101
|
Xue C, Wang C, Sun Y, Meng Q, Liu Z, Huo X, Sun P, Sun H, Ma X, Ma X, Peng J, Liu K. Targeting P-glycoprotein function, p53 and energy metabolism: Combination of metformin and 2-deoxyglucose reverses the multidrug resistance of MCF-7/Dox cells to doxorubicin. Oncotarget 2017; 8:8622-8632. [PMID: 28052008 PMCID: PMC5352427 DOI: 10.18632/oncotarget.14373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance(MDR) is a major obstacle to efficiency of breast cancer chemotherapy. We investigated whether combination of metformin and 2-deoxyglucose reverses MDR of MCF-7/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced cytotoxicity of doxorubicin against MCF-7/Dox cells. Combination of the two drugs resumed p53 function via inhibiting overexpression of murine doubleminute 2(MDM2) and murine doubleminute 4(MDM4) leading to G2/M arrest and apoptosis in MCF-7/Dox cells. Combination of the two drugs had no effect on P-glycoprotein mRNA expression and P-glycoprotein ATPase activity but increased doxorubicin accumulation in MCF-7/Dox cells. The increased doxorubicin accumulation maybe associate with metabolic stress. Combination of metformin and 2-deoxyglucose initiated a strong metabolic stress in MCF-7/Dox cells via inhibiting glucose uptake, lactate, fatty acid, ATP production and protein kinase B(AKT)/ mammalian target of rapamycin(mTOR) pathway. Taken together, combination of metformin and 2-deoxyglucose reverses MDR of MCF-7/Dox cells by recovering p53 function and increasing doxorubicin accumulation. Furthermore, doxorubicin selectively increases MCF-7/Dox apoptosis via aggravating metabolic stress induced by metformin plus 2-deoxyglucose. The mutually reinforcing effect made the combination of metformin and 2DG had a better effect on reversing MDR.
Collapse
Affiliation(s)
- Chaojun Xue
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yaoting Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaochi Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
102
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
103
|
Simeon S, Li H, Win TS, Malik AA, Kandhro AH, Piacham T, Shoombuatong W, Nuchnoi P, Wikberg JES, Gleeson MP, Nantasenamat C. PepBio: predicting the bioactivity of host defense peptides. RSC Adv 2017. [DOI: 10.1039/c7ra01388d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A large-scale QSAR study of host defense peptides sheds light on the origin of their bioactivities (antibacterial, anticancer, antiviral and antifungal).
Collapse
|
104
|
Semenenko I, Portnoy E, Aboukaoud M, Guzy S, Shmuel M, Itzhak G, Eyal S. Evaluation of Near Infrared Dyes as Markers of P-Glycoprotein Activity in Tumors. Front Pharmacol 2016; 7:426. [PMID: 27895581 PMCID: PMC5108765 DOI: 10.3389/fphar.2016.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/26/2016] [Indexed: 11/13/2022] Open
Abstract
Aim: The multidrug resistance protein 1 (MDR1; P-glycoprotein) has been associated with efflux of chemotherapeutic agents from tumor cells and with poor patient prognosis. This study evaluated the feasibility of non-invasive, non-radioactive near infrared (NIR) imaging methodology for detection of MDR1 functional activity in tumors. Methods: Initial accumulation assays were conducted in MDR1-overexpressing MDCK cells (MDCK-MDR1) and control MDCK cells (MDCK-CT) using the NIR dyes indocyanine green (ICG), IR-783, IR-775, rhodamine 800, XenoLight DiR, and Genhance 750, at 0.4 μM–100 μM. ICG and IR-783 were also evaluated in HT-29 cells in which MDR1 overexpression was induced by colchicine (HT-29-MDR1) and their controls (HT-29-CT). In vivo optical imaging studies were conducted using immunodeficient mice bearing HT-29-CT and HT-29-MDR1 xenografts. Results: ICG’s emission intensity was 2.0- and 2.2-fold higher in control versus MDR1-overexpressing cells, in MDCK and HT-29 cell lines, respectively. The respective IR-783 control:MDR1 ratio was 1.4 in both MDCK and HT-29 cells. Optical imaging of mice bearing HT-29-CT and HT-29-MDR1 xenografts revealed a statistically non-significant, 1.7-fold difference (p > 0.05) in ICG emission intensity between control and MDR1 tumors. No such differences were observed with IR-783. Conclusion: ICG and IR-783 appear to be weak MDR1 substrates. In vivo, low sensitivity and high between-subject variability impair the ability to use the currently studied probes as markers of tumor MDR1 activity. The results suggest that, for future use of this technology, additional NIR probes should be screened as MDR1 substrates.
Collapse
Affiliation(s)
- Inessa Semenenko
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Emma Portnoy
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Mohammed Aboukaoud
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Serge Guzy
- Department of Pharmacometrics, University of Maryland, College ParkMD, USA; Department of Pharmacometrics, University of Minnesota, MinneapolisMN, USA
| | - Miriam Shmuel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Gal Itzhak
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
105
|
Annunziato S, Barazas M, Rottenberg S, Jonkers J. Genetic Dissection of Cancer Development, Therapy Response, and Resistance in Mouse Models of Breast Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:141-150. [PMID: 27815543 DOI: 10.1101/sqb.2016.81.030924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cancer genomics revolution has rapidly expanded the inventory of somatic mutations characterizing human malignancies, highlighting a previously underappreciated extent of molecular variability between and within patients. Also in breast cancer, the most commonly diagnosed malignancy in women, this heterogeneity complicates the understanding of the stepwise sequence of pathogenic events and the design of effective and long-lasting target therapies. To disentangle this complexity and pinpoint which molecular perturbations are crucial to hijack the cellular machinery and lead to tumorigenesis and drug resistance, functional studies are needed in model systems that faithfully and comprehensively recapitulate all the salient aspects of their cognate human counterparts. Mouse models of breast cancer have been instrumental for the study of tumor initiation and drug response but also involve cost and time limitations that represent serious bottlenecks in translational research. To keep pace with the overwhelming amount of hypotheses that warrant in vivo testing, continuous refinement of current breast cancer models and implementation of new technologies is crucial. In this review, we summarize the current state of the art in modeling human breast cancer in mice, and we put forward our vision for future developments.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marco Barazas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
106
|
Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. Int J Pharm 2016; 511:436-445. [PMID: 27444552 DOI: 10.1016/j.ijpharm.2016.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) among breast cancer cells is the paramount obstacle for the successful chemotherapy. In this study, anti-EGFR antibody h-R3 was designed to self-assembled h-R3-siRNA-PAMAM-complexes (HSPCs) via electrostatic interactions for siRNA delivery. The physicochemical characterization, cell uptake, MDR1 silencing efficiency, cell migration, cell growth and cell apoptosis were investigated. The HSPCs presented lower cytotoxicity, higher cellular uptake and enhanced endosomal escape ability. Also, HSPCs encapsulating siMDR1 knockdowned 99.4% MDR1 gene with up to ∼6 times of enhancement compared to naked siMDR1, increased the doxorubicin accumulation, down-regulated P-glycoprotein (P-gp) expression and suppressed cellular migration in breast cancer MCF-7/ADR cells. Moreover, the combination of anticancer drug paclitaxel (PTX) and siMDR1 loaded HSPCs showed synergistic effect on overcoming MDR, which inhibited cell growth and induced cell apoptosis. This h-R3-mediated siMDR1 delivery system could be a promising vector for effective siRNA therapy of drug resistant breast cancer.
