101
|
Hirose T, Yamazaki T, Nakagawa S. Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1545. [PMID: 31044562 DOI: 10.1002/wrna.1545] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are extremely diverse and have various significant physiological functions. lncRNAs generally associate with specific sets of RNA-binding proteins (RBPs) to form functional ribonucleoprotein (RNP) complexes. NEAT1 is a highly abundant lncRNA in the mammalian cell nucleus that associates with specific RBPs to form NEAT1 RNPs. Intriguingly, cellular NEAT1 RNPs are extraordinarily large and can be detected using an optical microscope. These gigantic RNPs, so-called paraspeckles, are a type of membraneless nuclear body. Paraspeckles contain approximately 50 NEAT1 RNA molecules together with characteristic RBPs possessing aggregation-prone prion-like domains. Paraspeckle formation proceeds on the nascent NEAT1 transcript in conjunction with NEAT1 biogenesis, which exhibits various features that differ from those exhibited by mRNA biogenesis, including a lack of introns, noncanonical 3' end formation, and nuclear retention. These unique features may be required for the mechanism of paraspeckle formation. NEAT1 possesses three distinct RNA domains (A, B, and C), which function in stabilization (A), isoform switching (B), and paraspeckle assembly (C). In particular, the central C domain contains smaller subdomains that are high-affinity binding sites for the essential paraspeckle proteins (NONO and SFPQ) that subsequently polymerize along NEAT1. Subsequent recruitment of additional essential PSPs (FUS and RBM14) induces liquid-liquid phase separation to build a massive paraspeckle structure. Thus, the molecular anatomy of the NEAT1 arcRNA provides an ideal model to understand how lncRNAs form the functional RNP machinery. This article is characterized under: RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
102
|
Latonen L. Phase-to-Phase With Nucleoli - Stress Responses, Protein Aggregation and Novel Roles of RNA. Front Cell Neurosci 2019; 13:151. [PMID: 31080406 PMCID: PMC6497782 DOI: 10.3389/fncel.2019.00151] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Protein- and RNA-containing foci and aggregates are a hallmark of many age- and mutation-related neurodegenerative diseases. This article focuses on the role the nucleolus has as a hub in macromolecule regulation in the mammalian nucleus. The nucleolus has a well-established role in ribosome biogenesis and functions in several types of cellular stress responses. In addition to known reactions to DNA damaging and transcription inhibiting stresses, there is an emerging role of the nucleolus especially in responses to proteotoxic stress such as heat shock and inhibition of proteasome function. The nucleolus serves as an active regulatory site for detention of extranucleolar proteins. This takes place in nucleolar cavities and manifests in protein and RNA collections referred to as intranucleolar bodies (INBs), nucleolar aggresomes or amyloid bodies (A-bodies), depending on stress type, severity of accumulation, and material propensities of the macromolecular collections. These indicate a relevance of nucleolar function and regulation in neurodegeneration-related cellular events, but also provide surprising connections with cancer-related pathways. Yet, the molecular mechanisms governing these processes remain largely undefined. In this article, the nucleolus as the site of protein and RNA accumulation and as a possible protective organelle for nuclear proteins during stress is viewed. In addition, recent evidence of liquid-liquid phase separation (LLPS) and liquid-solid phase transition in the formation of nucleoli and its stress responses, respectively, are discussed, along with the increasingly indicated role and open questions for noncoding RNA species in these events.
