101
|
Treatment paradigms in Parkinson's Disease and Covid-19. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 165:135-171. [PMID: 36208898 PMCID: PMC9148185 DOI: 10.1016/bs.irn.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
People with Parkinson's Disease (PwP) may be at higher risk for complications from the Coronavirus Disease 2019 (Covid-19) due to older age and to the multi-faceted nature of Parkinson's Disease (PD) per se, presenting with a variety of motor and non-motor symptoms. Those on advanced therapies may be particularly vulnerable. Taking the above into consideration, along with the potential multi-systemic impact of Covid-19 on affected patients and the complications of hospitalization, we are providing an evidence-based guidance to ensure a high standard of care for PwP affected by Covid-19 with varying severity of the condition. Adherence to the dopaminergic medication of PwP, without abrupt modifications in dosage and frequency, is of utmost importance, while potential interactions with newly introduced drugs should always be considered. Treating physicians should be cautious to acknowledge and timely address any potential complications, while consultation by a neurologist, preferably with special knowledge on movement disorders, is advised for patients admitted in non-neurological wards. Non-pharmacological approaches, including the patient's mobilization, falls prevention, good sleep hygiene, emotional support, and adequate nutritional and fluid intake, are essential and the role of telemedicine services should be strengthened and encouraged.
Collapse
|
102
|
Miller L, Berber E, Sumbria D, Rouse BT. Controlling the Burden of COVID-19 by Manipulating Host Metabolism. Viral Immunol 2022; 35:24-32. [PMID: 34905407 PMCID: PMC8863913 DOI: 10.1089/vim.2021.0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to cause global health problems, but its impact would be minimized if the many effective vaccines that have been developed were available and in widespread use by all societies. This ideal situation is not occurring so other means of controlling COVID-19 are needed. In this short review, we make the case that manipulating host metabolic pathways could be a therapeutic approach worth exploring. The rationale for such an approach comes from the fact that viruses cause metabolic changes in cells they infect, effective host defense mechanisms against viruses requires the activity of one or more metabolic pathways, and that hosts with metabolic defects such as diabetes are more susceptible to severe consequences after COVID-19. We describe the types of approaches that could be used to redirect various aspects of host metabolism and the success that some of these maneuvers have had at controlling other virus infections. Manipulating metabolic activities to control the outcome of COVID-19 has to date received minimal attention. Manipulating host metabolism will never replace vaccines to control COVID-19 but could be used as an adjunct therapy to the extent of ongoing infection.
Collapse
Affiliation(s)
- Logan Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
103
|
Rohilla K, Malik K, Arora J, Yadav P. Let's talk about mucormycosis emergency with COVID-19: Invest in future. J Family Med Prim Care 2022; 11:825-827. [PMID: 35495848 PMCID: PMC9051722 DOI: 10.4103/jfmpc.jfmpc_1083_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Despite recent breakthroughs in the detection and treatment during the COVID-19 pandemic, mucormycosis is a serious infection with a high death rate. It is a filamentous fungal infection from the zygomycetes class of order mucorales. It is a fatal fungal infection with a 50% or higher overall fatality rate. Mucormycosis is a fungal infection caused by mucor, which is a mold that can be found in soil, rotting fruits, and vegetables. It can primarily affect the brain, lungs, and sinuses. It is very much fatal in patients with diabetes or who are highly immunocompromised such as patients with cancer. In addition to more than 50% mortality rate, surgical intervention may require necrotic tissue removal, which leads to severely disfiguring surgery.