Collapse
|
107
|
Pape VF, Tóth S, Füredi A, Szebényi K, Lovrics A, Szabó P, Wiese M, Szakács G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur J Med Chem 2016; 117:335-54. [DOI: 10.1016/j.ejmech.2016.03.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
|
108
|
Damiani D, Tiribelli M, Geromin A, Cerno M, Zanini F, Michelutti A, Fanin R. ABCG2, Cytogenetics, and Age Predict Relapse after Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia in Complete Remission. Biol Blood Marrow Transplant 2016; 22:1621-1626. [PMID: 27178373 DOI: 10.1016/j.bbmt.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/02/2016] [Indexed: 11/12/2022]
Abstract
Recent studies have shown that ABGG2 protein overexpression in acute myeloid leukemia (AML) may be associated with poor response to therapy and increased relapse risk. Few data are available in patients with AML undergoing allogeneic stem cell transplantation (SCT), particularly when in complete remission (CR). We analyzed 105 patients with AML who underwent allogeneic SCT in CR evaluating the role of ABCG2 and other pretransplantation features on subsequent transplantation outcomes. Factors negatively associated with leukemia-free survival (LFS) were unfavorable cytogenetics (3-year LFS 48% versus 80%, P = .0035) and ABCG2 positivity (65% versus 80%, P = .045). Three-year cumulative incidence of relapse (CIR) in the whole population was 20%; a higher incidence of relapse was associated with adverse cytogenetics (41% versus 16%, P = .018), ABCG2 overexpression (29% versus 15%, P = .04), and, marginally, age > 50 years (30% versus 14%, P = .06). We grouped patients according to the combination of these 3 risk factors: no patient relapsed within 3 years from SCT in the group without risk factors, whereas the 3-year CIR was 12% (95% confidence interval [CI], 2% to 25%) in the group with 1 risk factor and 47% (95% CI, 31% to 70%) in patients with 2 or 3 risk factors (P = .00005). In conclusion, allogeneic SCT does not seem to abrogate the negative prognosis associated with ABCG2 overexpression at diagnosis, specifically in terms of a higher relapse risk. ABCG2, age, and cytogenetics can predict AML relapse after SCT in patients who undergo transplantation while in CR.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy.
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Antonella Geromin
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Michela Cerno
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Francesca Zanini
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Angela Michelutti
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| | - Renato Fanin
- Division of Hematology and Stem Cell Transplantation, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy
| |
Collapse
|
109
|
Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat 2016; 26:1-9. [PMID: 27180306 DOI: 10.1016/j.drup.2016.03.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Rebekka T Williams
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia.
| |
Collapse
|
110
|
Parkes EE, Kennedy RD. Clinical Application of Poly(ADP-Ribose) Polymerase Inhibitors in High-Grade Serous Ovarian Cancer. Oncologist 2016; 21:586-93. [PMID: 27022037 DOI: 10.1634/theoncologist.2015-0438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED : High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents. IMPLICATIONS FOR PRACTICE The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.
Collapse
Affiliation(s)
- Eileen E Parkes
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Richard D Kennedy
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom Almac Diagnostics, Craigavon, United Kingdom
| |
Collapse
|
111
|
Kadioglu O, Saeed ME, Valoti M, Frosini M, Sgaragli G, Efferth T. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses. Biochem Pharmacol 2016; 104:42-51. [DOI: 10.1016/j.bcp.2016.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
|
112
|
Ye S, Zhang J, Shen J, Gao Y, Li Y, Choy E, Cote G, Harmon D, Mankin H, Gray NS, Hornicek FJ, Duan Z. NVP-TAE684 reverses multidrug resistance (MDR) in human osteosarcoma by inhibiting P-glycoprotein (PGP1) function. Br J Pharmacol 2016; 173:613-26. [PMID: 26603906 PMCID: PMC4728419 DOI: 10.1111/bph.13395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Increased expression of P-glycoprotein (PGP1) is one of the major causes of multidrug resistance (MDR) in cancer, including in osteosarcoma, which eventually leads to the failure of cancer chemotherapy. Thus, there is an urgent need to develop effective therapeutic strategies to override the expression and function of PGP1 to counter MDR in cancer patients. EXPERIMENTAL APPROACH In an effort to search for new chemical entities targeting PGP1-associated MDR in osteosarcoma, we screened a 500+ compound library of known kinase inhibitors with established kinase selectivity profiles. We aimed to discover potential drug synergistic effects among kinase inhibitors and general chemotherapeutics by combining inhibitors with chemotherapy drugs such as doxorubicin and paclitaxel. The human osteosarcoma MDR cell lines U2OSR2 and KHOSR2 were used for the initial screen and secondary mechanistic studies. KEY RESULTS After screening 500+ kinase inhibitors, we identified NVP-TAE684 as the most effective MDR reversing agent. NVP-TAE684 significantly reversed chemoresistance when used in combination with doxorubicin, paclitaxel, docetaxel, vincristine, ET-743 or mitoxantrone. NVP-TAE684 itself is not a PGP1 substrate competitive inhibitor, but it can increase the intracellular accumulation of PGP1 substrates in PGP1-overexpressing cell lines. NVP-TAE684 was found to inhibit the function of PGP1 by stimulating PGP1 ATPase activity, a phenomenon reported for other PGP1 inhibitors. CONCLUSIONS AND IMPLICATIONS The application of NVP-TAE684 to restore sensitivity of osteosarcoma MDR cells to the cytotoxic effects of chemotherapeutics will be useful for further study of PGP1-mediated MDR in human cancer and may ultimately benefit cancer patients.