Collapse
Affiliation(s)
- Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
103
|
Abstract
Phase separation of biomolecules leading to the formation of assemblies with distinct material properties has recently emerged as a new paradigm underlying subcellular organization. The discovery that disordered proteins, long associated with aggregation in neurodegenerative disease, are also implicated in driving liquid phase separation has galvanized significant interest in exploring the relationship between misregulated phase transitions and disease. This review summarizes recent work linking liquid phase separation to neurodegeneration, highlighting a pathological role for altered phase behavior and material properties of proteins assembled via liquid phase separation. The techniques that recent and current work in this area have deployed are also discussed, as is the potential for these discoveries to promote new research directions for investigating the molecular etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shana Elbaum-Garfinkle
- From the Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031 and .,the Ph.D. Program in Biochemistry, Graduate Center, CUNY, New York, New York 10031
| |
Collapse
|
104
|
Rawat S, Anusha V, Jha M, Sreedurgalakshmi K, Raychaudhuri S. Aggregation of Respiratory Complex Subunits Marks the Onset of Proteotoxicity in Proteasome Inhibited Cells. J Mol Biol 2019; 431:996-1015. [DOI: 10.1016/j.jmb.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
|
105
|
Sebastiao M, Quittot N, Marcotte I, Bourgault S. Glycosaminoglycans Induce Amyloid Self-Assembly of a Peptide Hormone by Concerted Secondary and Quaternary Conformational Transitions. Biochemistry 2019; 58:1214-1225. [PMID: 30720275 DOI: 10.1021/acs.biochem.8b01206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids are polypeptide supramolecular assemblies that have been historically associated with numerous pathologies. Nonetheless, recent studies have identified many amyloid structures that accomplish vital physiological functions. Interestingly, amyloid fibrils, either pathological or functional, have been reported to be consistently associated with other biomolecules such as RNA and glycosaminoglycans (GAGs). These linear polyanions, RNA and GAGs, have also demonstrated an inherent ability to accelerate and/or promote amyloid formation. GAGs, including heparan sulfate, are highly charged polysaccharides that may have essential roles in the storage of peptide hormones in the form of amyloids. In this study, we evaluated the ability of sulfated GAGs to promote the self-assembly of the peptide (neuro)hormone PACAP27 and investigated the secondary and quaternary conformational transitions associated with the amyloidogenic process. PACAP27 readily self-assembled into insoluble, α-helix-rich globular particulates in the presence of sulfated GAGs, which gradually condensed and disappeared as nontoxic β-sheet-rich amyloid fibrils were formed. By designing a PACAP27 derivative for which helical folding was hindered, we observed that the α-helix-to-β-sheet conformational transition within the amorphous particulates constitutes the rate-limiting step of primary nucleation events. The proposed mechanism of GAG-induced self-assembly within insoluble particulates appears to be fundamentally different from usual amyloidogenic systems, which commonly implicates the formation of soluble prefibrillar proteospecies. Overall, this study provides new insights into the mechanistic details involved in the formation of functional amyloids catalyzed by polyanions, such as the assembly of nuclear amyloid bodies and the storage of peptide hormones.
Collapse
Affiliation(s)
- Mathew Sebastiao
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Noe Quittot
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Isabelle Marcotte
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Steve Bourgault
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| |
Collapse
|
106
|
|
107
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
108
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2018; 19:755-773. [PMID: 30237470 PMCID: PMC7617691 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 651] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
109
|
Assembly of Mitotic Structures through Phase Separation. J Mol Biol 2018; 430:4762-4772. [DOI: 10.1016/j.jmb.2018.04.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
|
110
|
Drino A, Schaefer MR. RNAs, Phase Separation, and Membrane-Less Organelles: Are Post-Transcriptional Modifications Modulating Organelle Dynamics? Bioessays 2018; 40:e1800085. [PMID: 30370622 DOI: 10.1002/bies.201800085] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Membranous organelles allow sub-compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane-less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid-liquid phase separation (LLPS), and is primarily governed by the interactions of multi-domain proteins or proteins harboring intrinsically disordered regions as well as RNA-binding domains. Although the presence of RNAs affects the formation and dissolution of MLOs, it remains unclear how the properties of RNAs exactly contribute to these effects. Here, the authors review this emerging field, and explore how particular RNA properties can affect LLPS and the behavior of MLOs. It is suggested that post-transcriptional RNA modification systems could be contributors for dynamically modulating the assembly and dissolution of MLOs.
