101
|
Zhu X, Lv Y, Fan M, Guo J, Zhang Y, Gao B, Zhang C, Xie Y. Exploration of the novel phthalimide-hydroxypyridinone derivatives as multifunctional drug candidates against Alzheimer's disease. Bioorg Chem 2023; 141:106817. [PMID: 37690318 DOI: 10.1016/j.bioorg.2023.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 μM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 μM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.
Collapse
Affiliation(s)
- Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
102
|
Li C, Chen Z, He S, Chen Y, Liu J. Unveiling the influence of daily dietary patterns on brain cortical structure: insights from bidirectional Mendelian randomization. Food Funct 2023; 14:10418-10429. [PMID: 37960880 DOI: 10.1039/d3fo02879h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cognitive impairment is a significant concern in aging populations. This study utilized Mendelian randomization analysis to explore the impact of dietary habits and macro-nutrients on cortical structure. A bidirectional Mendelian randomization approach was employed, incorporating large-scale genetic data on dietary habits and brain cortical structure. The results did not reveal significant causal relationships between dietary factors and overall cortical structure and thickness. However, specific dietary factors showed associations with cortical structure in certain regions. For instance, fat intake affected six cortical regions, while milk, protein, fruits, and water were associated with changes in specific regions. Reverse analysis suggested that cortical thickness influenced the consumption of alcohol, carbohydrates, coffee, and fish. These findings contribute to understanding the potential mechanisms underlying the role of dietary factors in cognitive function changes and provide evidence supporting the existence of the gut-brain axis.
Collapse
Affiliation(s)
- Cong Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shaqi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan Province, 410011, People's Republic of China
| |
Collapse
|
103
|
Sivamaruthi BS, Kapoor DU, Kukkar RR, Gaur M, Elossaily GM, Prajapati BG, Chaiyasut C. Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer's Disease, and Other Applications. Pharmaceutics 2023; 15:2666. [PMID: 38140007 PMCID: PMC10747102 DOI: 10.3390/pharmaceutics15122666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Devesh U. Kapoor
- Department of Pharmacy, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India;
| | - Rajiv R. Kukkar
- School of Pharmacy, Raffles University, Neemrana 301705, Rajasthan, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
104
|
Peng D, Xu S, Zou T, Wang Y, Ouyang W, Zhang Y, Dong C, Li D, Guo J, Shen Q, Hu X, Zhou W, Li X, Qin Q. Safety, tolerability, pharmacokinetics and effects of diet on AD16, a novel neuroinflammatory inhibitor for Alzheimer's disease: a randomized phase 1 study. BMC Med 2023; 21:459. [PMID: 37996817 PMCID: PMC10666448 DOI: 10.1186/s12916-023-03126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND AD16 is a Class 1.1 new drug candidate for Alzheimer's disease (AD), which has demonstrated potential benefits in AD by reducing neuroinflammation in preclinical studies. Herein, the pharmacokinetics (PK), safety, and tolerability of single and multiple-dose AD16 and the effect of food were assessed in healthy Chinese adults. METHODS Single-center, randomized, placebo-controlled, double-blind studies were conducted for single and multiple ascending doses. A total of 62 subjects were enrolled in single-dose groups; 10 each in 5, 10, 20, 30, and 40 mg groups, and 6 each in 60 and 80 mg dose groups. Twenty subjects were divided equally into 30 and 40 mg groups for the multiple-dose study. To determine the effect of a high-fat diet on AD16, 16 subjects were administered a single 20 mg dose of AD16 under the fasted and fed condition in a single-center, randomized, open-label, two-cycle, two-crossover study. Moreover, safety and PK parameters were also assessed. RESULTS Plasma exposure to a single oral dose of AD16 increased at an approximate dose-increasing rate. The pharmacodynamic dose of the AD16 can be maintained through the accumulation effect of the drug within the safety window. Compared to fasting, ingesting a high-fat meal decelerated the rate of AD16 absorption, albeit without effect on its overall absorption. No dose-related toxicities were seen in any of the studies, all treatment-emergent adverse events were grade I/II, and no serious adverse event occurred. CONCLUSIONS The present study exhibited favorable safety, tolerability, and PK profile of AD16, supporting its further research as a potential drug treatment for AD. TRIAL REGISTRATION ClinicalTrials.gov; NCT05787028, NCT05787041, NCT05806177. The SAD and FE studies were retrospectively registered on 28 March 2023. The MAD study was retrospectively registered on 10 April 2023.
Collapse
Affiliation(s)
- Daizhuang Peng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Sumei Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yahui Wang
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China
| | - Wenjuan Ouyang
- Xiangya Changde Hospital, Central South University, Changde, China
| | - Yalan Zhang
- First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chengmei Dong
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Guo
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiuying Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Hu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhi Zhou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaomin Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Qin
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China.
| |
Collapse
|
105
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
106
|
Baek H, Sanjay, Park M, Lee HJ. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J Neuroinflammation 2023; 20:268. [PMID: 37978414 PMCID: PMC10655395 DOI: 10.1186/s12974-023-02950-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin with antioxidant, anti-inflammatory, and antitumor properties. However, as the effects of C3G on the amyloidogenic pathway, autophagy, tau phosphorylation, neuronal cell death, and synaptic plasticity in Alzheimer's disease models have not been reported, we attempted to investigate the same in the brains of APPswe/PS1ΔE9 mice were analyzed. After oral administration of C3G (30 mg/kg/day) for 16 weeks, the cortical and hippocampal regions in the brains of APPswe/PS1ΔE9 mice were analyzed. C3G treatment reduced the levels of soluble and insoluble Aβ (Aβ40 and Aβ42) peptides and reduced the protein expression of the amyloid precursor protein, presenilin-1, and β-secretase in the cortical and hippocampal regions. And C3G treatment upregulated the expression of autophagy-related markers, LC3B-II, LAMP-1, TFEB, and PPAR-α and downregulated that of SQSTM1/p62, improving the autophagy of Aβ plaques and neurofibrillary tangles. In addition, C3G increased the protein expression of phosphorylated-AMPK/AMPK and Sirtuin 1 and decreased that of mitogen-activated protein kinases, such as phosphorylated-Akt/Akt and phosphorylated-ERK/ERK, thus demonstrating its neuroprotective effects. Furthermore, C3G regulated the PI3K/Akt/GSK3β signaling by upregulating phosphorylated-Akt/Akt and phosphorylated-GSK3β/GSK3β expression. C3G administration mitigated tau phosphorylation and improved synaptic function and plasticity by upregulating the expression of synapse-associated proteins synaptophysin and postsynaptic density protein-95. Although the potential of C3G in the APPswe/PS1ΔE9 mouse models has not yet been reported, oral administration of the C3G is shown to protect the brain and improve cognitive behavior.