Collapse
Affiliation(s)
- Shunan Ye
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Jacson Shen
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Yan Gao
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Ying Li
- Cutaneous Biology Research Center, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Edwin Choy
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Gregory Cote
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - David Harmon
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Henry Mankin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Francis J Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
113
|
Vine KL, Belfiore L, Jones L, Locke JM, Wade S, Minaei E, Ranson M. N-alkylated isatins evade P-gp mediated efflux and retain potency in MDR cancer cell lines. Heliyon 2016; 2:e00060. [PMID: 27441242 PMCID: PMC4945850 DOI: 10.1016/j.heliyon.2015.e00060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/07/2015] [Accepted: 12/24/2015] [Indexed: 12/02/2022] Open
Abstract
The search for novel anticancer therapeutics with the ability to overcome multi-drug resistance (MDR) mechanisms is of high priority. A class of molecules that show potential in overcoming MDR are the N-alkylated isatins. In particular 5,7-dibromo-N-alkylisatins are potent microtubule destabilizing agents that act to depolymerize microtubules, induce apoptosis and inhibit primary tumor growth in vivo. In this study we evaluated the ability of four dibrominated N-alkylisatin derivatives and the parent compound, 5,7-dibromoisatin, to circumvent MDR. All of the isatin-based compounds examined retained potency against the MDR cell lines; U937VbR and MES-SA/Dx5 and displayed bioequivalent dose-dependent cytotoxicity to that of the parental control cell lines. We show that one mechanism by which the isatin-based compounds overcome MDR is by circumventing P-glycoprotein (P-gp) mediated drug efflux. Thus, as the isatin-based compounds are not susceptible to extrusion from P-gp overexpressing tumor cells, they represent a promising alternative strategy as a stand-alone or combination therapy for treating MDR cancer.
Collapse
Affiliation(s)
- Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Lisa Belfiore
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Luke Jones
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Julie M Locke
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia; Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Samantha Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Elahe Minaei
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia; School of Biological Sciences, University of Wollongong, Wollongong, Australia
| |
Collapse
|
114
|
MBL-II-141, a chromone derivative, enhances irinotecan (CPT-11) anticancer efficiency in ABCG2-positive xenografts. Oncotarget 2015; 5:11957-70. [PMID: 25474134 PMCID: PMC4323000 DOI: 10.18632/oncotarget.2566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022] Open
Abstract
ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor. Combination of 10 mg/kg MBL-II-141 with the anticancer agent CPT-11 completely blocked the growth of 90% freshly implanted ABCG2-positive tumors. Moreover, the same combination slowed the growth of already established tumors. As required for preclinical development, we defined the main pharmacokinetics parameters of MBL-II-141 and its influence on the kinetics of CPT-11 and its active metabolite SN-38 in mice. MBL-II-141 distribution into the brain occurred at a low, but detectable, level. Interestingly, preliminary data suggested that MBL-II-141 is well tolerated (at 50 mg/kg) and absorbed upon force-feeding. MBL-II-141 induced a potent sensitization of ABCG2-positive xenografts to CPT-11 through in vivo ABCG2 inhibition. MBL-II-141 strongly increased CPT-11 levels in the brain, and therefore would be a valuable agent to improve drug distribution into the brain to efficiently treat aggressive gliomas. Safety and other pharmacological data strongly support the reglementary preclinical development of MBL-II-141.
Collapse
|
115
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
116
|
Atil B, Berger-Sieczkowski E, Bardy J, Werner M, Hohenegger M. In vitro and in vivo downregulation of the ATP binding cassette transporter B1 by the HMG-CoA reductase inhibitor simvastatin. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:17-32. [PMID: 26319048 PMCID: PMC4700083 DOI: 10.1007/s00210-015-1169-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
Extrusion of chemotherapeutics by ATP-binding cassette (ABC) transporters like ABCB1 (P-glycoprotein) represents a crucial mechanism of multidrug resistance in cancer therapy. We have previously shown that the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin directly inhibits ABCB1, alters the glycosylation of the transporter, and enhances the intracellular accumulation of doxorubicin with subsequent anti-cancer action. Here, we show that simvastatin reduces endogenous dolichol levels and ABCB1 in human neuroblastoma SH-SY5Y cells. Coapplication with dolichol prevents the downregulation of the ABCB1 transporter. Importantly, dolichol also attenuated simvastatin-induced apoptosis, unmasking involvement of unfolded protein response. Direct monitoring of the fluorescent fusion protein YFP-ABCB1 further confirms concentration-dependent reduction of ABCB1 in HEK293 cells by simvastatin. In simvastatin-treated murine xenografts, ABCB1 was also reduced in the liver and rhabdomyosarcoma but did not reach significance in neuroblastoma. Nevertheless, the in vivo anti-cancer effects of simvastatin are corroborated by increased apoptosis in tumor tissues. These findings provide experimental evidence for usage of simvastatin in novel chemotherapeutic regimens and link dolichol depletion to simvastatin-induced anti-cancer activity.
Collapse
Affiliation(s)
- Bihter Atil
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria
| | | | - Johanna Bardy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria.,Department of Internal Medicine, Hanuschkrankenhaus, Heinrich-Collin-Strasse 30, 1140, Vienna, Austria
| | - Martin Werner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria.,Department of Internal Medicine, Hanuschkrankenhaus, Heinrich-Collin-Strasse 30, 1140, Vienna, Austria
| | - Martin Hohenegger
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria.
| |
Collapse
|
117
|
Mechanisms of Drug Resistance in Veterinary Oncology- A Review with an Emphasis on Canine Lymphoma. Vet Sci 2015; 2:150-184. [PMID: 29061939 PMCID: PMC5644636 DOI: 10.3390/vetsci2030150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and include reduced drug uptake, increased drug efflux, changes in drug metabolism or drug target, increased capacity to repair drug-induced DNA damage or increased resistance to apoptosis. The role of active drug efflux transporters, and those of the ABC-transporter family in particular, have been studied extensively in human oncology and to a lesser extent in veterinary medicine. Methods reported to assess ABC-transporter status include detection of the actual protein (Western blot, immunohistochemistry), mRNA or ABC-transporter function. The three major ABC-transporters associated with DR in human oncology are ABCB1 or P-gp, ABCC1 or MRP1, and ABCG2 or BCRP, and have been demonstrated in canine cell lines, healthy dogs and dogs with cancer. Although this supports a causative role for these ABC-transporters in DR cytotoxic agents in the dog, the relative contribution to the clinical phenotype of DR in canine cancer remains an area of debate and requires further prospective studies.
Collapse
|
118
|
Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression. Chem Biol Interact 2015; 235:76-84. [DOI: 10.1016/j.cbi.2015.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
|
119
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
120
|
Abstract
Hormone-receptor-positive breast cancer accounts for the majority-up to 80%-of all breast cancers. The evolution of breast cancer from early stage to the metastatic setting leads to increased heterogeneity, the occurrence of new mutations, and the development of treatment resistance representing a great challenge for management decisions. Unfortunately, little data exist to offer guidance in this context, and a reliance on traditional clinical parameters remains when deciding on optimal treatment. In advanced-stage oestrogen receptor-positive (ER+) disease, ongoing issues include the choice between endocrine therapy and chemotherapy, the appropriate sequence of treatment agents, and the incorporation of biological agents, such as everolimus, into the treatment armamentarium. In metastatic disease, repeated biopsies can help to reassess the receptor or genetic mutational status; however, the evidence to support this approach is limited. In this Review, we examine the current evidence that can guide treatment decisions in patients with advanced-stage ER+ breast cancer, discuss how to tackle these therapeutic challenges and provide suggestions for the optimal management of this patient population.