Collapse
Affiliation(s)
- Aleksej Drino
- Division of Cell and Developmental Biology, Medical University Vienna, Center for Anatomy and Cell Biology, Schwarzspanierstrasse 17, A-1090, Vienna, Austria
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Medical University Vienna, Center for Anatomy and Cell Biology, Schwarzspanierstrasse 17, A-1090, Vienna, Austria
| |
Collapse
|
111
|
Al-Halifa S, Babych M, Zottig X, Archambault D, Bourgault S. Amyloid self-assembling peptides: Potential applications in nanovaccine engineering and biosensing. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soultan Al-Halifa
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Margaryta Babych
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Ximena Zottig
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Denis Archambault
- Department of Biological Sciences; Université du Québec à Montréal; Montreal, QC Canada
- Swine and Poultry Infectious Diseases Research Centre, CRIPA; QC Canada
| | - Steve Bourgault
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| |
Collapse
|
112
|
Fernández-Ramírez MDC, Hervás R, Galera-Prat A, Laurents DV, Carrión-Vázquez M. Efficient and simplified nanomechanical analysis of intrinsically disordered proteins. NANOSCALE 2018; 10:16857-16867. [PMID: 30168565 DOI: 10.1039/c8nr02785d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a tertiary structure. Amyloidogenic IDPs (aIDPs) in particular have attracted great interest due to their implication in several devastating diseases as well as in critical biological functions. However, the conformational changes that trigger amyloid formation in aIDPs are largely unknown. aIDPs' conformational polymorphism at the monomer level encumbers their study using bulk techniques. Single-molecule techniques like atomic force microscopy-based single-molecule force spectroscopy represent a promising approach and a "carrier-guest" strategy, in which the protein of interest is mechanically protected, was developed to overcome the spurious signals from the noisy proximal region. However, since the carrier and single-molecule markers have similar mechanostabilities, their signals can intermingle in the force-extension recordings, making peak selection and analysis very laborious, cumbersome and prone to error for the non-expert. Here we have developed a new carrier, the c8C module from the CipC scaffoldin, with a higher mechanostability so that the signals from the protected protein will appear at the end of the recordings. This assures an accurate, more efficient and expert-independent analysis, simplifying both the selection and analysis of the single-molecule data. Furthermore, this modular design can be integrated into any SMFS polyprotein-based vector, thus constituting a useful utensil in the growing toolbox of protein nanomechanics.
Collapse
|
113
|
Cereghetti G, Saad S, Dechant R, Peter M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 2018; 17:1545-1558. [PMID: 29963943 DOI: 10.1080/15384101.2018.1480220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context. Here, we take the yeast pyruvate kinase Cdc19 as an example of a protein forming functional, reversible, solid, amyloid-like aggregates in response to stress conditions. Cdc19 aggregation is regulated via an aggregation-prone low complexity region (LCR). In favorable growth conditions, this LCR is prevented from aggregating by phosphorylation or oligomerization, while upon glucose starvation it becomes exposed and allows aggregation. We suggest that LCR phosphorylation, oligomerization or partner-binding may be general and widespread mechanisms regulating LCR-mediated reversible protein aggregation. Moreover, we show that, as predicted by computational tools, Cdc19 forms amyloid-like aggregates in vitro. Interestingly, we also observe striking similarities between Cdc19 and its mammalian counterpart, PKM2. Indeed, also PKM2 harbors a LCR and contains several peptides with high amyloidogenic propensity, which coincide with known phosphorylation sites. Thus, we speculate that the formation of reversible, amyloid-like aggregates may be a general physiological mechanism for cells to adapt to stress conditions, and that the underlying regulatory mechanisms may be conserved from yeast to humans.
Collapse
Affiliation(s)
- Gea Cereghetti
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland.,b Life Science Zürich , Molecular Life Sciences , Zürich , Switzerland
| | - Shady Saad
- c Department of Chemical and Systems Biology , Stanford University , Stanford, CA , USA
| | - Reinhard Dechant
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
114
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
115
|
Alberti S, Carra S. Quality Control of Membraneless Organelles. J Mol Biol 2018; 430:4711-4729. [PMID: 29758260 DOI: 10.1016/j.jmb.2018.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Center for Neuroscience and Neurotechnology, 41125 Modena, Italy.
| |
Collapse
|
116
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
117
|
Abstract
Intracellular environments are heterogeneous milieus comprised of macromolecules, osmolytes, and a range of assemblies that include membrane-bound organelles and membraneless biomolecular condensates. The latter are nonstoichiometric assemblies of protein and RNA molecules. They represent distinct phases and form via intracellular phase transitions. Here, we present insights from recent studies and provide a perspective on how phase transitions that lead to biomolecular condensates might contribute to cellular functions.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
118
|
Abstract
To survive, organisms must orchestrate competing biochemical and regulatory processes in time and space. Recent work has suggested that the underlying chemical properties of some biomolecules allow them to self-organize and that life may have exploited this property to organize biochemistry in space and time. Such phase separation is ubiquitous, particularly among the many regulatory proteins that harbor prion-like intrinsically disordered domains. And yet, despite evident regulation by post-translational modification and myriad other stimuli, the biological significance of many phase-separated compartments remains uncertain. Many potential functions have been proposed, but far fewer have been demonstrated. A burgeoning subfield at the intersection of cell biology and polymer physics has defined the biophysical underpinnings that govern the genesis and stability of these particles. The picture is complex: many assemblies are composed of multiple proteins that each have the capacity to phase separate. Here, we briefly discuss this foundational work and survey recent efforts combining targeted biochemical perturbations and quantitative modeling to specifically address the diverse roles that phase separation processes may play in biology.
