101
|
Lundquist P, Englund G, Skogastierna C, Lööf J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 2014; 42:448-58. [PMID: 24396144 DOI: 10.1124/dmd.113.054528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., G.E., C.S., J.L., J.J., J.H., L.A.); Cardiovascular and Gastrointestinal Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Jinno N, Tagashira M, Tsurui K, Yamada S. Contribution of cytochrome P450 and UDT-glucuronosyltransferase to the metabolism of drugs containing carboxylic acid groups: risk assessment of acylglucuronides using human hepatocytes. Xenobiotica 2014; 44:677-86. [PMID: 24575896 DOI: 10.3109/00498254.2014.894219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1. In order to evaluate the inhibition activity of 1-aminobenzotriazole (ABT) and (-)-borneol (borneol) against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), the substrates of these metabolic enzymes were incubated with ABT and borneol in human hepatocytes. We found that 3 mM ABT and 300 μM borneol were the most suitable experimental levels to specifically inhibit CYP and UGT. 2. Montelukast, mefenamic acid, flufenamic acid, diclofenac, tienilic acid, gemfibrozil, ibufenac and repaglinide were markedly metabolized in human hepatocytes, and the metabolism of gemfibrozil, mefenamic acid and flufenamic acid was inhibited by borneol. With regard to repaglinide, montelukast, diclofenac and tienilic acid, metabolism was inhibited by ABT. Ibufenac was partly inhibited by both inhibitors. Zomepirac, tolmetin, ibuprofen, indomethacin and levofloxacin were moderately metabolized by human hepatocytes, and the metabolism of zomepirac, ibuprofen and indomethacin was equally inhibited by both ABT and borneol. The metabolism of tolmetin was strongly inhibited by ABT, and was also inhibited weakly by borneol. Residual drugs, telmisartan, valsartan, furosemide, naproxen and probenecid were scarcely metabolized. 3. Although we attempted to predict the toxicological risks of drugs containing carboxylic groups from the combination chemical stability and CLint via UGT, the results indicated that this combination was not sufficient and that clinical daily dose is important.
Collapse
Affiliation(s)
- Norimasa Jinno
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation , Mifuku Izunokuni, Shizuoka , Japan and
| | | | | | | |
Collapse
|
103
|
Basavapathruni A, Olhava EJ, Daigle SR, Therkelsen CA, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Dovletoglou A, Richon VM, Pollock RM, Copeland RA, Moyer MP, Chesworth R, Pearson PG, Waters NJ. Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. Biopharm Drug Dispos 2014; 35:237-52. [DOI: 10.1002/bdd.1889] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/27/2013] [Accepted: 12/31/2013] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | | | - Lei Jin
- Epizyme Inc.; 400 Technology Square Cambridge MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Soars MG, Barton P, Elkin LL, Mosure KW, Sproston JL, Riley RJ. Application of anin vitroOAT assay in drug design and optimization of renal clearance. Xenobiotica 2014; 44:657-65. [DOI: 10.3109/00498254.2013.879625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
105
|
Abstract
INTRODUCTION Metabolism is one of the most important clearance pathways representing the major clearance route of 75% drugs. The four most common drug metabolizing enzymes (DME) that contribute significantly to elimination pathways of new chemical entities are cytochrome P450s, UDP-glucuronosyltransferases, aldehyde oxidase and sulfotransferases. Accurate prediction of human in vivo clearance by these enzymes, using both in vitro and in vivo tools, is critical for the success of drug candidates in human translation. AREAS COVERED Important recent advances of key DME are reviewed and highlighted in the following areas: major isoforms, tissue distribution, generic polymorphism, substrate specificity, species differences, mechanism of catalysis, in vitro-in vivo extrapolation and the importance of using optimal assay conditions and relevant animal models. EXPERT OPINION Understanding the clearance mechanism of a compound is the first step toward successful prediction of human clearance. It is critical to apply appropriate in vitro and in vivo methodologies and physiologically based models in human translation. While high-confidence prediction for P450-mediated clearance has been achieved, the accuracy of human clearance prediction is significantly lower for other enzyme classes. More accurate predictive methods and models are being developed to address these challenges.