Collapse
Affiliation(s)
- Hana Baek
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
107
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
108
|
Lu Q, Tang Y, Luo S, Gong Q, Li C. Coptisine, the Characteristic Constituent from Coptis chinensis, Exhibits Significant Therapeutic Potential in Treating Cancers, Metabolic and Inflammatory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2121-2156. [PMID: 37930333 DOI: 10.1142/s0192415x2350091x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Naturally derived alkaloids belong to a class of quite significant organic compounds. Coptisine, a benzyl tetrahydroisoquinoline alkaloid, is one of the major bioactive constituents in Coptis chinensis Franch., which is a famous traditional Chinese medicine. C. chinensis possesses many kinds of functions, including the ability to eliminate heat, expel dampness, purge fire, and remove noxious substances. In Asian countries, C. chinensis is traditionally employed to treat carbuncle and furuncle, diabetes, jaundice, stomach and intestinal disorders, red eyes, toothache, and skin disorders. Up to now, there has been plenty of research of coptisine with respect to its pharmacology. Nevertheless, a comprehensive review of coptisine-associated research is urgently needed. This paper was designed to summarize in detail the progress in the research of the pharmacology, pharmacokinetics, safety, and formulation of coptisine. The related studies included in this paper were retrieved from the following academic databases: The Web of Science, PubMed, Google scholar, Elsevier, and CNKI. The cutoff date was January 2023. Coptisine manifests various pharmacological actions, including anticancer, antimetabolic disease, anti-inflammatory disease, and antigastrointestinal disease effects, among others. Based on its pharmacokinetics, the primary metabolic site of coptisine is the liver. Coptisine is poorly absorbed in the gastrointestinal system, and most of it is expelled in the form of its prototype through feces. Regarding safety, coptisine displayed potential hepatotoxicity. Some novel formulations, including the [Formula: see text]-cyclodextrin-based inclusion complex and nanocarriers, could effectively enhance the bioavailability of coptisine. The traditional use of C. chinensis is closely connected with the pharmacological actions of coptisine. Although there are some disadvantages, including poor solubility, low bioavailability, and possible hepatotoxicity, coptisine is still a prospective naturally derived drug candidate, especially in the treatment of tumors as well as metabolic and inflammatory diseases. Further investigation of coptisine is necessary to facilitate the application of coptisine-based drugs in clinical practice.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
| | - Shuang Luo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518005, P. R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, P. R. China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
109
|
Chen Y, Yuan W, Xu Q, Reddy MB. Neuroprotection of phytic acid in Parkinson’s and Alzheimer’s disease. J Funct Foods 2023; 110:105856. [DOI: 10.1016/j.jff.2023.105856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
110
|
Shahidi R, Baradaran M, Asgarzadeh A, Bagherieh S, Tajabadi Z, Farhadi A, Korani SS, Khalafi M, Shobeiri P, Sadeghsalehi H, Shafieioun A, Yazdanifar MA, Singhal A, Sotoudeh H. Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis. Aging Clin Exp Res 2023; 35:2333-2348. [PMID: 37801265 DOI: 10.1007/s40520-023-02565-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. METHODS AND MATERIALS A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. RESULTS We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. CONCLUSION MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Collapse
Affiliation(s)
- Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mansoureh Baradaran
- Department of Radiology, Imam Ali Hospital, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Bagherieh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Farhadi
- Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Mohammad Khalafi
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University Of Medical Sciences, Tehran, Iran
| | - Arezoo Shafieioun
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Aparna Singhal
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA
| | - Houman Sotoudeh
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA.
- O'Neal Comprehensive Cancer Center, UAB, The University of Alabama at Birmingham, JTN 333, 619 19th St S, Birmingham, AL, 35294, USA.
| |
Collapse
|
111
|
Srivastava S, Sharma S, Deep S, Khare SK. Screening of Multitarget-Directed Natural Compounds as Drug Candidates for Alzheimer's Disease Using In Silico Techniques: Their Extraction and In Vitro Validation. ACS OMEGA 2023; 8:38118-38129. [PMID: 37867692 PMCID: PMC10586450 DOI: 10.1021/acsomega.3c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs neurocognitive function. Acetylcholinesterase (AChE) and β-site APP cleaving enzyme 1 (BACE1) are the two main proteins implicated in AD. Indeed, the major available commercial drugs (donepezil, rivastigmine, and galantamine) against Alzheimer's are AChE inhibitors. However, none of these drugs are known to reverse or reduce the pathophysiological condition of the disease since there are multiple contributing factors to AD. Therefore, there is a need to develop a multitarget-directed ligand approach for its treatment. In the present study, plant bioactive compounds were screened for their AChE and BACE1 inhibition potential by conducting molecular docking studies. Considering their docking score and pharmacokinetic properties, limonin, peimisine, serratanine B, and withanolide A were selected as the lead compounds. Molecular dynamics simulations of these protein-ligand complexes confirmed the conformational and energetically stabilized enzyme-inhibitor complexes. The inhibition potential of the lead compounds was validated by in vitro enzyme assay. Withanolide A inhibited AChE (IC50 value of 107 μM) and showed mixed-type inhibition. At this concentration, it inhibited BACE1 activity by 57.10% and was stated as most effective. Both the compounds, as well as their crude extracts, were found to have no cytotoxic effect on the SH-SY5Y cell line.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme
and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shilpa Sharma
- Biophysical
Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Biophysical
Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme
and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
112
|
Varma M, Ugale V, Shaukat J, Hollmann M, Shete P, Shravage B, Tayade S, Kumbhar A, Butcher R, Jani V, Sonavane U, Joshi R, Lokwani D, Kulkarni P. Novel alkyl-substituted 4-methoxy benzaldehyde thiosemicarbazones: Multi-target directed ligands for the treatment of Alzheimer's disease. Eur J Pharmacol 2023; 957:176028. [PMID: 37657740 DOI: 10.1016/j.ejphar.2023.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting mental ability and interrupts neurocognitive functions. Treating multifactorial conditions of AD with a single-target-directed drug is highly difficult. Thus, a multi-target-directed ligand (MTDL) development strategy has been developed as a promising approach for the treatment of AD. Herein, we have synthesized two novel thiosemicarbazones as MTDLs and reported their bioactivities against diverse neuropathological events involved in AD. In vitro studies revealed that both compounds exhibited promising anticholinesterase activity (AChE, IC50 = 15.98 μM, MZET and IC50 = 30.23 μM, MZMT), well supported by a detailed computational study. Both analogs have shown good thermodynamic behaviour and stability through interactions with characteristic amino acid residues throughout simulation of 100 ns against acetylcholinesterase enzyme. In an electrophysiology assay, these analogs have shown a characteristic inhibitory response against the GluN1-1a + GluN2B subunit of N-methyl-D-aspartate receptors. Pre-treatment of BV-2 microglial cells with MZET effectively decreased nitrite production compared to nitrite produced by lipopolysaccharide-treated cells alone. Further, the effect of MZMT and MZET on autophagy regulation was determined using stably transfected SH-SY5Y neuroblastoma cells. MZET significantly enhanced the autophagy flux in neuroblastoma cells. A significant decrease in copper-catalysed oxidation of amyloid-β in presence of synthesized thiosemicarbazones was also observed. Collectively, our findings indicated that these analogs have potential as effective anti-AD candidates and can be used as a prototype to develop more safer multi-targeted anti-AD drugs.
