101
|
Sakaguchi J, Matsushita T, Watanabe Y. DWARF4 accumulation in root tips is enhanced via blue light perception by cryptochromes. PLANT, CELL & ENVIRONMENT 2019; 42:1615-1629. [PMID: 30620085 DOI: 10.1111/pce.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) signalling is known to be coordinated with light signalling in above ground tissue. Many studies focusing on the shade avoidance response in above ground tissue or hypocotyl elongation in darkness have revealed the contribution of the BR signalling pathway to these processes. We previously analysed the expression of DWARF 4 (DWF4), a key BR biosynthesis enzyme, and revealed that light perception in above ground tissues triggered DWF4 accumulation in root tips. To determine the required wavelength of light and photoreceptors responsible for this regulation, we studied DWF4-GUS marker plants grown in several monochromatic light conditions. We revealed that monochromatic blue LED light could induce DWF4 accumulation in primary root tips and root growth as much as white light, whereas monochromatic red LED could not. Consistent with this, a cryptochrome1/2 double mutant showed retarded root growth under white light whereas a phytochromeA/B double mutant did not. Taken together, our data strongly indicated that blue light signalling was important for DWF4 accumulation in root tips and root growth. Furthermore, DWF4 accumulation patterns in primary root tips were not altered by auxin or sugar treatment. Therefore, we hypothesize that blue light signalling from the shoot tissue is different from auxin and sugar signalling.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
102
|
Yoon SH, Chung T. Protein and RNA Quality Control by Autophagy in Plant Cells. Mol Cells 2019; 42:285-291. [PMID: 31091554 PMCID: PMC6530645 DOI: 10.14348/molcells.2019.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells use conserved quality control mechanisms to repair or degrade defective proteins, which are synthesized at a high rate during proteotoxic stress. Quality control mechanisms include molecular chaperones, the ubiquitin-proteasome system, and autophagic machinery. Recent research reveals that during autophagy, membrane-bound organelles are selectively sequestered and degraded. Selective autophagy is also critical for the clearance of excess or damaged protein complexes (e.g., proteasomes and ribosomes) and membrane-less compartments (e.g., protein aggregates and ribonucleoprotein granules). As sessile organisms, plants rely on quality control mechanisms for their adaptation to fluctuating environments. In this mini-review, we highlight recent work elucidating the roles of selective autophagy in the quality control of proteins and RNA in plant cells. Emphasis will be placed on selective degradation of membrane-less compartments and protein complexes in the cytoplasm. We also propose possible mechanisms by which defective proteins are selectively recognized by autophagic machinery.
Collapse
Affiliation(s)
- Seok Ho Yoon
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
103
|
Kim EJ, Lee SH, Park CH, Kim SH, Hsu CC, Xu S, Wang ZY, Kim SK, Kim TW. Plant U-Box40 Mediates Degradation of the Brassinosteroid-Responsive Transcription Factor BZR1 in Arabidopsis Roots. THE PLANT CELL 2019; 31:791-808. [PMID: 30814258 PMCID: PMC6501603 DOI: 10.1105/tpc.18.00941] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 05/05/2023]
Abstract
Brassinosteroid (BR) regulates a wide range of physiological responses through the activation of BRASSINAZOLE RESISTANT1 (BZR1), whose activity is tightly controlled by its phosphorylation status and degradation. Although BZR1 appears to be degraded in distinct ways in response to different hormonal or environmental cues, little is known about how BR signaling regulates its degradation. Here we show that the BR-regulated U-box protein PUB40 mediates the proteasomal degradation of BZR1 in a root-specific manner in Arabidopsis (Arabidopsis thaliana). BZR1 levels were strongly reduced by plant U-box40 (PUB40) overexpression, whereas the pub39 pub40 pub41 mutant accumulated much more BZR1 than wild type in roots. The bzr1-1D gain-of-function mutation reduced the interaction with PUB40, which suppressed PUB40-mediated BZR1 degradation in roots. The cell layer-specific expression of PUB40 in roots helps induce selective BZR1 accumulation in the epidermal layer. Both BR treatment and loss-of-function of PUB40 expanded BZR1 accumulation to most cell layers. In addition, BZR1 accumulation increased the resistance of pub39 pub40 pub41 to low inorganic phosphate availability, as observed in bzr1-1D BRASSINOSTEROID-INSENSITIVE2-induced phosphorylation of PUB40, which mainly occurs in roots, gives rise to BZR1 degradation through enhanced binding of PUB40 to BZR1 and PUB40's stability. Our results suggest a molecular mechanism of root-specific BZR1 degradation regulated by BR signaling.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
| | - Chan-Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
| | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
104
|