Collapse
|
121
|
Saab AM, Guerrini A, Zeino M, Wiench B, Rossi D, Gambari R, Sacchetti G, Greten HJ, Efferth T. Laurus nobilisL. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells. Nutr Cancer 2015; 67:664-75. [DOI: 10.1080/01635581.2015.1019632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
122
|
Beeran AA, Maliyakkal N, Rao CM, Udupa N. The enriched fraction of Elephantopus scaber Triggers apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells. Pharmacogn Mag 2015; 11:257-68. [PMID: 25829763 PMCID: PMC4378122 DOI: 10.4103/0973-1296.153077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/22/2014] [Accepted: 03/12/2015] [Indexed: 01/15/2023] Open
Abstract
Background: Medicinal plants have played an important role in the development of clinically useful anticancer agents. Elephantopus scaber (Asteraceae) (ES) is widely used in Indian traditional system of medicine for the treatment of various ailments including cancer. Objective: To investigate anticancer effects of ES in human epithelial cancer cells. Materials and Methods: Cytotoxicity of ethanolic extract of ES (ES-ET) and its fractions, such as ES Petroleum ether fraction (ES-PET), ES Dichloromethane fraction (ES DCM), n Butyl alcohol fraction (ES-BT), and ES-Rest (ES-R) were assessed in human epithelial cancer cell lines using sulforhodamine B (SRB) assay. Acridine orange/ethidium bromide assay and Hoechst 33342 assays were used to gauge induction of apoptosis. Cell cycle analysis and micronuclei assay were used to assess cell cycle specific pharmacological effects and drug induced genotoxicty. Further, the ability of ES to inhibit multi drug resistant (MDR) transporters (ABC-B1 and ABC-G2) was determined by Rhodamine (Rho) and Mitoxantrone (MXR) efflux assays. Results: The enriched fraction of ES (ES DCM) possessed dose-dependent potent cytotoxicity in human epithelial cancer cells. Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with ES DCM showed hall mark properties of apoptosis (membrane blebbing, nuclear condensation etc.). Similarly, ES DCM caused enhanced sub G0 content and micronuclei formation indicating the induction of apoptosis and drug induced genotoxicity in cancer cells, respectively. Interestingly, ES DCM inhibited MDR transporters (ABC B1 and ABC G2) in cancer cells. Conclusion: The enriched fraction of ES imparted cytotoxic effects, triggered apoptosis, induced genotoxicity, and inhibited MDR transporters in human epithelial cancer cells. Thus, ES appears to be potential anticancer agent.
Collapse
Affiliation(s)
- Asmy Appadath Beeran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Naseer Maliyakkal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Department of Pharmacy Management, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
123
|
Synthesis and characterization of the anticancer and metal binding properties of novel pyrimidinylhydrazone derivatives. J Inorg Biochem 2015; 144:18-30. [DOI: 10.1016/j.jinorgbio.2014.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022]
|
124
|
Vini R, Sreeja S. Punica granatum and its therapeutic implications on breast carcinogenesis: A review. Biofactors 2015; 41:78-89. [PMID: 25857627 DOI: 10.1002/biof.1206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | | |
Collapse
|
125
|
Tóth A, Brózik A, Szakács G, Sarkadi B, Hegedüs T. A novel mathematical model describing adaptive cellular drug metabolism and toxicity in the chemoimmune system. PLoS One 2015; 10:e0115533. [PMID: 25699998 PMCID: PMC4338831 DOI: 10.1371/journal.pone.0115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/25/2014] [Indexed: 02/01/2023] Open
Abstract
Cells cope with the threat of xenobiotic stress by activating a complex molecular network that recognizes and eliminates chemically diverse toxic compounds. This "chemoimmune system" consists of cellular Phase I and Phase II metabolic enzymes, Phase 0 and Phase III ATP Binding Cassette (ABC) membrane transporters, and nuclear receptors regulating these components. In order to provide a systems biology characterization of the chemoimmune network, we designed a reaction kinetic model based on differential equations describing Phase 0-III participants and regulatory elements, and characterized cellular fitness to evaluate toxicity. In spite of the simplifications, the model recapitulates changes associated with acquired drug resistance and allows toxicity predictions under variable protein expression and xenobiotic exposure conditions. Our simulations suggest that multidrug ABC transporters at Phase 0 significantly facilitate the defense function of successive network members by lowering intracellular drug concentrations. The model was extended with a novel toxicity framework which opened the possibility of performing in silico cytotoxicity assays. The alterations of the in silico cytotoxicity curves show good agreement with in vitro cell killing experiments. The behavior of the simplified kinetic model suggests that it can serve as a basis for more complex models to efficiently predict xenobiotic and drug metabolism for human medical applications.
Collapse
Affiliation(s)
- Attila Tóth
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Anna Brózik
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Balázs Sarkadi
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1113, Hungary
| | - Tamás Hegedüs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, 1094, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
- * E-mail:
| |
Collapse
|
126
|
Stäubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, Islam S, Linnarsson S, Lehtiö J, Nordström A. Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem 2015; 290:8348-59. [PMID: 25697355 DOI: 10.1074/jbc.m114.618769] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Stäubert
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, the Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Hasanuzzaman Bhuiyan
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anna Lindahl
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Oliver Jay Broom
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - Yafeng Zhu
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Saiful Islam
- the Departments of Medical Biochemistry and Biophysics and
| | | | - Janne Lehtiö
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anders Nordström
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| |
Collapse
|
127
|
Kosztyu P, Dolezel P, Vaclavikova R, Mlejnek P. Can the assessment of
ABCB
1
gene expression predict its function
in vitro
? Eur J Haematol 2015; 95:150-9. [DOI: 10.1111/ejh.12470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Petr Kosztyu
- Department of Anatomy Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic
| | - Petr Dolezel
- Department of Anatomy Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic
- Department of Biology Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit National Institute of Public Health Prague 10 Czech Republic
| | - Petr Mlejnek
- Department of Anatomy Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic
| |
Collapse
|
128
|
Hegedüs C, Hegedüs T, Sarkadi B. The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
129
|
Efferth T, Zeino M, Volm M. Modulation of P-Glycoprotein-Mediated Multidrug Resistance by Synthetic and Phytochemical Small Molecules, Monoclonal Antibodies, and Therapeutic Nucleic Acids. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
130
|
Jaspers JE, Sol W, Kersbergen A, Schlicker A, Guyader C, Xu G, Wessels L, Borst P, Jonkers J, Rottenberg S. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Res 2014; 75:732-41. [PMID: 25511378 DOI: 10.1158/0008-5472.can-14-0839] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.