Collapse
Affiliation(s)
- Mokshada Varma
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India
| | - Vinod Ugale
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany; Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| | - Javeria Shaukat
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Padmaja Shete
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India
| | - Bhupendra Shravage
- Developmental Biology Group, Agharkar Research Institute, Savitribai Phule Pune University, Pune, Maharashtra, 411004, India
| | - Sakharam Tayade
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Avinash Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Ray Butcher
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - Vinod Jani
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Uddhavesh Sonavane
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajendra Joshi
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Deepak Lokwani
- Rajashri Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Prasad Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India.
| |
Collapse
|
113
|
Gad SR, El-Gogary RI, George MY, Hathout RM. Nose-to-brain delivery of 18β-Glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer's disease. Int J Pharm 2023; 645:123387. [PMID: 37678474 DOI: 10.1016/j.ijpharm.2023.123387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most relevant form of dementia affecting people worldwide. AD was reported to be associated with increased oxidative stress ending up with neuronal damage. 18β-Glycyrrhetinic acid (GA), triterpenoid aglycone of glycyrrhizin, was reported for its powerful antioxidant activities. However, its high molecular weight and lipophilicity are two major obstacles that limit its use and cause very low brain bioavailability. The aim of the present study was to formulate the GA in lipid nanocapsules (LNCs) for enhanced nose-to-brain delivery, as well as to elucidate its potential neuroprotective effect in AD. The optimized GA-loaded LNCs exhibited nanometric size range, good stability over 6 months, sustained drug release over 24 h and high steady state flux and permeability coefficient across nasal mucosa over 8 h. In-vivo studies were conducted on five groups; control, scopolamine (SCOP)-treated, SCOP + GA-LNCs, SCOP + oral GA suspension, and SCOP + intranasal GA suspension groups. Intranasal administration of GA-LNCs, at a reduced dose of 1 mg/kg, improved scopolamine-induced memory impairment in rats evidenced by behavioral testing, histological examination, and oxidative stress markers; catalase and superoxide dismutase. Collectively, GA-loaded LNCs (with 50 times lower dose) may provide a promising remedy for AD patients worldwide.
Collapse
Affiliation(s)
- Sara R Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
114
|
Kiran PVR, Waiker DK, Verma A, Saraf P, Bhardwaj B, Kumar H, Singh A, Kumar P, Singh N, Srikrishna S, Trigun SK, Shrivastava SK. Design and development of benzyl piperazine linked 5-phenyl-1,2,4-triazole-3-thione conjugates as potential agents to combat Alzheimer's disease. Bioorg Chem 2023; 139:106749. [PMID: 37517157 DOI: 10.1016/j.bioorg.2023.106749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Our present work demonstrates the molecular hybridization-assisted design, synthesis, and biological evaluation of 22 benzylpiperazine-linked 1,2,4-triazole compounds (PD1-22) as AD modifying agents. All the compounds were tested for their in vitro hChEs, hBACE-1, and Aβ-aggregation inhibition properties. Among them, compound PD-08 and PD-22 demonstrated good hChE and hBACE-1 inhibition as compared to standards donepezil and rivastigmine. Both compounds displaced PI from PAS at 50 µM concentration which was comparable to donepezil and also demonstrated anti-Aβ aggregation properties in self- and AChE-induced thioflavin T assay. Both compounds have shown excellent BBB permeation via PAMPA-BBB assay and were found to be non-neurotoxic at 80 µM concentration against differentiated SH-SY5Y cell lines. Compound PD-22 demonstrated an increase in rescued eye phenotype in Aβ-phenotypic drosophila AD model and amelioration of behavioral deficits in the Aβ-induced rat model of AD. The in-silico docking studies of compound PD-22 revealed a good binding profile towards CAS and PAS residues of AChE and the catalytic dyad of the BACE-1. The 100 ns molecular dynamics simulation studies of compound PD-22 complexed with AChE and BACE-1 enzymes suggested stable ligand-protein complex throughout the simulation run. Based on our findings compound PD-22 could further be utilized as a lead to design a promising candidate for AD therapy.
Collapse
Affiliation(s)
- Pidugu Venkata Ravi Kiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Hansal Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
115
|
Güngör SA. Synthesis, in silico and in vitro studies of hydrazide-hydrazone imine derivatives as potential cholinesterase inhibitors. Chem Biol Drug Des 2023; 102:676-691. [PMID: 37258044 DOI: 10.1111/cbdd.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
A series of hydrazide-hydrazone imine derivative compounds (3a-k) were synthesized and their structures characterized using FTIR, 1 H, and 13 C (NMR) spectroscopic methods. In addition, molecular structures of compounds 3a, 3d, and 3g were elucidated by X-ray diffraction technique. In vitro inhibition activities of hydrazide-hydrazone imine derivatives against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were investigated. Compound 3i (IC50 = 2.01 μM) exhibited the best inhibitory activity against AChE, comparable to the control Galantamine (IC50 = 2.60 μM). Against BChE, compound 3h (IC50 = 2.83 μM) showed the best inhibitory property which is higher control Galantamine (IC50 = 3.70 μM). The Ki values of compound 3i (Ki = 0.63 μM) and compound 3h (Ki = 0.94 μM) that have the strongest inhibitory potential were determined against AChE and BChE, respectively. According to the docking result, the most stable conformation of AChE and compound 3i showed that it has a binding affinity of -10.82 kcal/moL. The binding affinity of the most stable conformation formed by BChE and compound 3h is -8.60 kcal/moL. Finally, in silico results and pharmacokinetic parameters of ADME showed that these compounds have good oral bioavailability properties.
Collapse
Affiliation(s)
- Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| |
Collapse
|
116
|
Yaghmaei E, Pierce A, Lu H, Patel YM, Ehwerhemuepha L, Rezaie A, Sajjadi SA, Rakovski C. A causal inference study: The impact of the combined administration of Donepezil and Memantine on decreasing hospital and emergency department visits of Alzheimer's disease patients. PLoS One 2023; 18:e0291362. [PMID: 37708117 PMCID: PMC10501598 DOI: 10.1371/journal.pone.0291362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
Alzheimer's disease is the most common type of dementia that currently affects over 6.5 million people in the U.S. Currently there is no cure and the existing drug therapies attempt to delay the mental decline and improve cognitive abilities. Two of the most commonly prescribed such drugs are Donepezil and Memantine. We formally tested and confirmed the presence of a beneficial drug-drug interaction of Donepezil and Memantine using a causal inference analysis. We applied doubly robust estimators to one of the largest and high-quality medical databases to estimate the effect of two commonly prescribed Alzheimer's disease (AD) medications, Donepezil and Memantine, on the average number of hospital or emergency department visits per year among patients diagnosed with AD. Our results show that, compared to the absence of medication scenario, the Memantine monotherapy, and the Donepezil monotherapy, the combined use of Donepezil and Memantine treatment significantly reduces the average number of hospital or emergency department visits per year by 0.078 (13.8%), 0.144 (25.5%), and 0.132 days (23.4%), respectively. The assessed decline in the average number of hospital or emergency department visits per year is consequently associated with a substantial reduction in medical costs. As of 2022, according to the Alzheimer's Disease Association, there were over 6.5 million individuals aged 65 and older living with AD in the US alone. If patients who are currently on no drug treatment or using either Donepezil or Memantine alone were switched to the combined used of Donepezil and Memantine therapy, the average number of hospital or emergency department visits could decrease by over 613 thousand visits per year. This, in turn, would lead to a remarkable reduction in medical expenses associated with hospitalization of AD patients in the US, totaling over 940 million dollars per year.