Collapse
|
104
|
Hussain M, Khurram Syed S, Fatima M, Shaukat S, Saadullah M, Alqahtani AM, Alqahtani T, Bin Emran T, Alamri AH, Barkat MQ, Wu X. Acute Respiratory Distress Syndrome and COVID-19: A Literature Review. J Inflamm Res 2021; 14:7225-7242. [PMID: 34992415 PMCID: PMC8710428 DOI: 10.2147/jir.s334043] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an overwhelming inflammatory disorder of the lung due to direct and indirect insults to the lungs. ARDS is characterized by increased vascular permeability, protein-rich edema, diffuse alveolar infiltrate, and loss of aerated lung tissue, leading to decreased lung compliance, tachypnea, and severe hypoxemia. COVID-19 is generally associated with ARDS, and it has gained prime importance since it started. The mortality rate is alarmingly high in COVID-19-related ARDS patients regardless of advances in mechanical ventilation. Several pharmacological agents, including corticosteroids, nitric oxide, neuromuscular blocker, anti-TNF, statins, and exogenous surfactant, have been studied and some are under investigation, like ketoconazole, lisofylline, N-acetylcysteine, prostaglandins, prostacyclin, and fish oil. The purpose of this review is to appraise the understanding of the pathophysiology of ARDS, biomarkers, and clinical trials of pharmacological therapies of ARDS and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore, 54000, Pakistan
| | - Mobeen Fatima
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saira Shaukat
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Muhammad Qasim Barkat
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City, 310000, People’s Republic of China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City, 310000, People’s Republic of China
| |
Collapse
|
105
|
Rando HM, Wellhausen N, Ghosh S, Lee AJ, Dattoli AA, Hu F, Byrd JB, Rafizadeh DN, Lordan R, Qi Y, Sun Y, Brueffer C, Field JM, Ben Guebila M, Jadavji NM, Skelly AN, Ramsundar B, Wang J, Goel RR, Park Y, Boca SM, Gitter A, Greene CS. Identification and Development of Therapeutics for COVID-19. mSystems 2021; 6:e0023321. [PMID: 34726496 PMCID: PMC8562484 DOI: 10.1128/msystems.00233-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Ada Dattoli
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Brian Byrd
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Diane N. Rafizadeh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | - Yuchen Sun
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeffrey M. Field
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Nafisa M. Jadavji
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashwin N. Skelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jinhui Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rishi Raj Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - YoSon Park
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - COVID-19 Review Consortium
BansalVikasBartonJohn P.BocaSimina M.BoerckelJoel D.BruefferChristianByrdJames BrianCaponeStephenDasShiktaDattoliAnna AdaDziakJohn J.FieldJeffrey M.GhoshSoumitaGitterAnthonyGoelRishi RajGreeneCasey S.GuebilaMarouen BenHimmelsteinDaniel S.HuFenglingJadavjiNafisa M.KamilJeremy P.KnyazevSergeyKollaLikhithaLeeAlexandra J.LordanRonanLubianaTiagoLukanTemitayoMacLeanAdam L.MaiDavidMangulSergheiManheimDavidMcGowanLucy D’AgostinoNaikAmrutaParkYoSonPerrinDimitriQiYanjunRafizadehDiane N.RamsundarBharathRandoHalie M.RaySandipanRobsonMichael P.RubinettiVincentSellElizabethShinholsterLamonicaSkellyAshwin N.SunYuchenSunYushaSzetoGregory L.VelazquezRyanWangJinhuiWellhausenNils
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
- Biomedical Science, Midwestern University, Glendale, Arizona, USA
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- The DeepChem Project
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Simina M. Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, R & D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
106
|
Paula HSC, Santiago SB, Araújo LA, Pedroso CF, Marinho TA, Gonçalves IAJ, Santos TAP, Pinheiro RS, Oliveira GA, Batista KA. An overview on the current available treatment for COVID-19 and the impact of antibiotic administration during the pandemic. Braz J Med Biol Res 2021; 55:e11631. [PMID: 34909910 PMCID: PMC8851906 DOI: 10.1590/1414-431x2021e11631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused several problems in healthcare systems around the world, as to date, there is no effective and specific treatment against all forms of COVID-19. Currently, drugs with therapeutic potential are being tested, including antiviral, anti-inflammatory, anti-malarial, immunotherapy, and antibiotics. Although antibiotics have no direct effect on viral infections, they are often used against secondary bacterial infections, or even as empiric treatment to reduce viral load, infection, and replication of coronaviruses. However, there are many concerns about this therapeutic approach as it may accelerate and/or increase the long-term rates of antimicrobial resistance (AMR). We focused this overview on exploring candidate drugs for COVID-19 therapy, including antibiotics, considering the lack of specific treatment and that it is unclear whether the widespread use of antibiotics in the treatment of COVID-19 has implications for the emergence and transmission of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- H S C Paula