Collapse
Affiliation(s)
- Li Di
- Pfizer, Inc., Pharmacokinetics, Dynamics and Metabolism , Groton, CT 06340 , USA +1 860 715 6172 ;
| |
Collapse
|
106
|
Waters NJ, Obach RS, Di L. Consideration of the unbound drug concentration in enzyme kinetics. Methods Mol Biol 2014; 1113:119-45. [PMID: 24523111 DOI: 10.1007/978-1-62703-758-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The study of enzyme kinetics in drug metabolism involves assessment of rates of metabolism and inhibitory potencies over a suitable concentration range. In all but the very simplest in vitro system, these drug concentrations can be influenced by a variety of nonspecific binding reservoirs that can reduce the available concentration to the enzyme system under investigation. As a consequence, the apparent kinetic parameters that are derived, such as K m or K i, can deviate from the true values. There are a number of sources of these nonspecific binding depots or barriers, including membrane permeation and partitioning, plasma or serum protein binding, and incubational binding. In the latter case, this includes binding to the assay apparatus, as well as biological depots, depending on the characteristics of the in vitro matrix being used. Given the wide array of subcellular, cellular, and recombinant enzyme systems utilized in drug metabolism, each of these has different components that can influence the free drug concentration. The physicochemical properties of the test compound are also paramount in determining the influential factors in any deviation between true and apparent kinetic behavior. This chapter describes the underlying mechanisms determining the free drug concentration in vitro and how these factors can be accounted for in drug metabolism studies, illustrated with case studies from the literature.
Collapse
Affiliation(s)
- Nigel J Waters
- Drug Metabolism and Pharmacokinetics, Epizyme Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
107
|
Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 2013; 41:1975-93. [PMID: 24065860 DOI: 10.1124/dmd.113.054031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | |
Collapse
|
108
|
Mao J, Johnson TR, Shen Z, Yamazaki S. Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos 2013; 41:343-52. [PMID: 23129213 DOI: 10.1124/dmd.112.049114] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Crizotinib (Xalkori) is an orally available potent inhibitor of multiple tyrosine kinases, including anaplastic lymphoma kinase and mesenchymal-epithelial transition factor. Objectives of the present study were as follows: 1) to characterize crizotinib time-dependent inhibition (TDI) potency for CYP3A in human liver microsomes (HLM) and cryopreserved human hepatocytes suspended in human plasma (HSP); 2) to characterize crizotinib enzyme induction potency on CYP3A4 in cryopreserved human hepatocytes; 3) to predict crizotinib steady-state plasma concentrations in patients (e.g., autoinhibition and autoinduction) using the mechanistic dynamic model, Simcyp population-based simulator; and 4) to predict a clinical crizotinib-midazolam interaction using the dynamic model as well as the static mathematical model. Crizotinib inactivation constant (K(I)) and maximum inactivation rate constant (k(inact)) for TDI were estimated as, respectively, 0.37 µM and 6.9 h(-1) in HLM and 0.89 µM and 0.78 h(-1) in HSP. Thus, crizotinib inactivation efficiency (k(inact)/K(I)) was ∼20-fold lower in HSP relative to HLM. Crizotinib E(max) and EC(50) for CYP3A4 induction (measured as mRNA expression) were estimated as 6.4- to 29-fold and 0.47 to 3.1 µM, respectively. Based on these in vitro parameters, the predicted crizotinib steady-state area under plasma concentration-time curve (AUC) with HLM-TDI was 2.1-fold higher than the observed AUC, whereas that with HSP-TDI was consistent with the observed result (≤1.1-fold). The increase in midazolam AUC with coadministration of crizotinib (21-fold) was significantly overpredicted using HLM-TDI, whereas the prediction using HSP-TDI (3.6-fold) was consistent with the observed result (3.7-fold). Collectively, the present study demonstrated the value of HSP to predict in vivo CYP3A-mediated drug-drug interaction.
Collapse
Affiliation(s)
- Jialin Mao
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | | | | | | |
Collapse
|
109
|
Chen M, Zhang J, Lai Y, Wang S, Li P, Xiao J, Fu C, Hu H, Wang Y. Analysis ofPogostemon cablinfrom pharmaceutical research to market performances. Expert Opin Investig Drugs 2012; 22:245-57. [DOI: 10.1517/13543784.2013.754882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|