Collapse
Affiliation(s)
- Ehsan Yaghmaei
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America
| | - Albert Pierce
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America
| | - Hongxia Lu
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Yesha M. Patel
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America
| | - Louis Ehwerhemuepha
- Children’s Hospital of Orange County (CHOC), Orange, CA, United States of America
| | - Ahmad Rezaie
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America
| | - Seyed Ahmad Sajjadi
- School of Medicine, University of California, Irvine, Irvine, CA, United States of America
| | - Cyril Rakovski
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America
| |
Collapse
|
117
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
118
|
Jackson JW, Foster JS, Martin EB, Macy S, Wooliver C, Balachandran M, Richey T, Heidel RE, Williams AD, Kennel SJ, Wall JS. Collagen inhibits phagocytosis of amyloid in vitro and in vivo and may act as a 'don't eat me' signal. Amyloid 2023; 30:249-260. [PMID: 36541892 DOI: 10.1080/13506129.2022.2155133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction. METHODS In vitro and in vivo phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses. RESULTS Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion. CONCLUSIONS These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.
Collapse
Affiliation(s)
- Joseph W Jackson
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - James S Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Emily B Martin
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Craig Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Tina Richey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - R Eric Heidel
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Angela D Williams
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Stephen J Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Jonathan S Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| |
Collapse
|
119
|
Ramadan M. Temporal patterns of the burden of Alzheimer's disease and their association with Sociodemographic Index in countries with varying rates of aging 1990-2019. Aging Med (Milton) 2023; 6:281-289. [PMID: 37711254 PMCID: PMC10498825 DOI: 10.1002/agm2.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 09/16/2023] Open
Abstract
Objective To we examine the temporal patterns of the burden of Alzheimer's disease and their association with Sociodemographic Index in countries with varying rates of aging. Method Data were obtained from Global Burden of Diseases studies (GBD) 2019 and were used to compare countries with different rates of change in aging population from 1990 to 2019. We collected the data of the age-standardized rates per 100,000 of disability-adjusted life years (DALYs), incidence, prevalence of Alzheimer's disease and other dementias, and the age-specific population rates per 100,000. Results Countries with high rates of change in their aging populations had an increase in DALYs, incidence, and prevalence of Alzheimer's disease and other dementias over the last 30 years. Countries with a high rate of change in aging population had a significantly positive association among DALYs, incidence, and prevalence of Alzheimer's disease and other dementias. In contrast, countries with a medium and low rate of change in aging population had negative associations between DALYs and incidence of Alzheimer's disease and other dementias. Conclusion This study highlights the significant impact of demographic changes on the burden, prevalence, and incidence of Alzheimer's disease and other dementia. The study also found that robust health care and social systems, as reflected by a higher Sociodemographic Index, can contribute to reducing the burden of Alzheimer's disease and other dementias in medium to low rates of aging populations. The findings underscore the importance of investing in health care and social systems to address the growing burden of these conditions, especially in countries with a high rate of change in the aging population.
Collapse
Affiliation(s)
- Majed Ramadan
- King Abdullah International Medical Research Center (KAIMRC), Population Health Research SectionKing Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard – Health AffairsJeddahSaudi Arabia
| |
Collapse
|
120
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
121
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
122
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
123
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease – Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [DOI: https:/doi.org/10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
124
|
Etemadi A, Hemmati S, Shahrivar-Gargari M, Abibiglue YT, Bavili A, Hamzeh-Mivehroud M, Dastmalchi S. Design, Synthesis, and Biological Evaluation of Novel Indanone Derivatives as Cholinesterase Inhibitors for Potential Use in Alzheimer's Disease. Chem Biodivers 2023; 20:e202300075. [PMID: 37458518 DOI: 10.1002/cbdv.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50 =0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b. The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.
Collapse
Affiliation(s)
- Aysan Etemadi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahrivar-Gargari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasaman Tamaddon Abibiglue
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, POBOX: 99138, Nicosia, Turkey
| |
Collapse
|
125
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
126
|
Bhatti JS, Khullar N, Mishra J, Kaur S, Sehrawat A, Sharma E, Bhatti GK, Selman A, Reddy PH. Stem cells in the treatment of Alzheimer's disease - Promises and pitfalls. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166712. [PMID: 37030521 DOI: 10.1016/j.bbadis.2023.166712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Alzheimer's disease (AD) is the most widespread form of neurodegenerative disorder that causes memory loss and multiple cognitive issues. The underlying mechanisms of AD include the build-up of amyloid-β and phosphorylated tau, synaptic damage, elevated levels of microglia and astrocytes, abnormal microRNAs, mitochondrial dysfunction, hormonal imbalance, and age-related neuronal loss. However, the etiology of AD is complex and involves a multitude of environmental and genetic factors. Currently, available AD medications only alleviate symptoms and do not provide a permanent cure. Therefore, there is a need for therapies that can prevent or reverse cognitive decline, brain tissue loss, and neural instability. Stem cell therapy is a promising treatment for AD because stem cells possess the unique ability to differentiate into any type of cell and maintain their self-renewal. This article provides an overview of the pathophysiology of AD and existing pharmacological treatments. This review article focuses on the role of various types of stem cells in neuroregeneration, the potential challenges, and the future of stem cell-based therapies for AD, including nano delivery and gaps in stem cell technology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Eva Sharma
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
127
|
Ulaganathan S, Pitchaimani A. Spontaneous and familial models of Alzheimer's disease: Challenges and advances in preclinical research. Life Sci 2023:121918. [PMID: 37422070 DOI: 10.1016/j.lfs.2023.121918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is progressive and irreversible in nature. Even after decades of dedicated research and paradigm-shifting hypotheses of AD etiology, very few well-founded credible improvements have been foreseen in understanding the actual underlying mechanisms involved in the development of the disorder. As for any disease to be well-comprehended, AD also requires optimal modelling strategies, which will then pave way for effective therapeutic interventions. Most of the clinical trials and research towards better treatment of AD fail in translation, due to the inefficacy of explored animal models to mimic the actual AD pathology, precisely. The majority of the existing AD models are developed based on the mutations found in the familial form of AD (fAD) which accounts for less than 5 % of the incidence of AD. Further, the investigations also face more challenges due to the additional complexities and lacunae found in etiology of sporadic form of AD (sAD), which accounts for 95 % of total AD. This review illustrates the gaps found in different models of AD, both sporadic and familial variants with additional focus on recent avenues for accurate simulation of AD pathology using in vitro and chimeric AD models.