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - S B Santiago
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - L A Araújo
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - C F Pedroso
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - T A Marinho
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - I A J Gonçalves
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - T A P Santos
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - R S Pinheiro
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| | - G A Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Valparaíso, Valparaíso, GO, Brasil
| | - K A Batista
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO, Brasil
| |
Collapse
|
107
|
Sen’kova AV, Savin IA, Brenner EV, Zenkova MA, Markov AV. Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression: A bioinformatics and experimental study. PLoS One 2021; 16:e0260450. [PMID: 34807957 PMCID: PMC8608348 DOI: 10.1371/journal.pone.0260450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a specific form of lung damage caused by different infectious and non-infectious agents, including SARS-CoV-2, leading to severe respiratory and systemic inflammation. To gain deeper insight into the molecular mechanisms behind ALI and to identify core elements of the regulatory network associated with this pathology, key genes involved in the regulation of the acute lung inflammatory response (Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Ptx3, Socs3) were revealed using comprehensive bioinformatics analysis of whole-genome microarray datasets, functional annotation of differentially expressed genes (DEGs), reconstruction of protein-protein interaction networks and text mining. The bioinformatics data were validated using a murine model of LPS-induced ALI; changes in the gene expression patterns were assessed during ALI progression and prevention by anti-inflammatory therapy with dexamethasone and the semisynthetic triterpenoid soloxolone methyl (SM), two agents with different mechanisms of action. Analysis showed that 7 of 8 revealed ALI-related genes were susceptible to LPS challenge (up-regulation: Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Socs3; down-regulation: Cat) and their expression was reversed by the pre-treatment of mice with both anti-inflammatory agents. Furthermore, ALI-associated nodal genes were analysed with respect to SARS-CoV-2 infection and lung cancers. The overlap with DEGs identified in postmortem lung tissues from COVID-19 patients revealed genes (Saa1, Rsad2, Ifi44, Rtp4, Mmp8) that (a) showed a high degree centrality in the COVID-19-related regulatory network, (b) were up-regulated in murine lungs after LPS administration, and (c) were susceptible to anti-inflammatory therapy. Analysis of ALI-associated key genes using The Cancer Genome Atlas showed their correlation with poor survival in patients with lung neoplasias (Ptx3, Timp1, Serpine1, Plaur). Taken together, a number of key genes playing a core function in the regulation of lung inflammation were found, which can serve both as promising therapeutic targets and molecular markers to control lung ailments, including COVID-19-associated ALI.
Collapse
Affiliation(s)
- Aleksandra V. Sen’kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Innokenty A. Savin
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenyi V. Brenner
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
108
|
Abstract
Pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced COVID-19 implied the presence of excessive proinflammatory cytokines and chemokines in patients causing significant morbidity and mortality. To diminish systemic hyper inflammation, a few physicians and researchers have utilized corticosteroids. Corticosteroid implementation has increased after the publication of interim guidelines regarding corticosteroid use in COVID-19 patients by WHO, despite the remaining controversies regarding long-term side effects and disease progression capability of corticosteroids. In different studies, the implementation of corticosteroids on COVID-19 patients revealed controversial results, which require further intensive research. This review will present the current outcomes and possibilities of using corticosteroids to treat COVID-19 patients.
