic insight into LGR5 internalization. The plant lignan justicidin B blocked the constitutive internalization of LGR5. Justicidin B is structurally similar to more potent vacuolar-type H+-ATPase inhibitors, which all inhibited LGR5 internalization by blocking clathrin-mediated endocytosis. We then tested the physiological relevance of LGR5 internalization blockade in vivo A LGR5-rainbow (LBOW) mouse line was engineered to express three different LGR5 isoforms along with unique fluorescent protein lineage reporters in the same mouse. In this manner, the effects of each isoform on cell fate can be simultaneously assessed through simple fluorescent imaging for each lineage reporter. LBOW mice express three different forms of LGR5, a wild-type form that constitutively internalizes and two mutant forms whose internalization properties have been compromised by genetic perturbations within the carboxyl-terminal tail. LBOW was activated in the intestinal epithelium, and a year-long lineage-tracing course revealed that genetic blockade of LGR5 internalization diminished cell fitness. Together these data provide proof-of-concept genetic evidence that blocking the clathrin-mediated endocytosis of LGR5 could be used to pharmacologically control cell behavior.
Collapse
Affiliation(s)
| | | | | | | | - Cheryl B Bock
- Duke Cancer Institute Transgenic Core, Duke University Medical Center, Durham, North Carolina 27712 and
| | | | | | - Alan S Waggoner
- Department of Biological Sciences and Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | |
Collapse
|