Collapse
Affiliation(s)
- Suryapriya Ulaganathan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, TN, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India.
| |
Collapse
|
128
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
129
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
130
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
131
|
Wu X, Li Z, Chen G, Yin Y, Chen CYC. Hybrid neural network approaches to predict drug-target binding affinity for drug repurposing: screening for potential leads for Alzheimer's disease. Front Mol Biosci 2023; 10:1227371. [PMID: 37441162 PMCID: PMC10334190 DOI: 10.3389/fmolb.2023.1227371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects elderly individuals. Recent studies have found that sigma-1 receptor (S1R) agonists can maintain endoplasmic reticulum stress homeostasis, reduce neuronal apoptosis, and enhance mitochondrial function and autophagy, making S1R a target for AD therapy. Traditional experimental methods are costly and inefficient, and rapid and accurate prediction methods need to be developed, while drug repurposing provides new ways and options for AD treatment. In this paper, we propose HNNDTA, a hybrid neural network for drug-target affinity (DTA) prediction, to facilitate drug repurposing for AD treatment. The study combines protein-protein interaction (PPI) network analysis, the HNNDTA model, and molecular docking to identify potential leads for AD. The HNNDTA model was constructed using 13 drug encoding networks and 9 target encoding networks with 2506 FDA-approved drugs as the candidate drug library for S1R and related proteins. Seven potential drugs were identified using network pharmacology and DTA prediction results of the HNNDTA model. Molecular docking simulations were further performed using the AutoDock Vina tool to screen haloperidol and bromperidol as lead compounds for AD treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation results indicated that both compounds had good pharmacokinetic properties and were virtually non-toxic. The study proposes a new approach to computer-aided drug design that is faster and more economical, and can improve hit rates for new drug compounds. The results of this study provide new lead compounds for AD treatment, which may be effective due to their multi-target action. HNNDTA is freely available at https://github.com/lizhj39/HNNDTA.
Collapse
Affiliation(s)
- Xialin Wu
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuojian Li
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yiyang Yin
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
132
|
Luan Y, Zhang H, Ma K, Liu Y, Lu H, Chen X, Liu Y, Zhang Z. CCN3/NOV Regulates Proliferation and Neuronal Differentiation in Mouse Hippocampal Neural Stem Cells via the Activation of the Notch/PTEN/AKT Pathway. Int J Mol Sci 2023; 24:10324. [PMID: 37373471 DOI: 10.3390/ijms241210324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Neural stem cells (NSCs) persist in the subgranular zone (SGZ) throughout the lifespan and hold immense potential for the repair and regeneration of the central nervous system, including hippocampal-related diseases. Several studies have demonstrated that cellular communication network protein 3 (CCN3) regulates multiple types of stem cells. However, the role of CCN3 in NSCs remains unknown. In this study, we identified CCN3 expression in mouse hippocampal NSCs and observed that supplementing CCN3 improved cell viability in a concentration-dependent manner. Additionally, in vivo results showed that the injection of CCN3 in the dentate gyrus (DG) increased Ki-67- and SOX2-positive cells while decreasing neuron-specific class III beta-tubulin (Tuj1) and doublecortin (DCX)-positive cells. Consistently with the in vivo results, supplementing CCN3 in the medium increased the number of BrdU and Ki-67 cells and the proliferation index but decreased the number of Tuj1 and DCX cells. Conversely, both the in vivo and in vitro knockdown of the Ccn3 gene in NSCs had opposite effects. Further investigations revealed that CCN3 promoted cleaved Notch1 (NICD) expression, leading to the suppression of PTEN expression and eventual promotion of AKT activation. In contrast, Ccn3 knockdown inhibited the activation of the Notch/PTEN/AKT pathway. Finally, the effects of changes in CCN3 protein expression on NSC proliferation and differentiation were eliminated by FLI-06 (a Notch inhibitor) and VO-OH (a PTEN inhibitor). Our findings imply that while promoting proliferation, CCN3 inhibits the neuronal differentiation of mouse hippocampal NSCs and that the Notch/PTEN/AKT pathway may be a potential intracellular target of CCN3. Our findings may help develop strategies to enhance the intrinsic potential for brain regeneration after injuries, particularly stem cell treatment for hippocampal-related diseases.
Collapse
Affiliation(s)
- Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
133
|
Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer's Disease. Antibodies (Basel) 2023; 12:41. [PMID: 37366656 DOI: 10.3390/antib12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
In the elderly, a debilitating condition known as dementia, which is a major health concern, is caused by Alzheimer's disease (AD). Despite promising advances by researchers, there is currently no way to completely cure this devastating disease. It is illustrated by the deposition of amyloid β-peptide (Aβ) plaques that are followed by neural dysfunction and cognitive decline. Responses against AD activate an immune system that contributes to and accelerates AD pathogenesis. Potential efforts in the field of pathogenesis have prompted researchers to explore novel therapies such as active and passive vaccines against Aβ proteins (Aβ immunotherapy), intravenous immunoglobulin, and tau immunotherapy, as well as targets that include microglia and several cytokines for the treatment of AD. Aims are now underway by experts to begin immunotherapies before the clinical manifestation, which is made possible by improving the sensitivity of biomarkers used for the diagnosis of AD to have better outcome measures. This review provides an overview of approved immunotherapeutic strategies for AD and those currently being investigated in clinical trials. We examine their mechanisms of action and discuss the potential perspectives and challenges associated with immunotherapies for AD.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
134
|
Moreno R, Recio J, Barber S, Gil C, Martinez A. The emerging role of mixed lineage kinase 3 (MLK3) and its potential as a target for neurodegenerative diseases therapies. Eur J Med Chem 2023; 257:115511. [PMID: 37247505 DOI: 10.1016/j.ejmech.2023.115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Selective and brain-permeable protein kinase inhibitors are in preclinical development for treating neurodegenerative diseases. Among them, MLK3 inhibitors, with a potent neuroprotective biological action have emerged as valuable agents for the treatment of pathologies such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis. In fact, one MLK3 inhibitor, CEP-1347, reached clinical trials for Parkinson's disease. Additionally, another compound called prostetin/12k, a potent and rather selective MLK3 inhibitor has started clinical development for ALS based on its motor neuron protection in both in vitro and in vivo models. In this review, we will focus on the role of MLK3 in neuron-related cell death processes, neurodegenerative diseases, and the potential advantages of targeting this kinase through pharmacological modulation for neuroprotective treatment.