Collapse
Affiliation(s)
- Janneke E Jaspers
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andreas Schlicker
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Charlotte Guyader
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Guotai Xu
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
131
|
Liu MX, Zhou KC, Cao Y. MCRS1 overexpression, which is specifically inhibited by miR-129*, promotes the epithelial-mesenchymal transition and metastasis in non-small cell lung cancer. Mol Cancer 2014; 13:245. [PMID: 25373388 PMCID: PMC4233086 DOI: 10.1186/1476-4598-13-245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022] Open
Abstract
Background Although tumor invasion and metastasis are both classical hallmarks of cancer malignancy and the major causes of poor clinical outcomes among cancer patients, the underlying master regulators of invasion and metastasis remain largely unknown. In this study, we observed that an overexpression of microspherule protein 1 (MCRS1) promotes the invasion and metastasis of non-small cell lung cancer (NSCLC) cells. Furthermore, we sought to systematically investigate the pathophysiological functions and related mechanisms of MCRS1. Methods Retrovirus-mediated RNA interference was employed to knockdown MCRS1 expression in NSCLC cell lines. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot respectively were used to measure levels of mRNA and protein. Further cell permeability assessment, invasion and proliferation assays were conducted to evaluate MCRS1 functions in vitro while nude mice experiments were performed to examine metastatic capability in vivo. Microarray analysis and microRNA (miRNA) sequencing were respectively carried out for mRNA and miRNA expression profiling, while chromatin immunoprecipitation (ChIP), luciferase reporter assay, and miRNA transfection were used to investigate the interaction between MCRS1 and miRNAs. Results MCRS1 knockdown induced morphological alterations, increased monolayer integrity, decreased cellular invasion and metastasis, and attenuated stemness and drug resistance among tested NSCLC cells. The levels of MCRS1 expression were likewise correlated with tumor metastasis among NSCLC patients. We identified differentially expressed genes after MCRS1 silencing, which included cell junction molecules, such as ZO-1, Occludin, E-cadherin, and DSG2. However, these differentially expressed genes were not directly recognized by a transcriptional complex containing MCRS1. Furthermore, we found that MCRS1 binds to the miR-155 promoter and regulates its expression, as well as MCRS1 promotes epithelial-mesenchymal transition (EMT), invasion, and metastasis through the up-regulation of miR-155. Systematic investigations ultimately showed that MCRS1 was directly and negatively regulated by the binding of miR-129* to its 3’-UTR, with miR-129* overexpression suppressing the growth and invasion of NSCLC cells. Conclusions MiR-129* down-regulation induced MCRS1 overexpression, which promotes EMT and invasion/metastasis of NSCLC cells through both the up-regulation of miR-155 and down-regulation of cell junction molecules. This miR-129*/MCRS1/miR-155 axis provides a new angle in understanding the basis for the invasion and metastasis of lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-245) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
132
|
Wang S, Qiu J, Shi Z, Wang Y, Chen M. Nanoscale drug delivery for taxanes based on the mechanism of multidrug resistance of cancer. Biotechnol Adv 2014; 33:224-241. [PMID: 25447422 DOI: 10.1016/j.biotechadv.2014.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Taxanes are one type of the most extensively used chemotherapeutic agents to treat cancers. However, their clinical use is severely limited by intrinsic and acquired resistance. A diverse variety of mechanisms has been implicated about taxane resistance, such as alterations of drug targets, overexpression of efflux transporters, defective apoptotic machineries, and barriers in drug transport. The deepening understanding of molecular mechanisms of taxane resistance has spawned a number of targets for reversing resistance. However, circumvention of taxane resistance would not only possess therapeutic potential, but also face with clinical challenge, which accelerates the development of optimal nanoscale delivery systems. This review highlights the current understanding on the mechanisms of taxane resistance, and provides a comprehensive analysis of various nanoscale delivery systems to reverse taxane resistance.
Collapse
Affiliation(s)
- Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
133
|
Saeed M, Zeino M, Kadioglu O, Volm M, Efferth T. Overcoming of P-glycoprotein-mediated multidrug resistance of tumors in vivo by drug combinations. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.synres.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
134
|
To KKW, Tomlinson B. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists. Br J Pharmacol 2014; 170:1137-51. [PMID: 24032744 DOI: 10.1111/bph.12367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Multidrug resistance (MDR), usually mediated by overexpression of efflux transporters such as P-gp, ABCG2 and/or MRP1, remains a major obstacle hindering successful cancer chemotherapy. There has been great interest in the development of inhibitors towards these transporters to circumvent resistance. However, since the inhibition of transporter is not specific to cancer cells, a decrease in the cytotoxic drug dosing may be needed to prevent excess toxicity, thus undermining the potential benefit brought about by a drug efflux inhibitor. The design of potent MDR modulators specific towards resistant cancer cells and devoid of drug-drug interactions will be needed to effect MDR reversal. EXPERIMENTAL APPROACH Recent evidence suggests that the PTEN/PI3K/Akt pathway may be exploited to alter ABCG2 subcellular localization, thereby circumventing MDR. Three PPARγ agonists (telmisartan, pioglitazone and rosiglitazone) that have been used in the clinics were tested for their effect on the PTEN/PI3K/Akt pathway and possible reversal of ABCG2-mediated drug resistance. KEY RESULTS The PPARγ agonists were found to be weak ABCG2 inhibitors by drug efflux assay. They were also shown to elevate the reduced PTEN expression in a resistant and ABCG2-overexpressing cell model, which inhibit the PI3K-Akt pathway and lead to the relocalization of ABCG2 from the plasma membrane to the cytoplasma, thus apparently circumventing the ABCG2-mediated MDR. CONCLUSIONS AND IMPLICATIONS Since this PPARγ/PTEN/PI3K/Akt pathway regulating ABCG2 is only functional in drug-resistant cancer cells with PTEN loss, the PPARγ agonists identified may represent promising agents targeting resistant cells for MDR reversal.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
135
|
Basseville A, Robey RW, Bahr JC, Bates SE. Breast Cancer Resistance Protein (BCRP) or ABCG2. DRUG TRANSPORTERS 2014:187-221. [DOI: 10.1002/9781118705308.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
136
|