Collapse
Affiliation(s)
- Alan K. Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Raymond A. Futia
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305
| |
Collapse
|
119
|
Posey AE, Ruff KM, Harmon TS, Crick SL, Li A, Diamond MI, Pappu RV. Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. J Biol Chem 2018; 293:3734-3746. [PMID: 29358329 PMCID: PMC5846159 DOI: 10.1074/jbc.ra117.000357] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We found that monomers and oligomers make up the soluble M phase, ∼25-nm spheres dominate in the soluble S phase, and long, linear fibrils make up the insoluble F phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.
Collapse
Affiliation(s)
- Ammon E Posey
- From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130
| | - Kiersten M Ruff
- From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130
| | - Tyler S Harmon
- From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130
| | - Scott L Crick
- From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130
| | - Aimin Li
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Marc I Diamond
- the Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Rohit V Pappu
- From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130,
| |
Collapse
|
120
|
Woodruff JB, Hyman AA, Boke E. Organization and Function of Non-dynamic Biomolecular Condensates. Trends Biochem Sci 2017; 43:81-94. [PMID: 29258725 DOI: 10.1016/j.tibs.2017.11.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022]
Abstract
Cells compartmentalize biochemical reactions using organelles. Organelles can be either membrane-bound compartments or supramolecular assemblies of protein and ribonucleic acid known as 'biomolecular condensates'. Biomolecular condensates, such as nucleoli and germ granules, have been described as liquid like, as they have the ability to fuse, flow, and undergo fission. Recent experiments have revealed that some liquid-like condensates can mature over time to form stable gels. In other cases, biomolecular condensates solidify into amyloid-like fibers. Here we discuss the assembly, organization, and physiological roles of these more stable condensates in cells, focusing on Balbiani bodies, centrosomes, nuclear pores, and amyloid bodies. We discuss how the material properties of these condensates can be explained by the principles of liquid-liquid phase separation and maturation.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elvan Boke
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
121
|
Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017; 5:e79. [PMID: 32309597 PMCID: PMC7159844 DOI: 10.15190/d.2017.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid β peptide (Aβ) and somatostatin (SST). Whereas Aβ is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aβ and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aβ and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.
Collapse
Affiliation(s)
- Angus Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Matthew Bourkas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Yang Qing Qin Lu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Anne Ostrowski
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Danielle Weber-Adrian
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Carlyn Figueiredo
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hamza Arshad
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Seyedeh Zahra Shams Shoaei
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Daniel Morrone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stuart Matan-Lithwick
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Karan Joshua Abraham
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
122
|
Jackson MP, Hewitt EW. Why are Functional Amyloids Non-Toxic in Humans? Biomolecules 2017; 7:biom7040071. [PMID: 28937655 PMCID: PMC5745454 DOI: 10.3390/biom7040071] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.
Collapse
Affiliation(s)
- Matthew P Jackson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Eric W Hewitt
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
123
|
Abstract
In this issue of Developmental Cell, Audas et al. (2016) report non-membrane-enclosed amyloid bodies (ABs) assembled in the nuclei of cells exposed to heat and low pH. Remarkably, ABs form not by liquid-to-liquid phase separation, implicated in RNA-seeded granule assembly, but by an amyloidogenic process that promotes a liquid-to-solid transition.
Collapse
|
124
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
125
|
Mizejewski GJ. Breast cancer and amyloid bodies: is there a role for amyloidosis in cancer-cell dormancy? BREAST CANCER-TARGETS AND THERAPY 2017; 9:287-291. [PMID: 28490901 PMCID: PMC5413482 DOI: 10.2147/bctt.s131394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer and Alzheimer's disease (AD) are major causes of death in older women. Interestingly, breast cancer occurs less frequently in AD patients than in the general population. Amyloidosis, the aggregation of amyloid proteins to form amyloid bodies, plays a central role in the pathogenesis of AD and other human neuropathies by forming intracellular fibrillary proteins. Contrary to popular belief, amyloidosis is a common occurrence in mammalian cells, and has recently been reported to be a natural physiological process in response to environmental stress stimulations (such as pH and temperature extremes, hypoxia, and oxidative stress). Many proteins contain an intrinsic "amyloid-converting motif", which acts in conjunction with a specific noncoding RNA to induce formation of proteinaceous amyloid bodies that are stored in intracellular bundles. In cancer cells such as breast and prostate, the process of amyloidosis induces cells to enter a dormant or resting stage devoid of cell division and proliferation. Therefore, cancer cells undergo growth cessation and enter a dormant stage following amyloidosis in the cell; this is akin to giving the cell AD to cease growth.