Genome-wide identification and expression analysis of brassinosteroid action-related genes during the shoot growth of moso bamboo. Mol Biol Rep 2019; 46:1909-1930. [PMID: 30721422 DOI: 10.1007/s11033-019-04642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR formation by a complex biosynthesis process and driving BR biological function through signal transduction. Although the characterization of several BR action-related genes has been conducted in a few model plants, systematic information about these genes in bamboo is still lacking. We identified 64 genes related to BR action from the genome of moso bamboo (Phyllostachys edulis), including twenty that participated in BR biosynthesis and forty-four involved in BR signal transduction. The characteristics of all these candidate genes were identified by bioinformatics methods, including the gene structures, basic physical and chemical properties of proteins, conserved domains and evolutionary relationships. Based on the transcriptome data, the candidate genes demonstrated different expression patterns, which were further validated by qRT-PCR using templates from bamboo shoots with different heights. Thirty-four positive and three negative co-expression modules were identified by 44 candidate genes in the newly emerging bamboo shoot. The gene expression patterns and co-expression modules of BR action-related genes in bamboo shoots indicated that they might function to promote bamboo growth through BR biosynthesis and signal transduction processes. This study provides the first step towards the cloning and functional dissection of the role of BR action-related genes in moso bamboo, which also presents an excellent opportunity for genetic engineering using the candidate genes to improve bamboo quantity and quality.
Collapse
|
105
|
Wu J, Wang W, Xu P, Pan J, Zhang T, Li Y, Li G, Yang H, Lian H. phyB Interacts with BES1 to Regulate Brassinosteroid Signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:353-366. [PMID: 30388258 DOI: 10.1093/pcp/pcy212] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/30/2018] [Indexed: 05/22/2023]
Abstract
Light is an important environmental factor, which mainly inhibits hypocotyl elongation through various photoreceptors. In contrast, brassinosteroids (BRs) are major hypocotyl elongation-promoting hormones in plants, which could optimize photomorphogenesis concurrent with external light. However, the precise molecular mechanisms underlying the antagonism of light and BR signaling remain largely unknown. Here we show that the Arabidopsis red light receptor phyB is involved in inhibition of BR signaling via its direct interaction with the BR transcription factor BES1. In our study, the phyB mutant displays BR hypersensitivity, which is repressed in transgenic plants overexpressing phyB, suggesting that phyB negatively regulates the BR signaling pathway. In addition, protein interaction results show that phyB directly interacts with dephosphorylated BES1, the physiologically active form of BES1 induced by BR, in a red light-dependent manner. Genetic analyses suggest that phyB may act partially through BES1 to regulate BR signaling. Transcriptomic data and quantitative real-time PCR assay further show that phyB-mediated red light inhibits BR signaling by repressing expression of BES1 target genes, including the BR biosynthesis genes DWF4, the SAUR family and the PRE family genes required for promoting cell elongation. Finally, we found that red light treatment inhibits the DNA-binding activity of BES1 and photoactivated phyB represses the transcriptional activity of BES1 under red light. Taken together, we suggest that the interaction of phyB with dephosphorylated BES1 may allow plants to balance light and BR signaling by repressing transcriptional activity of BES1 to regulate expression of its target genes.
Collapse
Affiliation(s)
- Jun Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Pengbo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan, China
| | - Hongquan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
106
|
Xu J, Yang X, Li B, Chen L, Min L, Zhang X. GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:63-74. [PMID: 29754405 PMCID: PMC6330550 DOI: 10.1111/pbi.12947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 05/26/2023]
Abstract
Auxin is as an efficient initiator and regulator of cell fate during somatic embryogenesis (SE), but the molecular mechanisms and regulating networks of this process are not well understood. In this report, we analysed SE process induced by Leafy cotyledon1-like 1 (GhL1L1), a NF-YB subfamily gene specifically expressed in embryonic tissues in cotton. We also identified the target gene of GhL1L1, and its role in auxin distribution and cell fate specification during embryonic development was analysed. Overexpression of GhL1L1 accelerated embryonic cell formation, associated with an increased concentration of IAA in embryogenic calluses (ECs) and in the shoot apical meristem, corresponding to altered expression of the auxin transport gene GhPIN1. By contrast, GhL1L1-deficient explants showed retarded embryonic cell formation, and the concentration of IAA was decreased in GhL1L1-deficient ECs. Disruption of auxin distribution accelerated the specification of embryonic cell fate together with regulation of GhPIN1. Furthermore, we showed that PHOSPHATASE 2AA2 (GhPP2AA2) was activated by GhL1L1 through targeting the G-box of its promoter, hence regulating the activity of GhPIN1 protein. Our results indicate that GhL1L1 functions as a key regulator in auxin distribution to regulate cell fate specification in cotton and contribute to the understanding of the complex process of SE in plant species.