Collapse
|
109
|
Touyz RM, Boyd MO, Guzik T, Padmanabhan S, McCallum L, Delles C, Mark PB, Petrie JR, Rios F, Montezano AC, Sykes R, Berry C. Cardiovascular and Renal Risk Factors and Complications Associated With COVID-19. CJC Open 2021; 3:1257-1272. [PMID: 34151246 PMCID: PMC8205551 DOI: 10.1016/j.cjco.2021.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Marcus O.E. Boyd
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Linsay McCallum
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - John R. Petrie
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Sykes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
110
|
Gopi P, Anju TR, Pillai VS, Veettil M. SARS-Coronavirus 2, A Metabolic Reprogrammer: A Review in the Context of the Possible Therapeutic Strategies. Curr Drug Targets 2021; 23:770-781. [PMID: 34533443 DOI: 10.2174/1389450122666210917113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Novel coronavirus, SARS-CoV-2 is advancing at a staggering pace to devastate the health care system and foster the concerns over public health. In contrast to the past outbreaks, coronaviruses aren't clinging themselves as a strict respiratory virus. Rather, becoming a multifaceted virus, it affects multiple organs by interrupting a number of metabolic pathways leading to significant rates of morbidity and mortality. Following infection they rigorously reprogram multiple metabolic pathways of glucose, lipid, protein, nucleic acid and their metabolites to extract adequate energy and carbon skeletons required for their existence and further molecular constructions inside a host cell. Although the mechanism of these alterations are yet to be known, the impact of these reprogramming is reflected in the hyper inflammatory responses, so called cytokine storm and the hindrance of host immune defence system. The metabolic reprogramming during SARS-CoV-2 infection needs to be considered while devising therapeutic strategies to combat the disease and its further complication. The inhibitors of cholesterol and phospholipids synthesis and cell membrane lipid raft of the host cell can, to a great extent, control the viral load and further infection. Depletion of energy source by inhibiting the activation of glycolytic and hexoseamine biosynthetic pathway can also augment the antiviral therapy. The cross talk between these pathways also necessitates the inhibition of amino acid catabolism and tryptophan metabolism. A combinatorial strategy which can address the cross talks between the metabolic pathways might be more effective than a single approach and the infection stage and timing of therapy will also influence the effectiveness of the antiviral approach. We herein focus on the different metabolic alterations during the course of virus infection that help to exploit the cellular machinery and devise a therapeutic strategy which promotes resistance to viral infection and can augment body's antivirulence mechanisms. This review may cast the light into the possibilities of targeting altered metabolic pathways to defend virus infection in a new perspective.
Collapse
Affiliation(s)
- Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - T R Anju
- Department of Biotechnology, Newman College, Thodupuzha 685585, Kerala, India
| | - Vinod Soman Pillai
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Mohanan Veettil
- Institute of Advanced Virology, Thonnakkal, Thiruvananthapuram 695317, Kerala, India
| |
Collapse
|
111
|
Samaha AA, Mouawia H, Fawaz M, Hassan H, Salami A, Bazzal AA, Saab HB, Al-Wakeel M, Alsaabi A, Chouman M, Moussawi MA, Ayoub H, Raad A, Hajjeh O, Eid AH, Raad H. Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon. Viruses 2021; 13:989. [PMID: 34073401 PMCID: PMC8226630 DOI: 10.3390/v13060989] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study was designed to determine the efficacy of ivermectin, an FDA-approved drug, in producing clinical benefits and decreasing the viral load of SARS-CoV-2 among asymptomatic subjects that tested positive for this virus in Lebanon. METHODS A randomized controlled trial was conducted in 100 asymptomatic Lebanese subjects that have tested positive for SARS-CoV2. Fifty patients received standard preventive treatment, mainly supplements, and the experimental group received a single dose (according to body weight) of ivermectin, in addition to the same supplements the control group received. RESULTS There was no significant difference (p = 0.06) between Ct-values of the two groups before the regimen was started (day zero), indicating that subjects in both groups had similar viral loads. At 72 h after the regimen started, the increase in Ct-values was dramatically higher in the ivermectin than in the control group. In the ivermectin group, Ct increased from 15.13 ± 2.07 (day zero) to 30.14 ± 6.22 (day three; mean ± SD), compared to the control group, where the Ct values increased only from 14.20 ± 2.48 (day zero) to 18.96 ± 3.26 (day three; mean ± SD). Moreover, more subjects in the control group developed clinical symptoms. Three individuals (6%) required hospitalization, compared to the ivermectin group (0%). CONCLUSION Ivermectin appears to be efficacious in providing clinical benefits in a randomized treatment of asymptomatic SARS-CoV-2-positive subjects, effectively resulting in fewer symptoms, lower viral load and reduced hospital admissions. However, larger-scale trials are warranted for this conclusion to be further cemented.