Collapse
Affiliation(s)
- Ricardo Moreno
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Recio
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Santiago Barber
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
135
|
Xiao Y, Hou Y, Zhou H, Diallo G, Fiszman M, Wolfson J, Kilicoglu H, Chen Y, Su C, Xu H, Mantyh WG, Zhang R. Repurposing Non-pharmacological Interventions for Alzheimer's Diseases through Link Prediction on Biomedical Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23290002. [PMID: 37292731 PMCID: PMC10246059 DOI: 10.1101/2023.05.15.23290002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, computational drug repurposing has emerged as a promising method for identifying new pharmaceutical interventions (PI) for Alzheimer's Disease (AD). Non-pharmaceutical interventions (NPI), such as Vitamin E and Music therapy, have great potential to improve cognitive function and slow the progression of AD, but have largely been unexplored. This study predicts novel NPIs for AD through link prediction on our developed biomedical knowledge graph. We constructed a comprehensive knowledge graph containing AD concepts and various potential interventions, called ADInt, by integrating a dietary supplement domain knowledge graph, SuppKG, with semantic relations from SemMedDB database. Four knowledge graph embedding models (TransE, RotatE, DistMult and ComplEX) and two graph convolutional network models (R-GCN and CompGCN) were compared to learn the representation of ADInt. R-GCN outperformed other models by evaluating on the time slice test set and the clinical trial test set and was used to generate the score tables of the link prediction task. Discovery patterns were applied to generate mechanism pathways for high scoring triples. Our ADInt had 162,213 nodes and 1,017,319 edges. The graph convolutional network model, R-GCN, performed best in both the Time Slicing test set (MR = 7.099, MRR = 0.5007, Hits@1 = 0.4112, Hits@3 = 0.5058, Hits@10 = 0.6804) and the Clinical Trials test set (MR = 1.731, MRR = 0.8582, Hits@1 = 0.7906, Hits@3 = 0.9033, Hits@10 = 0.9848). Among high scoring triples in the link prediction results, we found the plausible mechanism pathways of (Photodynamic therapy, PREVENTS, Alzheimer's Disease) and (Choerospondias axillaris, PREVENTS, Alzheimer's Disease) by discovery patterns and discussed them further. In conclusion, we presented a novel methodology to extend an existing knowledge graph and discover NPIs (dietary supplements (DS) and complementary and integrative health (CIH)) for AD. We used discovery patterns to find mechanisms for predicted triples to solve the poor interpretability of artificial neural networks. Our method can potentially be applied to other clinical problems, such as discovering drug adverse reactions and drug-drug interactions.
Collapse
|
136
|
Ritter N, Disse P, Wünsch B, Seebohm G, Strutz-Seebohm N. Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes. Biomedicines 2023; 11:1367. [PMID: 37239037 PMCID: PMC10216354 DOI: 10.3390/biomedicines11051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The number of N-Methyl-D-aspartate receptor (NMDAR) linked neurodegenerative diseases such as Alzheimer's disease and dementia is constantly increasing. This is partly due to demographic change and presents new challenges to societies. To date, there are no effective treatment options. Current medications are nonselective and can lead to unwanted side effects in patients. A promising therapeutic approach is the targeted inhibition of NMDARs in the brain. NMDARs containing different subunits and splice variants display different physiological properties and play a crucial role in learning and memory, as well as in inflammatory or injury processes. They become overactivated during the course of the disease, leading to nerve cell death. Until now, there has been a lack of understanding of the general functions of the receptor and the mechanism of inhibition, which need to be understood in order to develop inhibitors. Ideal compounds should be highly targeted and even splice-variant-selective. However, a potent and splice-variant-selective NMDAR-targeting drug has yet to be developed. Recently developed 3-benzazepines are promising inhibitors for further drug development. The NMDAR splice variants GluN1-1b-4b carry a 21-amino-acid-long, flexible exon 5. Exon 5 lowers the NMDAR's sensitivity to allosteric modulators by probably acting as an NMDAR modulator itself. The role of exon 5 in NMDAR modulation is still poorly understood. In this review, we summarize the structure and pharmacological relevance of tetrahydro-3-benzazepines.
Collapse
Affiliation(s)
- Nadine Ritter
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Bernhard Wünsch
- Chembion, University of Münster, D-48149 Münster, Germany;
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
- Chembion, University of Münster, D-48149 Münster, Germany;
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany; (P.D.); (G.S.); (N.S.-S.)
| |
Collapse
|
137
|
Luo Z, Li S, Zhang Y, Yin F, Luo H, Chen X, Cui N, Wan S, Li X, Kong L, Wang X. Oxazole-4-carboxamide/butylated hydroxytoluene hybrids with GSK-3β inhibitory and neuroprotective activities against Alzheimer's disease. Eur J Med Chem 2023; 256:115415. [PMID: 37172476 DOI: 10.1016/j.ejmech.2023.115415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Neuronal cells overexpressing phosphorylated Tau proteins can increase the susceptibility to oxidative stress. Regulation of glycogen synthase-3β (GSK-3β) and reduction of Tau protein hyperphosphorylation, along with alleviation of oxidative stress, may be an effective way to prevent or treat Alzheimer's disease (AD). For this purpose, a series of Oxazole-4-carboxamide/butylated hydroxytoluene hybrids were designed and synthesized to achieve multifunctional effects on AD. The biological evaluation showed that the optimized compound KWLZ-9e displayed potential GSK-3β (IC50 = 0.25 μM) inhibitory activity and neuroprotective capacity. Tau protein inhibition assays showed that KWLZ-9e reduced the expression of GSK-3β and downstream p-Tau in HEK GSK-3β 293T cells. Meanwhile, KWLZ-9e could alleviate H2O2-induced ROS damage, mitochondrial membrane potential imbalance, Ca2+ influx and apoptosis. Mechanistic studies suggest that KWLZ-9e activates the Keap1-Nrf2-ARE signaling pathway and enhances the expression of downstream oxidative stress proteins including TrxR1, HO-1, NQO1, GCLM to exert cytoprotective effects. We also confirmed that KWLZ-9e could ameliorate learning and memory impairments in vivo model of AD. The multifunctional properties of KWLZ-9e suggest that it is a promising lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
138
|
Yedla P, Babalghith AO, Andra VV, Syed R. PROTACs in the Management of Prostate Cancer. Molecules 2023; 28:molecules28093698. [PMID: 37175108 PMCID: PMC10179857 DOI: 10.3390/molecules28093698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer treatments with targeted therapy have gained immense interest due to their low levels of toxicity and high selectivity. Proteolysis-Targeting Chimeras (PROTACs) have drawn special attention in the development of cancer therapeutics owing to their unique mechanism of action, their ability to target undruggable proteins, and their focused target engagement. PROTACs selectively degrade the target protein through the ubiquitin-proteasome system, which describes a different mode of action compared to conventional small-molecule inhibitors or even antibodies. Among different cancer types, prostate cancer (PC) is the most prevalent non-cutaneous cancer in men. Genetic alterations and the overexpression of several genes, such as FOXA1, AR, PTEN, RB1, TP53, etc., suppress the immune response, resulting in drug resistance to conventional drugs in prostate cancer. Since the progression of ARV-110 (PROTAC for PC) into clinical phases, the focus of research has quickly shifted to protein degraders targeting prostate cancer. The present review highlights an overview of PROTACs in prostate cancer and their superiority over conventional inhibitors. We also delve into the underlying pathophysiology of the disease and explain the structural design and linkerology strategies for PROTAC molecules. Additionally, we touch on the various targets for PROTAC in prostate cancer, including the androgen receptor (AR) and other critical oncoproteins, and discuss the future prospects and challenges in this field.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology Hospitals, Gachibowli, Hyderabad 500082, India
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Vindhya Vasini Andra
- Department of Medical Oncology, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| | - Riyaz Syed
- Department of Chemiinformatics, Centella Scientific, JHUB, Jawaharlal Nehru Technological University, Hyderabad 500085, India
| |
Collapse
|
139
|
Capponi PC, Mari M, Ferrari E, Asti M. Radiolabeled Chalcone Derivatives as Potential Radiotracers for β-Amyloid Plaques Imaging. Molecules 2023; 28:3233. [PMID: 37049995 PMCID: PMC10096019 DOI: 10.3390/molecules28073233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Natural products often provide a pool of pharmacologically relevant precursors for the development of various drug-related molecules. In this review, the research performed on some radiolabeled chalcone derivatives characterized by the presence of the α-β unsaturated carbonyl functional group as potential radiotracers for the imaging of β-amyloids plaques will be summarized. Chalcones' structural modifications and chemical approaches which allow their radiolabeling with the most common SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) radionuclides will be described, as well as the state of the art regarding their in vitro binding affinity and in vivo biodistribution and pharmacokinetics in preclinical studies. Moreover, an explanation of the rationale behind their potential utilization as probes for Alzheimer's disease in nuclear medicine applications will be provided.