Collapse
Affiliation(s)
- Jiao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Baoqi Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Lin Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Ling Min
- College of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
107
|
Liu Z, Qanmber G, Lu L, Qin W, Liu J, Li J, Ma S, Yang Z, Yang Z. Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1566-1582. [PMID: 30607883 DOI: 10.1007/s11427-018-9412-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 01/11/2023]
Abstract
Brassinosteroids (BRs), which are essential phytohormones for plant growth and development, are important for cotton fiber development. Additionally, BES1 transcription factors are critical for BR signal transduction. However, cotton BES1 family genes have not been comprehensively characterized. In this study, we identified 11 BES1 genes in G. arboreum, 11 in G. raimondii, 16 in G. barbadense, and 22 in G. hirsutum. The BES1 sequences were significantly conserved in the Arabidopsis thaliana, rice, and upland cotton genomes. A total of 94 BES1 genes from 10 different plant species were divided into three clades according to the neighbor-joining and minimum-evolution methods. Moreover, the exon/intron patterns and motif distributions were highly conserved among the A. thaliana and cotton BES1 genes. The collinearity among the orthologs from the At and Dt subgenomes was estimated. Segmental duplications in the At and Dt subgenomes were primarily responsible for the expansion of the cotton BES1 gene family. Of the GhBES1 genes, GhBES1.4_At/Dt exhibited BL-induced expression and was predominantly expressed in fibers. Furthermore, Col-0/mGhBES1.4_At plants produced curled leaves with long and bent petioles. These transgenic plants also exhibited decreased hypocotyl sensitivity to brassinazole and constitutive BR induced/repressed gene expression patterns. The constitutive BR responses of the plants overexpressing mGhBES1.4_At were similar to those of the bes1-D mutant.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China. .,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
108
|
Martínez C, Espinosa-Ruíz A, de Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 2018; 37:embj.201899552. [PMID: 30389669 DOI: 10.15252/embj.201899552] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Arabidopsis PIF4 and BES1/BZR1 transcription factors antagonize light signaling by facilitating co-activated expression of a large number of cell wall-loosening and auxin-related genes. While PIF4 directly activates expression of these targets, BES1 and BZR1 activity switch from a repressive to an activator function, depending on interaction with TOPLESS and other families of regulators including PIFs. However, the complexity of this regulation and its role in diurnal control of plant growth and brassinosteroid (BR) levels is little understood. We show by using a protein array that BES1, PIF4, and the BES1-PIF4 complex recognize different DNA elements, thus revealing a distinctive cis-regulatory code beneath BES1-repressive and PIF4 co-activation function. BES1 homodimers bind to conserved BRRE- and G-box elements in the BR biosynthetic promoters and inhibit their expression during the day, while elevated PIF4 competes for BES1 homodimer formation, resulting in de-repressed BR biosynthesis at dawn and in response to warmth. Our findings demonstrate a central role of PIF4 in BR synthesis activation, increased BR levels being essential to thermomorphogenic hypocotyl growth.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ana Espinosa-Ruíz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Miguel de Lucas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Stella Bernardo-García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| |
Collapse
|
109
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
110
|
Wang W, Lu X, Li L, Lian H, Mao Z, Xu P, Guo T, Xu F, Du S, Cao X, Wang S, Shen H, Yang HQ. Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. THE PLANT CELL 2018; 30:1989-2005. [PMID: 30131420 PMCID: PMC6181010 DOI: 10.1105/tpc.17.00994] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/10/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that mediate a variety of light responses in plants and animals, including photomorphogenesis, flowering, and circadian rhythms. The signaling mechanism by which Arabidopsis thaliana cryptochromes CRY1 and CRY2 promote photomorphogenesis involves direct interactions with COP1, a RING motif-containing E3 ubiquitin ligase, and its enhancer SPA1. Brassinosteroid (BR) is a key phytohormone involved in the repression of photomorphogenesis, and here, we show that the signaling mechanism of Arabidopsis CRY1 involves the inhibition of BR signaling. CRY1 and CRY2 physically interact with BES1-INTERACTING MYC-LIKE1 (BIM1), a basic helix-loop-helix protein. BIM1, in turn, interacts with and enhances the activity of BRI1-EMS SUPPRESSOR1 (BES1), a master transcription factor in the BR signaling pathway. In addition, CRY1 and CRY2 interact specifically with dephosphorylated BES1, the physiologically active form of BES1 that is activated by BR in a blue light-dependent manner. The CRY1-BES1 interaction leads to both the inhibition of BES1 DNA binding activity and the repression of its target gene expression. Our study suggests that the blue light-dependent, BR-induced interaction of CRY1 with BES1 is a tightly regulated mechanism by which plants optimize photomorphogenesis according to the availability of external light and internal BR signals.