Noysang C, Mahringer A, Zeino M, Saeed M, Luanratana O, Fricker G, Bauer R, Efferth T. Cytotoxicity and inhibition of P-glycoprotein by selected medicinal plants from Thailand. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:633-641. [PMID: 24929106 DOI: 10.1016/j.jep.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai medicine has a long tradition of tonifying medicinal plants. In the present investigation, we studied the flower extracts of Jasminum sambac, Mammea siamensis, Mesua ferrea, Michelia alba, Mimusops elengi, and Nelumbo nucifera and speculated that these plants might influence metabolism and substance flow in the body. MATERIALS AND METHODS Isolation of porcine brain capillary endothelial cells (PBCECs) as well as multidrug-resistance CEM/ADR5000 leukemia cells, MDA-M;B-231 breast cancer, U-251 brain tumor, and HCT-116 colon cancer cells were used. The calcein-acetoxymethylester (AM) assay was used to measure inhibition of P-glycoprotein transport. XTT and resazurin assays served for measuring cytotoxicity. RESULTS The extracts revealed cytotoxicity towards CCRF-CEM leukemia cells to a different extent. The strongest growth inhibition was found for the n-hexane extracts of Mammea siamensis and Mesua ferrea, and the dichloromethane extracts of Mesua ferrea and Michelia alba. The flower extracts also inhibited P-glycoprotein function in porcine brain capillary endothelial cells and CEM/ADR5000 leukemia cells, indicating modulation of the blood-brain barrier and multidrug resistance of tumors. Bioactivity-guided isolation of coumarins from Mammea siamensis flowers revealed considerable cytotoxicity of mammea A/AA, deacetylmammea E/BA and deacetylmammea E/BB towards human MDA-MB-231 breast cancer, U-251 brain tumor, HCT-116 colon cancer, and CCRF-CEM leukemia cells. CONCLUSION The plants analyzed may be valuable in developing novel treatment strategies to overcome the blood-brain barrier and multidrug-resistance in tumor cells mediated by P-glycoprotein.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Brain/blood supply
- Brain/drug effects
- Cell Line, Tumor
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Flowers
- Humans
- Medicine, East Asian Traditional
- Neoplasms/drug therapy
- Neoplasms/pathology
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Swine
- Thailand
Collapse
Affiliation(s)
- Chanai Noysang
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria; Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Thai Traditional Medicine College, Rajamangala University of Technology Thayaburi, Phathumthani, Thailand
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Maen Zeino
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed Saeed
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Omboon Luanratana
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens-University Graz, Graz, Austria
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
137
|
Jadomycins are cytotoxic to ABCB1-, ABCC1-, and ABCG2-overexpressing MCF7 breast cancer cells. Anticancer Drugs 2014; 25:255-69. [PMID: 24231527 DOI: 10.1097/cad.0000000000000043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multidrug resistance remains a major obstacle in the effective treatment of metastatic breast cancer. One mechanism by which multidrug resistance is conferred is the decreased intracellular drug accumulation due to the upregulation of the ATP-binding cassette (ABC) transporters. We have previously demonstrated that jadomycins, polyketide-derived natural products produced by Streptomyces venezuelae ISP5230, inhibit the growth of the human breast ductal carcinoma cell lines T47D and MDA-MB-435. To expand our understanding of jadomycin pharmacology, the goal of the present study was to determine whether the function of ABC efflux transporters affects the anticancer activity of jadomycins to MCF7 breast cancer cells. Seven jadomycin analogs (DNV, B, L, SPhG, F, S, and T) effectively reduced the viability of MCF7 control and ABCB1-, ABCC1-, or ABCG2-overexpressing drug-resistant MCF7 breast cancer cells as measured by methyltetrazolium cell viability assays and lactate dehydrogenase cytotoxicity assays. The inhibition of ABCB1, ABCC1, or ABCG2 with verapamil, MK-571, or Ko-143, respectively, did not augment the cytotoxicity of jadomycins DNV, B, L, SPhG, F, S, or T in drug-resistant MCF7 cells. Furthermore, jadomycins B, L, SPhG, F, S, and T did not increase the intracellular accumulation of ABCB1, ABCC1, or ABCG2 fluorescent substrates in HEK-293 cells stably transfected with ABCB1, ABCC1, or ABCG2. We conclude that jadomycins B, L, SPhG, F, S, and T are effective agents in the eradication of MCF7 breast cancer cells grown in culture, and that their cytotoxicities are minimally affected by ABCB1, ABCC1, and ABCG2 efflux transporter function.
Collapse
|
138
|
Mei M, Xie D, Zhang Y, Jin J, You F, Li Y, Dai J, Chen X. A new 2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene (SIA) derivative overcomes paclitaxel resistance by inhibiting MAPK signaling and increasing paclitaxel accumulation in breast cancer cells. PLoS One 2014; 9:e104317. [PMID: 25093335 PMCID: PMC4122450 DOI: 10.1371/journal.pone.0104317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/02/2014] [Indexed: 01/01/2023] Open
Abstract
Tumor resistance due to multiple mechanisms seriously hinders the efficacy of chemotherapy drugs such as paclitaxel. The most widely studied P-glycoprotein inhibitors still have limited ability to reverse resistance in the clinic. In this study, NPB304, a novel Sinenxan A (SIA) derivative, was found to significantly sensitize resistant breast cancer cells to paclitaxel in vitro and in vivo. Treatment with NPB304 increased paclitaxel-induced apoptosis in a p53-dependent manner through PARP cleavage. Importantly, NPB304 enhanced the antitumor effect of paclitaxel in resistant breast tumor xenografts in nude mice without significantly affecting weight loss. NPB304 regulated cell resistance through inhibition of MAPK pathway components, including p-ERK and p-p38. Moreover, NPB304 increased paclitaxel accumulation by affecting P-gp function. In addition to increasing Rhodamine 123 accumulation, NPB304 promoted bidirectional permeability but decreased the efflux ratio of paclitaxel in a Caco-2 monolayer model, thereby increasing the intracellular concentration of paclitaxel. Similarly, NPB304 increased the concentration of paclitaxel in the resistant tumor tissue. Hence, NPB304 is a novel compound that promotes the sensitization of resistant cells to paclitaxel through multiple mechanisms and has the potential for use in combination therapies to treat resistant breast cancer.
Collapse
Affiliation(s)
- Mei Mei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Dan Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Yi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Feng You
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing City, China
- * E-mail:
| |
Collapse
|
139
|
Pedrini I, Gazzano E, Chegaev K, Rolando B, Marengo A, Kopecka J, Fruttero R, Ghigo D, Arpicco S, Riganti C. Liposomal nitrooxy-doxorubicin: one step over caelyx in drug-resistant human cancer cells. Mol Pharm 2014; 11:3068-79. [PMID: 25057799 DOI: 10.1021/mp500257s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work we prepared and characterized two liposomal formulations of a semisynthetic nitric oxide (NO)-releasing doxorubicin (Dox), called nitrooxy-Dox (NitDox), which we previously demonstrated to be cytotoxic in Dox-resistant human colon cancer cells. Liposomes with 38.2% (Lip A) and 19.1% (Lip B) cholesterol were synthesized: both formulations had similar size and zeta potential values and caused the same intracellular distribution of free NitDox, but Lip B accumulated and released NitDox more efficiently. In Dox-resistant human colon cancer cells, Lip A and Lip B exhibited a more favorable kinetics of drug uptake and NO release, and a stronger cytotoxicity than Dox and free NitDox. While Caelyx, one of the liposomal Dox formulations approved for breast and ovary tumors treatment, was ineffective in Dox-resistant breast/ovary cancer cells, Lip B, and to a lesser extent Lip A, still exerted a significant cytotoxicity in these cells. This event was accompanied in parallel by a higher release of NO, which caused nitration of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two transporters involved in Dox efflux, and impaired their pump activity. By doing so, the efflux kinetics of Dox after treatment with Lip B was markedly slowed down and the intracellular accumulation of Dox was increased in breast and ovary drug-resistant cells. We propose these liposomal formulations of NitDox as new tools with a specific indication for tumors overexpressing Pgp and MRP1.