Collapse
Affiliation(s)
- Pier Cesare Capponi
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42122 Reggio Emilia, Italy
| | - Matteo Mari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42122 Reggio Emilia, Italy
| |
Collapse
|
140
|
Wei R, He JQ, Chen WH, Tam KY. Evaluations of the neuroprotective effects of a dual-target isoquinoline inhibitor in the triple transgenic mouse model of Alzheimer's disease. Neurosci Lett 2023; 802:137166. [PMID: 36889377 DOI: 10.1016/j.neulet.2023.137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) patients exhibit neuropathological features, such as amyloid-beta (Aβ) plaques and neurogenic fibrillary tangles. These features are thought to play important pathogenic roles, including neuronal dysfunction and apoptosis in the disease progression. Herein, we systematically evaluated a previously reported dual-target isoquinoline inhibitor (9S) for cholinesterase and Aβ aggregation in in vitro and in vivo models of AD. 9S exhibited neuroprotective effects in Aβ-induced and PHF6-induced PC12 cell models as well as in an okadaic acid-induced SH-SY5Y cell model, which were due to attenuated neuronal apoptosis through modulations of GSK-3β phosphorylation and reactive oxygen species. One-month administration of 9S to triple transgenic AD (3 × Tg-AD) female mice (aged 6 months) led to significant improvement in cognitive deficits. Whereas similar treatment regimens for older 3 × Tg-AD female mice (aged 10 months) showed negligible neuroprotective effects. These findings suggest the importance of therapeutic intervention at the early stage of the disease.
Collapse
Affiliation(s)
- Rong Wei
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China
| | - Jun-Qiu He
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, PR China.
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China.
| |
Collapse
|
141
|
Hu X, Zhang Y, Gu C, Wu R, Yao Y, Gao F, Luo L, Zhang Y. TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway. Tissue Cell 2023; 81:102034. [PMID: 36753814 DOI: 10.1016/j.tice.2023.102034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dementia poses a serious threat to the daily and social abilities of patients, and trimethylamine-N-oxide (TMAO) is a metabolite of the gut microbiota involved in regulating the inflammatory response. However, the role of TMAO in dementia needs further investigation. This study aimed to investigate the effects and possible mechanisms of TMAO on dementia, which may provide ideas for the treatment of dementia. MATERIALS AND METHODS Dementia mice were induced by D-galactose + AlCl3, and the changes in learning memory capacity, histopathology, inflammatory factors, and PI3K/Akt/mTOR in mice treated with TMAO were analyzed to determine the mechanism of TMAO action on dementia. In addition, the effect of TMAO+PI3K inhibitor treatment on mice was also analyzed to further determine the mechanism of TMAO effect on dementia. RESULTS The results revealed that the dementia group had significantly higher TMAO levels and a significant hippocampal injury and inflammatory response. TMAO treatment promoted hippocampal injury and promoted the level of inflammatory cytokines. Further study of PI3K/Akt/mTOR signaling pathway showed that the expression of p-PI3K, p-Akt, and p-mTOR was significantly increased in the dementia group, and it was more obvious after TMAO treatment. And hippocampal injury, inflammatory response, and increase of p-PI3K, p-Akt, p-mTOR were reversed by TMAO+PI3K inhibitor. CONCLUSIONS This study determined that TMAO promotes dementia through the PI3K/Akt/mTOR signaling pathway, suggesting that TMAO may be a potential target for dementia.
Collapse
Affiliation(s)
- Xiaojuan Hu
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Yamin Zhang
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Cheng Gu
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Ruipeng Wu
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Yuping Yao
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Fulin Gao
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Lulu Luo
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| | - Yi Zhang
- Department of Neurology, Gansu Provincial People´s Hospital, Lanzhou, China.
| |
Collapse
|
142
|
Twarowski B, Herbet M. Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 2023; 24:6518. [PMID: 37047492 PMCID: PMC10095343 DOI: 10.3390/ijms24076518] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| |
Collapse
|
143
|
Zhang M, Ding ZX, Huang W, Luo J, Ye S, Hu SL, Zhou P, Cai B. Chrysophanol exerts a protective effect against Aβ 25-35-induced Alzheimer's disease model through regulating the ROS/TXNIP/NLRP3 pathway. Inflammopharmacology 2023; 31:1511-1527. [PMID: 36976486 DOI: 10.1007/s10787-023-01201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND The primary pathogenic factors of Alzheimer's disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear. PURPOSE In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation. METHODS D-galactose and Aβ25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aβ25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results. RESULTS CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18, and increase TRX. CONCLUSIONS CHR exerts neuroprotective effects on the Aβ25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Zhi-Xian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Luo
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Shu Ye
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Sheng-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
144
|
Sakalauskas A, Ziaunys M, Snieckute R, Janoniene A, Veiveris D, Zvirblis M, Dudutiene V, Smirnovas V. The Major Components of Cerebrospinal Fluid Dictate the Characteristics of Inhibitors against Amyloid-Beta Aggregation. Int J Mol Sci 2023; 24:ijms24065991. [PMID: 36983069 PMCID: PMC10059578 DOI: 10.3390/ijms24065991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The main pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β into amyloid fibrils, leading to a neurodegeneration cascade. The current medications are far from sufficient to prevent the onset of the disease, hence requiring more research to find new alternative drugs for curing AD. In vitro inhibition experiments are one of the primary tools in testing whether a molecule may be potent to impede the aggregation of amyloid-beta peptide (Aβ42). However, kinetic experiments in vitro do not match the mechanism found when aggregating Aβ42 in cerebrospinal fluid. The different aggregation mechanisms and the composition of the reaction mixtures may also impact the characteristics of the inhibitor molecules. For this reason, altering the reaction mixture to resemble components found in cerebrospinal fluid (CSF) is critical to partially compensate for the mismatch between the inhibition experiments in vivo and in vitro. In this study, we used an artificial cerebrospinal fluid that contained the major components found in CSF and performed Aβ42 aggregation inhibition studies using oxidized epigallocatechin-3-gallate (EGCG) and fluorinated benzenesulfonamide VR16-09. This led to a discovery of a complete turnaround of their inhibitory characteristics, rendering EGCG ineffective while significantly improving the efficacy of VR16-09. HSA was the main contributor in the mixture that significantly increased the anti-amyloid characteristics of VR16-09.