Collapse
Affiliation(s)
- Wenxiu Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Tongtong Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Feng Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoli Cao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sheng Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongyun Shen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
111
|
Over-expression of SINAL7 increases biomass and drought tolerance, and also delays senescence in Arabidopsis. J Biotechnol 2018; 283:11-21. [PMID: 30003973 DOI: 10.1016/j.jbiotec.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/10/2018] [Accepted: 07/08/2018] [Indexed: 11/22/2022]
Abstract
The seven in absentia like 7 gene (At5g37890, SINAL7) from Arabidopsis thaliana encodes a RING finger protein belonging to the SINA superfamily that possesses E3 ubiquitin-ligase activity. SINAL7 has the ability to self-ubiquitinate and to mono-ubiquitinate glyceraldehyde-3-P dehydrogenase 1 (GAPC1), suggesting a role for both proteins in a hypothetical signaling pathway in Arabidopsis. In this study, the in vivo effects of SINAL7 on plant physiology were examined by over-expressing SINAL7 in transgenic Arabidopsis plants. Phenotypic and gene expression analyses suggest the involvement of SINAL7 in the regulation of several vegetative parameters, essentially those that affect the aerial parts of the plants. Over-expression of SINAL7 resulted in an increase in the concentrations of hexoses and sucrose, with a concommitant increase in plant biomass, particularly in the number of rosette leaves and stem thickness. Interestingly, using the CAB1 (chlorophyll ab binding protein 1) gene as a marker revealed a delay in the onset of senescence. Transgenic plants also displayed a remarkable level of drought resistance, indicating the complexity of the response to SINAL7 over-expression.
Collapse
|
112
|
Sun S, Wang T, Wang L, Li X, Jia Y, Liu C, Huang X, Xie W, Wang X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat Commun 2018; 9:2523. [PMID: 29955063 PMCID: PMC6023860 DOI: 10.1038/s41467-018-04952-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
Mesocotyl is the crucial organ for pushing buds out of deep water or soil after germination in monocots. Deep direct seeding or mechanized dry seeding cultivation practice requires rice cultivars having long mesocotyl. However, the mechanisms of mesocotyl elongation and domestication remain unknown. Here, our genome-wide association study (GWAS) reveals that natural variations of OsGSK2, a conserved GSK3-like kinase involved in brassinosteroid signaling, determine rice mesocotyl length variation. Variations in the coding region of OsGSK2 alter its kinase activity. It is selected for mesocotyl length variation during domestication. Molecular analyses show that brassinosteroid-promoted mesocotyl elongation functions by suppressing the phosphorylation of an U-type cyclin, CYC U2, by OsGSK2. Importantly, the F-box protein D3, a major positive component in strigolactone signaling, can degrade the OsGSK2-phosphorylated CYC U2 to inhibit mesocotyl elongation. Together, these results suggest that OsGSK2 is selected to regulate mesocotyl length by coordinating strigolactone and brassinosteroid signaling during domestication.
Collapse
Affiliation(s)
- Shiyong Sun
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Linlin Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoming Li
- Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yancui Jia
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Liu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xuelu Wang
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
113
|
Kelley DR. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants. Mol Cell Proteomics 2018; 17:1047-1054. [PMID: 29514858 PMCID: PMC5986243 DOI: 10.1074/mcp.mr117.000476] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. Although E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered.