Collapse
Affiliation(s)
- Isabella Pedrini
- Department of Drug Science and Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Nagahashi M, Takabe K, Terracina KP, Soma D, Hirose Y, Kobayashi T, Matsuda Y, Wakai T. Sphingosine-1-phosphate transporters as targets for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651727. [PMID: 25133174 PMCID: PMC4123566 DOI: 10.1155/2014/651727] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/26/2014] [Indexed: 01/28/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival, migration, the recruitment of immune cells, angiogenesis, and lymphangiogenesis, all of which are involved in cancer progression. S1P is generated inside cancer cells by sphingosine kinases then exported outside of the cell into the tumor microenvironment where it binds to any of five G protein coupled receptors and proceeds to regulate a variety of functions. We have recently reported on the mechanisms underlying the "inside-out" signaling of S1P, its export through the plasma membrane, and its interaction with cell surface receptors. Membrane lipids, including S1P, do not spontaneously exchange through lipid bilayers since the polar head groups do not readily go through the hydrophobic interior of the plasma membrane. Instead, specific transporter proteins exist on the membrane to exchange these lipids. This review summarizes what is known regarding S1P transport through the cell membrane via ATP-binding cassette transporters and the spinster 2 transporter and discusses the roles for these transporters in cancer and in the tumor microenvironment. Based on our research and the emerging understanding of the role of S1P signaling in cancer and in the tumor microenvironment, S1P transporters and S1P signaling hold promise as new therapeutic targets for cancer drug development.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, 1200 E. Broad Street, Richmond, VA 23219, USA
| | - Krista P. Terracina
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, 1200 E. Broad Street, Richmond, VA 23219, USA
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-Ku, Niigata 951-8510, Japan
| |
Collapse
|
141
|
Calcium-channel blocking and nanoparticles-based drug delivery for treatment of drug-resistant human cancers. Ther Deliv 2014; 5:763-80. [DOI: 10.4155/tde.14.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Cancer cell chemoresistance is one of the major limitations to successful cancer treatment and one of the factors that is responsible for the possible recurrence of the disease. Here, we aimed to combine a calcium-channel blocker, verapamil, with an alternative delivery of the anti-cancer drug, doxorubicin, using nanostructural materials. This approach could reduce the cellular resistance to chemotherapeutics agents. Results: The outcome of this complex approach on cellular viability was investigated by using various assays in both a time- and concentration-dependent manner: WST-1, flow cytometry cell viability assay, fluorescence microscopy, DNA fragmentation, and TUNEL labeling of apoptotic cells. Conclusion: All of these analytical assays confirmed the ability to reduce the chemoresistance of the cancer cells based on the proposed procedure.
Collapse
|
142
|
Zhang Z, Zhang W, Jin Y, Wang H, Gu F, Zhou J, Lao Z, Xu Z, Tang F, Zou L, Tang W, Lu R, Zou Q. Evaluating the response of neoadjuvant chemotherapy for treatment of breast cancer: are tumor biomarkers and dynamic contrast enhanced MR images useful predictive tools? J Thorac Dis 2014; 6:785-94. [PMID: 24977004 DOI: 10.3978/j.issn.2072-1439.2014.04.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In order to evaluate the therapeutic response to neoadjuvant chemotherapy (NAC) for breast cancer, this research focused on the changes in expression of tumor biomarkers and the correlations associated with changes of magnetic resonance imaging (MRI) pre- and post-NAC. We also compared the accuracy of MRI and pathology in terms of residual tumor extent after NAC. METHODS MRI was performed before and after four courses of cyclophosphamide, epirubicin and paclitaxel (CET) NAC on 114 patients treated in Huashan Hospital (Fudan University) from December 2009 to January 2013. All patients were pathologically diagnosed with invasive breast cancer via core needle biopsy. A series of tumor biomarkers, including P-glycoprotein (P-gp) and Ki-67, was tested by immunohistochemistry in both core needle biopsy and surgical specimens. The changes in tumor biomarker expression and the shrinkage of tumor on MRI were observed. The residual tumor extent after NAC was compared in terms of MRI and histopathology, and the accuracy of MRI was evaluated by both residual tumor extent and by NAC therapeutic effect. Together, these methods enabled a prognostic estimate of NAC. RESULTS The P-gp expression before NAC was used to evaluate the therapeutic effect of NAC. The up-regulation of P-gp expression after NAC was associated with poor therapeutic effect (P=0.0011). The expression of Ki-67 was significantly down-regulated (P<0.0001) but it had no association with NAC response (P=0.9645). The mean extent of residual tumor after NAC as seen on MRI was 20.83 mm (±4.14 mm, 95% CI) and that of surgically removed specimens, 18.89 mm (±3.71 mm, 95% CI). The sensitivity of MRI was 95.1%, the specificity was 28.6%, the positive predictive value was 79.6%, and the negative predictive value was 66.7%. CONCLUSIONS P-gp status was an important factor affecting the pathological complete response (pCR) rate. The change in P-gp expression, from negative to positive following NAC treatment, indicated the emergence of drug resistance resulting from chemotherapy. The down-regulation of Ki-67 was associated with the decline of tumor proliferation. However, compared to the pre-NAC P-gp status, the pre-NAC Ki-67 status had little prognostic value. Additionally, the evaluation of the efficacy of NAC by either MRI or histopathology was inconclusive.