Collapse
Affiliation(s)
- Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Agne Janoniene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Dominykas Veiveris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Mantas Zvirblis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Virginija Dudutiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
145
|
Cong S, Shi Y, Yu G, Zhong F, Li J, Liu J, Ye C, Tan Z, Deng Y. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer's disease. Eur J Med Chem 2023; 250:115216. [PMID: 36857812 DOI: 10.1016/j.ejmech.2023.115216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Based on previous work, a series of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones derivatives were identified as potential multifunctional therapeutic agents for Alzheimer's disease. Biological evaluation exhibited that these derivatives had great performance against MAO-B, Aβ1-42 aggregation, oxidative stress and metal ion dyshomeostasis. Among them, 10x was selected as the optimal agent for its excellent MAO-B inhibitory activity (IC50 = 0.41 μM, SI > 24.4), good antioxidant activity (1.16 Trolox equivalent) and anti-Aβ aggregation activity (56.03% and 57.51% for inhibition of self- and Cu2+-induced Aβ1-42 aggregation; 81.91% and 82.40% for disaggregation of self- and Cu2+-induced Aβ1-42 fibrils at 25.0 μM). Besides, 10x also exhibited obvious metal-ion chelating ability, anti-neuroinflammation (NO, TNF-α), neuroprotective activity and BBB permeability. More importantly, in vivo behavioral assessment demonstrated 10x could remarkably improve the memory and cognitive impairment in Aβ1-42 induced AD mice model. Overall, these test results indicated 10x could serve as a balanced multifunctional anti-AD agent and deserved further research.
Collapse
Affiliation(s)
- Shiqin Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Zhong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jingjing Li
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
146
|
Waiker D, Verma A, Saraf P, T.A. G, Krishnamurthy S, Chaurasia RN, Shrivastava SK. Development and Evaluation of Some Molecular Hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as Multifunctional Agents to Combat Alzheimer's Disease. ACS OMEGA 2023; 8:9394-9414. [PMID: 36936338 PMCID: PMC10018501 DOI: 10.1021/acsomega.2c08061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aβ-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.
Collapse
Affiliation(s)
- Digambar
Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Gajendra T.A.
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Institute
of Medical Sciences, Faculty of Medicine, Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| |
Collapse
|
147
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
148
|
Pei H, He L, Shi M, Guo X, Chen W, Li J, He Z, Du R. PI3K-Akt signaling pathway based on network pharmacology for the anti-Alzheimer's disease effect of licorice stem flavonoids. Aging (Albany NY) 2023; 15:3381-3393. [PMID: 37166431 PMCID: PMC10449277 DOI: 10.18632/aging.204536] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 05/12/2023]
Abstract
Active ingredients were screened by TCMSP and swissADME, meanwhile, PharmMapper combined with UniProt database was used to predict the active ingredient target information, GeneCard database was employed to obtain Alzheimer's disease (AD)-related genes, Cytoscapes 3.7.2 software was utilized to map the active ingredient-target effect. Besides, Cytoscapes 3.7.2 software Bisogenet and Cyto NCA plug-in combined with STRING platform were utilized to map the protein-protein interaction (PPI) network, DAVID was employed for GO annotation, while KEGG plug-in was used for KEGG pathway enrichment. Mice were tested for inflammatory damage induced by intracerebral injection of lipopolysaccharide (LPS), as well as learning memory and anxiety by water maze and open field tests. In addition, the expression of Caspase-3 and Caspase-9, together with inflammatory factors TNF-α, IL-6, and IL-1β was analyzed in serum. The expression levels of proteins related to PI3K-Akt signaling pathway in the brain were detected by Western blot (WB) assay. According to the results of network pharmacology, there were 35 active ingredients of licorice stem and leaf flavonoids screened, which exerted the anti-Alzheimer's disease (AD) effects via 67 targets and activated 41 signaling pathways including the PI3K-Akt pathway. Furthermore, Behavioural results revealed that Licorice stem and leaf flavonoids improved the learning and memory abilities of model mice and significantly improved the anxiety caused by inflammatory brain damage. Moreover, as suggested by HE staining and TUNEL staining of brain sections, Glycyrrhiza glabra stem and leaf flavonoids alleviated morphological lesions and cell nuclear damage in brain tissue. Results: of brain homogenate supernatant assay demonstrated that Glycyrrhiza glabra stem and leaf flavonoids had a significant effect on the levels of oxidative indicators superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), acetylcholine (Ach), acetylcholinesterase (AchE), Caspase-3, Caspase-9 and serum inflammatory factors TNF-α, IL-6 and IL-1β. Additionally, WB assay results indicated that the PI3K-Akt signaling pathway was activated.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Meiling Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiangjuan Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, Jilin, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
149
|
Atiya A, Das Gupta D, Alsayari A, Alrouji M, Alotaibi A, Sharaf SE, Abdulmonem WA, Alorfi NM, Abdullah KM, Shamsi A. Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches. ACS OMEGA 2023; 8:6423-6430. [PMID: 36844587 PMCID: PMC9948186 DOI: 10.1021/acsomega.2c06634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Debarati Das Gupta
- College
of Pharmacy, University of Michigan, 2428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Abdulrhman Alsayari
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
- Complementary
and Alternative Medicine Unit, King Khalid
University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammed Alrouji
- Department
of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmajeed Alotaibi
- College
of Applied Medical Sciences, King Saud bin
Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical
Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department
of Pathology, College of Medicine, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Nasser M. Alorfi
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - K. M. Abdullah
- Department
of Biochemistry, Jain University, Bengaluru 560069, India
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
150
|
Raza N, Naseer A, Tamoor M, Zafar K. Alzheimer Disease Classification through Transfer Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13040801. [PMID: 36832292 PMCID: PMC9955379 DOI: 10.3390/diagnostics13040801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is a slow neurological disorder that destroys the thought process, and consciousness, of a human. It directly affects the development of mental ability and neurocognitive functionality. The number of patients with Alzheimer's disease is increasing day by day, especially in old aged people, who are above 60 years of age, and, gradually, it becomes cause of their death. In this research, we discuss the segmentation and classification of the Magnetic resonance imaging (MRI) of Alzheimer's disease, through the concept of transfer learning and customizing of the convolutional neural network (CNN) by specifically using images that are segmented by the Gray Matter (GM) of the brain. Instead of training and computing the proposed model accuracy from the start, we used a pre-trained deep learning model as our base model, and, after that, transfer learning was applied. The accuracy of the proposed model was tested over a different number of epochs, 10, 25, and 50. The overall accuracy of the proposed model was 97.84%.
Collapse
Affiliation(s)
- Noman Raza
- Department of Computer Science, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan
| | - Asma Naseer
- Department of Computer Science, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan
| | - Maria Tamoor
- Department of Computer Science, Forman Christian College, Lahore 54600, Pakistan
| | - Kashif Zafar
- Department of Computer Science, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan
- Correspondence:
| |
Collapse
|