Collapse
Affiliation(s)
- Dior R Kelley
- From the ‡Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
114
|
The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:561-571. [PMID: 29673687 DOI: 10.1016/j.bbagrm.2018.04.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022]
Abstract
BZR1 and BES1 are key transcription factors of brassinosteroid (BR) signaling and represent the integration node of numerous signaling cascades. Their direct target genes have been identified, and BZR1/BES1-DNA interactions have been experimentally verified. Importantly, BZR1/BES1 also integrate different growth and development events via direct protein-protein interactions. For instance, DELLAs, PIFs, ARF6, and PKL, all directly interact with BZR1/BES1, forming a BZR1/BES1-centered regulatory network to coordinate cell elongation. By dissecting various BZR1/BES1-mediated BR responses, the concept that BZR1/BES1 act as an integration hub in multisignal-regulated plant growth and development was developed. The regulation of BZR1/BES1 is dynamic and multifaceted, including phosphorylation status, activity, and stability. Moreover, certain epigenetic modification mechanisms are involved in BZR1/BES1's regulation of gene expression. Herein, we review recent advances in BZR1/BES1-mediated molecular connections between BR and other pathways, highlighting the central role of the BZR1/BES1 interactome in optimizing plant growth and development.
Collapse
|
115
|
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, Zhou JM. A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Mol Cell 2018; 69:493-504.e6. [DOI: 10.1016/j.molcel.2017.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
116
|
UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis. Dev Cell 2018; 44:512-523.e5. [PMID: 29398622 DOI: 10.1016/j.devcel.2017.12.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 11/24/2022]
Abstract
UV-B light (UV-B radiation) is known to inhibit plant growth, but the mechanism is not well understood. UVR8 (UV RESISTANCE LOCUS 8) is a UV-B light photoreceptor that mediates UV-B light responses in plants. We report here that UV-B inhibits plant growth by repressing plant steroid hormone brassinosteroid (BR)-promoted plant growth. UVR8 physically interacts with the functional dephosphorylated BES1 (BRI1-EMS-SUPPRESSOR1) and BIM1 (BES1-INTERACTING MYC-LIKE 1) transcription factors that mediate BR-regulated gene expression and plant growth to inhibit their activities. Genome-wide gene expression analysis defined a BES1-dependent UV-B-regulated transcriptome, which is enriched with genes involved in cell elongation and plant growth. We further showed that UV-B-activated and nucleus-localized UVR8 inhibited the DNA-binding activities of BES1/BIM1 to directly regulate transcription of growth-related genes. Our results therefore establish that UVR8-BES1/BIM1 interaction represents an early photoreceptor signaling mechanism in plants and serves as an important module integrating light and BR signaling.
Collapse
|
117
|
Chen J, Yin Y. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. PLANT SIGNALING & BEHAVIOR 2017; 12:e1365212. [PMID: 29027842 PMCID: PMC5703256 DOI: 10.1080/15592324.2017.1365212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brassinosteroids (BRs) are critical for the plant growth and development. BRs signal through the plasma membrane localized receptor-like kinases to downstream transcription factors BES1/BZR1 to regulate the expression of thousands of genes for various BR responses. In addition to the role in plant growth and development, BRs have been implicated in responses to environmental stresses such as drought. However, the mechanism through which BRs regulate drought have just begun emerging. We have recently found that a group of WRKY transcription factors, WRKY46, WRKY54, WRKY70, which are well known for the function in abiotic and biotic stress, cooperates with BES1 to mediate BR-regulated drought response. The wrky46 wrky54 wrky70 triple mutants showed growth defect, likely due to impaired BR signaling as well as some reduction of endogenous BR level. WRKY46/54/70 cooperates with BES1 to regulate the expression of BR target genes to promote growth. We also found that WRKY46/54/70 negatively modulates drought tolerance by globally repressing drought-inducible gene expression. Thus, our result uncovers a new role for WRKY transcription factors in BR signaling and provides the molecular mechanism for BR-regulated plant growth and drought stress through WRKY46/54/70 and BES1 transcription factors.