Collapse
Affiliation(s)
- Ali A. Samaha
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
- Nursing Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Mazraa 1105, Lebanon;
- Department of Biomedical Sciences, Lebanese International University, Beirut, Mazraa 1105, Lebanon
- Department of Cardiology, Rayak University Hospital, Bekaa 1801, Lebanon;
| | - Hussein Mouawia
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Mirna Fawaz
- Nursing Department, Faculty of Health Sciences, Beirut Arab University, Beirut, Mazraa 1105, Lebanon;
| | - Hamad Hassan
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
- Ministry of Health, Beirut, Lebanon
| | - Ali Salami
- Department of Mathematics, Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
| | - Ali Al Bazzal
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Hamid Bou Saab
- Faculty of Sciences, Lebanese University, Zahle 1801, Lebanon;
| | | | - Ahmad Alsaabi
- Department of Biology, Lille University, 59160 Lille, France;
| | - Mohamad Chouman
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Mahmoud Al Moussawi
- Faculty of Nursing Sciences, Islamic University of Lebanon, Baalbek 1800, Lebanon;
| | - Hassan Ayoub
- Department of Cardiology, Rayak University Hospital, Bekaa 1801, Lebanon;
| | - Ali Raad
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Ola Hajjeh
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Unit, QU Health, Qatar University, Doha, Qatar
| | - Houssam Raad
- Faculty of Public Health, Lebanese University, Beirut, Lebanon; (A.A.S.); (H.M.); (H.H.); (A.A.B.); (M.C.); (A.R.); (O.H.)
| |
Collapse
|
112
|
Schürmann M, Aljubeh M, Tiemann C, Sudhoff H. Mouthrinses against SARS-CoV-2: anti-inflammatory effectivity and a clinical pilot study. Eur Arch Otorhinolaryngol 2021; 278:5059-5067. [PMID: 34021807 PMCID: PMC8140561 DOI: 10.1007/s00405-021-06873-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
Purpose The scope of this research endeavor was the determination of the applicability of over the counter mouthwash solutions in reducing the viral load in the saliva of COVID-19 patients and hence decreasing their infectivity. Beyond that, new experimental mouthwashes were investigated in terms of a possible positive immune modulation, which might offer an additional opportunity for a positive pharmaceutical effect. Methods The effectivity of the mouth washing solution was determined on 34 hospitalized COVID-19 patients by measuring the viral load by RT-qPCR in pharyngeal swabs, which were taken before and after rinsing. The inflammatory modulation thru the experimental solutions was assayed in an in vitro model of virus infected nasopharyngeal epithelium cells. Results The clinical pilot study demonstrated that the mouth rinsing solution was able to reduce the viral load by about 90% in the saliva of most patients. This reduction was determined to persist for about 6 h. In the experimental solutions, the ingredients dexpanthenol and zinc were able to reduce the expression of proinflammatory cytokines in the cell culture model, while the antiviral response was not altered significantly. Conclusion We recommend the application of mouth wash solutions to COVID-19 patients, since our results indicate a reduction in infectivity and might govern the protection of health care professionals. Further improvement to the over the counter formulation can be made by utilizing zinc and dexpanthenol, as they which might be beneficial for the patients’ health. Supplementary Information The online version contains supplementary material available at 10.1007/s00405-021-06873-8.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty OWL, Bielefeld University, Campus Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Mohamed Aljubeh
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty OWL, Bielefeld University, Campus Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Carsten Tiemann
- Labor Krone, Laboratory for Medical Diagnostics, Bad Salzuflen, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty OWL, Bielefeld University, Campus Klinikum Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
113
|
Oshiro-Junior JA, Lusuardi A, Beamud EM, Chiavacci LA, Cuberes MT. Nanostructural Arrangements and Surface Morphology on Ureasil-Polyether Films Loaded with Dexamethasone Acetate. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1362. [PMID: 34064153 PMCID: PMC8224347 DOI: 10.3390/nano11061362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films' structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30-100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.
Collapse
Affiliation(s)
- João Augusto Oshiro-Junior
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
- Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Paraíba 58429-600, Brazil
| | - Angelo Lusuardi
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| | - Elena M. Beamud
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Highway Araraquara-Jaú, Araraquara 14800-903, Brazil;
| | - M. Teresa Cuberes
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain; (J.A.O.-J.); (A.L.); (E.M.B.)
| |
Collapse
|