Collapse
Affiliation(s)
- Zijing Zhang
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Wei Zhang
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Yiting Jin
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Hongying Wang
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Fei Gu
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Jian Zhou
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Zhengyin Lao
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Zude Xu
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Feng Tang
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Liping Zou
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Weijun Tang
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Rong Lu
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| | - Qiang Zou
- 1 Department of Breast Surgery, 2 Department of Pathology, 3 Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200052, China
| |
Collapse
|
143
|
Wang H, Zheng S, Tu Y, Zhang Y. [Screening and identification of novel drug-resistant genes in CD133+ and CD133- lung adenosarcoma cells using cDNA microarray]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:437-43. [PMID: 24949682 PMCID: PMC6000102 DOI: 10.3779/j.issn.1009-3419.2014.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
背景与目的 肿瘤干细胞可能是肿瘤多药耐药的主要原因,CD133是目前较为公认的肿瘤干细胞标记物。本研究旨在应用功能分类基因芯片筛选CD133+和CD133-肺腺癌细胞中差异表达的肿瘤耐药基因,寻求新的肺癌耐药相关基因。 方法 免疫磁珠分选法分选A549细胞,采用功能分类基因芯片筛选CD133+和CD133-肺腺癌细胞中差异表达的肿瘤耐药基因,并使用RT-qPCR验证。顺铂半数有效抑制浓度(half inhibiting concentration, IC50)、阿霉素IC50作用A549细胞48 h后,RT-qPCR检测肿瘤耐药基因CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα和PPARβ/δ的表达变化。 结果 共筛查出31个差异表达的肿瘤耐药基因,与CD133-细胞相比,CD133+细胞有30个基因表达上调,1个基因表达下调。RT-qPCR结果与芯片一致。A549细胞经1.97 μg/mL顺铂或0.61 μg/mL阿霉素作用48 h后,CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα和PPARβ/δ等肿瘤耐药基因表达上调。 结论 利用功能分类基因芯片筛选出31个可能与CD133+肺腺癌细胞耐药相关的基因,其中CYP2C19、CYP2D6、CYP2E1、GSK3α、PPARα和PPARβ/δ为新发现的肺癌耐药相关基因。
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Pathology, Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoqiu Zheng
- Department of Pathology, Guangzhou Medical University, Guangzhou 510182, China
| | - Yongsheng Tu
- Department of Physiology, Guangzhou Medical University, Guangzhou 510182, China
| | - Yajie Zhang
- Department of Pathology, Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
144
|
Domanitskaya N, Wangari-Talbot J, Jacobs J, Peiffer E, Mahdaviyeh Y, Paulose C, Malofeeva E, Foster K, Cai KQ, Zhou Y, Egleston B, Hopper-Borge E. Abcc10 status affects mammary tumour growth, metastasis, and docetaxel treatment response. Br J Cancer 2014; 111:696-707. [PMID: 24937672 PMCID: PMC4134493 DOI: 10.1038/bjc.2014.326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Resistance to chemotherapeutic agents is a major obstacle to cancer treatment. A group of ABC efflux pumps, the Multidrug Resistance Proteins, is a source of resistance. Herein, we investigated the role of ABCC10 in mammary tumours, given the important role we have defined for ABCC10 in transporting taxanes, and the recognition that some ABCC proteins have roles in tumour growth. Methods: ABCC10 expression was correlated to human breast cancer subtype using breast tissue microarrays. Real-time quantitative PCR and western blot analysis were used to examine ABCC10 expression in human breast cancer lines. Abcc10−/− mice were crossed to MMTV-PyVmT mice to produce Abcc10−/−vs Abcc10+/+ mammary tumours and derivative cell lines. We used allograft and cellular assays to perform baseline and drug sensitization analysis of tumours and cell lines. Results: Clinical sample analyses indicated that ABCC10 was more highly expressed in Her2+ and ER+ than in Her2−, ER−, and triple-negative breast cancer. Unexpectedly, PyVmT; Abcc10−/− tumours grew more rapidly than PyVmT; Abcc10+/+ tumours and were associated with significantly reduced apoptosis and metastasis. PyVmT; Abcc10−/− lines were less migratory than PyVmT; Abcc10+/+ lines. Finally, we showed increased survival of docetaxel-treated MMTV-PyVmT; Abcc10−/− mice compared with wild-type mice. Conclusions: These data identify roles for Abcc10 in breast cancer pathogenesis and in vivo docetaxel resistance.
Collapse
Affiliation(s)
- N Domanitskaya
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - J Wangari-Talbot
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - J Jacobs
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Peiffer
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - Y Mahdaviyeh
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - C Paulose
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Malofeeva
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - K Foster
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - K Q Cai
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - Y Zhou
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - B Egleston
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| | - E Hopper-Borge
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia 19111, PA, USA
| |
Collapse
|
145
|
The pharmacological point of view of resistance to therapy in tumors. Cancer Treat Rev 2014; 40:909-16. [PMID: 24969326 DOI: 10.1016/j.ctrv.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Resistance to therapy is a challenging clinical problem, whose solution is far from being reached. Gains in current knowledge have identified key elements at the basis of drug resistance and have suggested possible ways to overcome it. However, some points have always to be kept in mind whatever the type of tumor or drug (cytotoxic or targeted agent) when considering treatment resistance in tumors. In this review we discuss these points and their impact in resistance to cancer therapy: the importance of reaching active tumor drug concentration, reviewing the various micro- and macro-components of the host that can influence their concentrations and activity, the evolving complex heterogeneity of tumors, the intrinsic tumor cell susceptibility to the drug, and the emerging role of the tumor microenvironment. Both the data from the molecular and biological characterization of human tumors allow a better rational and timing use of the available arsenal of anticancer therapy and new strategies to improve the penetration of antitumor drugs in tumors are the new chances to delay and possibly eliminate the emergence of resistance in tumors.
Collapse
|
146
|
Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma 2014; 56:26-33. [PMID: 24678978 DOI: 10.3109/10428194.2014.907890] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a malignant neoplastic cancer of the plasma cells that involves the bone marrow. The majority of patients with MM initially respond to chemotherapy, but they eventually become resistant to later drug therapy. One of the reasons for drug resistance in patients with MM is efflux transporters. P-glycoprotein (P-gp) is the most studied of the multidrug resistance proteins, and is up-regulated in response to many chemotherapeutic drugs. This up-regulation of P-gp causes a decrease in the intracellular accumulation of these drugs, limiting their therapeutic efficacy. In this review, we focus on the role of P-gp in drugs used for patients with MM. P-gp has been found to be an important factor with regard to drug resistance in many of the drug classes used in the treatment of MM (proteasome inhibitors, anthracyclines, alkylating agents and immunomodulators are examples). Thus, our further understanding of its mechanism and inhibitory effects will help us decrease drug resistance in patients with MM.
Collapse
Affiliation(s)
- Joseph Abraham
- Cancer Biology Division, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis , St. Louis, MO , USA
| | | | | |
Collapse
|
147
|
Laberge RM, Ambadipudi R, Georges E. P-glycoprotein mediates the collateral sensitivity of multidrug resistant cells to steroid hormones. Biochem Biophys Res Commun 2014; 447:574-9. [DOI: 10.1016/j.bbrc.2014.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
148
|
Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114:5753-74. [PMID: 24758331 PMCID: PMC4059772 DOI: 10.1021/cr4006236] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Zeino M, Saeed MEM, Kadioglu O, Efferth T. The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein--a well-known, yet poorly understood drug transporter. Invest New Drugs 2014; 32:618-25. [PMID: 24748336 DOI: 10.1007/s10637-014-0098-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/30/2014] [Indexed: 01/26/2023]
Abstract
P-glycoprotein is the most crucial membrane transporter implicated in tumor resistance. Intensive efforts were paid to elucidate the complex mechanism of transport and to identify modulators of this transporter. However, the borderline between substrates and modulators is very thin and identification of the binding sites within P-glycoprotein is complex. Herein, we provide an intensive review of those issues and use molecular docking to assess its ability: first, to differentiate between three groups (substrates, modulators and non-substrates) and second to identify the binding sites. After thorough statistical analysis, we conclude despite the various challenges that molecular docking should not be underestimated as differences between the distinct groups were significant. However, when it comes to defining the binding site, care must be taken, since consensus throughout literature could not be reached.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Rhineland-Palatinate, Germany
| | | | | | | |
Collapse
|
150
|
Biljali S, Nedialkov P, Zheleva-Dimitrova D, Kitanov G, Momekova D, Momekov G. Cytotoxic Effects and Multidrug Resistance Modulation by Five Benzophenones and a Xanthone Isolated fromHypericum AnnulatumMoris SUBSP.Annulatum. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|