Collapse
|
126
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
127
|
Alberti S, Mateju D, Mediani L, Carra S. Granulostasis: Protein Quality Control of RNP Granules. Front Mol Neurosci 2017; 10:84. [PMID: 28396624 PMCID: PMC5367262 DOI: 10.3389/fnmol.2017.00084] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer's disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss evidence for a back-up system that targets aberrant SGs to the aggresome for autophagy-mediated clearance. Altogether the findings discussed here provide evidence for an intricate network of interactions between RNP granules and various components of the PQC machinery. Molecular chaperones in particular are emerging as key players that control the composition and dynamics of RNP granules, which may be important to protect against age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Alberti Lab, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Daniel Mateju
- Alberti Lab, Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia Modena, Italy
| |
Collapse
|
128
|
Wang M, Audas TE, Lee S. Disentangling a Bad Reputation: Changing Perceptions of Amyloids. Trends Cell Biol 2017; 27:465-467. [PMID: 28359692 DOI: 10.1016/j.tcb.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Historically, amyloids were perceived as toxic/irreversible protein aggregates associated with neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Recent papers are challenging this perception by uncovering widespread cellular roles for physiological amyloidogenesis. These findings suggest that the amyloid-fold should be considered, alongside the native-fold and unfolded configurations, as a physiological and reversible protein organization.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA.
| |
Collapse
|
129
|
De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D'Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 2017; 242:24-38. [PMID: 28035683 DOI: 10.1002/path.4872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frederik De Smet
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA
| | - Mirian Saiz Rubio
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Daphne Hompes
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Evelyne Naus
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Greet De Baets
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Tobias Langenberg
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bert Houben
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Filip Claes
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Sarah Charbonneau
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javier Delgado Blanco
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Stephane Plaisance
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Shakti Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Colinda Simons
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet van den Brandt
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Manon Van England
- Department of Pathology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Centre for Gynaecological Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Xavier Sagaert
- Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Frederic Rousseau
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
130
|
Weber SC. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr Opin Cell Biol 2017; 46:62-71. [PMID: 28343140 DOI: 10.1016/j.ceb.2017.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Concomitant with packaging the genome, the cell nucleus must also spatially organize the nucleoplasm. This complex mixture of proteins and nucleic acids partitions into a variety of phase-separated, membraneless organelles called nuclear bodies. Significant progress has been made in understanding the relationship between the material properties of nuclear bodies and their structural and functional consequences. Furthermore, the molecular basis of these condensed phases is beginning to emerge. Here, I review the latest work in this exciting field, highlighting recent advances and new challenges.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
131
|
Rabouille C, Alberti S. Cell adaptation upon stress: the emerging role of membrane-less compartments. Curr Opin Cell Biol 2017; 47:34-42. [PMID: 28342303 DOI: 10.1016/j.ceb.2017.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Abstract
Cells under stress transition from a growth to a quiescent state. The conventional thinking is that this is achieved through transcriptional programs, translational regulation, protein degradation, and post-translational modifications. However, there is an increasing realization that stress adaptation also goes along with dramatic changes in the architecture and organization of cells. In particular, it seems to involve the formation of membrane-less compartments and macromolecular assemblies. We propose that cells make widespread use of this ability to change macromolecular organization to adapt to stress conditions and protect themselves. Here, we address what triggers the formation of these assemblies under stress conditions. We present examples illustrating that in some cases, sophisticated signaling pathways transmit environmental fluctuations from the outside to the inside and in others, that external fluctuations directly affect the internal conditions in cells. We further argue that changes in the organization of the cytoplasm and the formation of membrane-less compartments have many advantages over other ways of altering protein function, such as protein degradation, translation or transcription. Furthermore, membrane-less compartments may act as protective devices for key cellular components.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
132
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|
133
|
Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 2016; 5. [PMID: 27874829 PMCID: PMC5127640 DOI: 10.7554/elife.21475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress. DOI:http://dx.doi.org/10.7554/eLife.21475.001
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|