Collapse
Affiliation(s)
- Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
- CONTACT Yanhai Yin Iowa State University, 1111 WOI Road, Ames, IA50011-1085, USA
| |
Collapse
|
118
|
Yu F, Xie Q. Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. TRENDS IN PLANT SCIENCE 2017; 22:976-985. [PMID: 28919033 DOI: 10.1016/j.tplants.2017.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/26/2023]
Abstract
The phytohormone abscisic acid (ABA) is a vital endogenous messenger that regulates diverse physiological processes in plants. The regulation of ABA signaling has been well studied at both the transcriptional and translational levels. Post-translational modification of key regulators in ABA signaling by the 26S ubiquitin proteasome pathway is well known. Recently, increasing evidence demonstrates that atypical turnover of key regulators by the endocytic trafficking pathway and autophagy also play vital roles in ABA perception, signaling, and action. We summarize and synthesize here recent findings in the field of ABA signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
119
|
Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J 2017; 474:2641-2661. [PMID: 28751549 DOI: 10.1042/bcj20160633] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Plants are faced with a barrage of stresses in their environment and must constantly balance their growth and survival. As such, plants have evolved complex control systems that perceive and respond to external and internal stimuli in order to optimize these responses, many of which are mediated by signaling molecules such as phytohormones. One such class of molecules called Brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of plant life including growth, development and response to various stresses. The molecular determinants of the BR signaling pathway have been extensively defined, starting with the membrane-localized receptor BRI1 and co-receptor BAK1 and ultimately culminating in the activation of BES1/BZR1 family transcription factors, which direct a transcriptional network controlling the expression of thousands of genes enabling BRs to influence growth and stress programs. Here, we highlight recent progress in understanding the relationship between the BR pathway and plant stress responses and provide an integrated view of the mechanisms mediating cross-talk between BR and stress signaling.
Collapse
|
120
|
Yang M, Wang X. Multiple Ways of BES1/BZR1 Degradation to Decode Distinct Developmental and Environmental Cues in Plants. MOLECULAR PLANT 2017. [PMID: 28629641 DOI: 10.1016/j.molp.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Mengran Yang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuelu Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
121
|
|
122
|
Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. THE PLANT CELL 2017; 29:1425-1439. [PMID: 28576847 PMCID: PMC5502465 DOI: 10.1105/tpc.17.00364] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses.
Collapse
Affiliation(s)
- Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongning Tong
- State Key Laboratory of Plant Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
123
|
Abstract
Selective autophagy mediates the cross-talk between plant growth and stress signaling pathways.
Collapse
|
124
|
Zhang T, Xu P, Wang W, Wang S, Caruana JC, Yang HQ, Lian H. Arabidopsis G-Protein β Subunit AGB1 Interacts with BES1 to Regulate Brassinosteroid Signaling and Cell Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:2225. [PMID: 29375601 PMCID: PMC5767185 DOI: 10.3389/fpls.2017.02225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
In Arabidopsis, brassinosteroids (BR) are major growth-promoting hormones, which integrate with the heterotrimeric guanine nucleotide-binding protein (G-protein) signals and cooperatively modulate cell division and elongation. However, the mechanisms of interaction between BR and G-protein are not well understood. Here, we show that the G-protein β subunit AGB1 directly interacts with the BR transcription factor BES1 in vitro and in vivo. An AGB1-null mutant, agb1-2, displays BR hyposensitivity and brassinazole (BRZ, BR biosynthesis inhibitor) hypersensitivity, which suggests that AGB1 positively mediates the BR signaling pathway. Moreover, we demonstrate that AGB1 synergistically regulates expression of BES1 target genes, including the BR biosynthesis genes CPD and DWF4 and the SAUR family genes required for promoting cell elongation. Further, Western blot analysis of BES1 phosphorylation states indicates that the interaction between AGB1 and BES1 alters the phosphorylation status of BES1 and increases the ratio of dephosphorylated to phosphorylated BES1, which leads to accumulation of dephosphorylated BES1 in the nucleus. Finally, AGB1 promotes BES1 binding to BR target genes and stimulates the transcriptional activity of BES1. Taken together, our results demonstrate that AGB1 positively regulates cell elongation by affecting the phosphorylation status and transcriptional activity of BES1.
Collapse
Affiliation(s)
- Ting Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengbo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sheng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Julie C. Caruana
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongli Lian
- Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongli Lian,
| |
Collapse
|
125
|
Xiao Y, Liu D, Zhang G, Tong H, Chu C. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1698. [PMID: 29021808 PMCID: PMC5623909 DOI: 10.3389/fpls.2017.01698] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/15/2017] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1) as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Hongning Tong, Chengcai Chu,
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongning Tong, Chengcai Chu,
| |
Collapse
|