101
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Micro/nanoplastics effects on organisms: A review focusing on 'dose'. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126084. [PMID: 34229388 DOI: 10.1016/j.jhazmat.2021.126084] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/17/2023]
Abstract
Microplastics have become predominant contaminants, attracting much political and scientific attention. Despite the massively-increasing research on microplastics effects on organisms, the debate of whether environmental concentrations pose hazard and risk continues. This study critically reviews published literatures of microplastics effects on organisms within the context of "dose". It provides substantial evidence of the common occurrence of threshold and hormesis dose responses of numerous aquatic and terrestrial organisms to microplastics. This finding along with accumulated evidence indicating the capacity of organisms for recovery suggests that the linear-no-threshold model is biologically irrelevant and should not serve as a default model for assessing the microplastics risks. The published literature does not provide sufficient evidence supporting the general conclusion that environmental doses of microplastics cause adverse effects on individual organisms. Instead, doses that are smaller than the dose of toxicological threshold and more likely to occur in the environment may even induce positive effects, although the ecological implications of these responses remain unknown. This study also shows that low doses of microplastics can reduce whereas high doses can increase the negative effects of other pollutants. The mechanisms explaining these findings are discussed, providing a novel perspective for evaluating the risks of microplastics in the environment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
102
|
Eder ML, Oliva-Teles L, Pinto R, Carvalho AP, Almeida CMR, Hornek-Gausterer R, Guimarães L. Microplastics as a vehicle of exposure to chemical contamination in freshwater systems: Current research status and way forward. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125980. [PMID: 34004584 DOI: 10.1016/j.jhazmat.2021.125980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 05/07/2023]
Abstract
Contamination by microplastics is increasing steadily worldwide, affecting all environments. Additionally, aquatic organisms are often exposed to mixtures of other contaminants, including various chemicals. Numerous studies reported adsorption of chemicals to microplastics, raising concern about their possible role as vehicles of exposure through transfer to biota. Nevertheless, until recently, the studies on the topic were mostly focused on the marine environment. In the past five years, however, plenty of publications contributed empirical data about freshwater ecosystems, raising the need for a critical appraisal of the information. Herein the scientific literature was reviewed and multivariate data analysis was done. The analysed studies employed widely different experimental designs, endpoints, test species, shapes and concentrations of various polymer types and chemicals, often not relevant for the freshwater environment. Our integrated analytical approach revealed unfathomable research gaps, given the theoretical knowledge available and lessons learned from research about the marine environment. Greater harmonization of laboratory studies investigating this topic is needed, as well as testing conditions reflecting real exposure scenarios. Furthermore, standardized testing protocols are urgently required to guide such experiments and improve the comparability of the results obtained.
Collapse
Affiliation(s)
- Miriam Lena Eder
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; University of Applied Sciences, FH Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Luis Oliva-Teles
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Raquel Pinto
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | | | - Laura Guimarães
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
103
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
104
|
Cormier B, Le Bihanic F, Cabar M, Crebassa JC, Blanc M, Larsson M, Dubocq F, Yeung L, Clérandeau C, Keiter SH, Cachot J, Bégout ML, Cousin X. Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125626. [PMID: 33740727 DOI: 10.1016/j.jhazmat.2021.125626] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/26/2023]
Abstract
Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.
Collapse
Affiliation(s)
- Bettie Cormier
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florane Le Bihanic
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Mathieu Cabar
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | | | - Mélanie Blanc
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Leo Yeung
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | | | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Jérôme Cachot
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France.
| |
Collapse
|
105
|
Bour A, Hamann Sandgaard M, Syberg K, Palmqvist A, Carney Almroth B. Comprehending the complexity of microplastic organismal exposures and effects, to improve testing frameworks. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125652. [PMID: 33773244 DOI: 10.1016/j.jhazmat.2021.125652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) have been identified as a threat to global ecosystems. Current projections indicate that the negative impacts of MPs will increase in the environment. Traditional toxicity testing does not account for the diversity of MP particles, the inherent diversity in potential exposure routes, and complex impacts in exposed organisms. Here we present and discuss factors influencing organismal exposure to MPs driven by fate and behavior of MPs in different environmental matrices and organisms behavioral niches. We then provide a structured classification of potential effects of MPs, chemical or particulate, generic or specific to MPs. Using these analyses, we discuss appropriateness and limitations of applying traditional, chemical-based ecotoxicity testing for the study of MPs, and propose practical recommendations and guidelines. Future laboratory based studies can be improved to increase understanding of potential real world effects of MPs by careful selection of appropriate exposure systems and conditions, test organism, MP characteristics, endpoints and required controls. We build upon recommendations provided in previous publications and complement them with a list of parameters and practical information that should be checked and/or reported in MP studies.
Collapse
Affiliation(s)
- Agathe Bour
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Annemette Palmqvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
106
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
107
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
108
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
109
|
The Dual Role of Microplastics in Marine Environment: Sink and Vectors of Pollutants. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060642] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review is a follow-up to a previous review published in Journal of Marine Science and Engineeringon the issues of accumulation, transport, and the effects of microplastics (MPs) in the oceans. The review brings together experimental laboratory, mathematical, and field data on the dual role of MPs as accumulators of hydrophobic persistent organic compounds (POPs), and their release-effect in the marine ecosystem. It also examines the carrier role, besides POPs, of new emerging categories of pollutants, such as pharmaceuticals and personal care products (PPCPs). This role becomes increasingly important and significant as polymers age and surfaces become hydrophilic, increasing toxicity and effects of the new polymer-pollutant associations on marine food webs. It was not the intention to provide too many detailed examples of carriers and co-contaminants, exposed marine species, and effects. Instead, the views of two different schools of thought are reported and summarized: one that emphasizes the risks of transport, exposure, and risk beyond critical thresholds, and another that downplays this view.
Collapse
|
110
|
Cheng H, Feng Y, Duan Z, Duan X, Zhao S, Wang Y, Gong Z, Wang L. Toxicities of microplastic fibers and granules on the development of zebrafish embryos and their combined effects with cadmium. CHEMOSPHERE 2021; 269:128677. [PMID: 33657748 DOI: 10.1016/j.chemosphere.2020.128677] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Toxicity of microplastics (MPs) in granular form to aquatic animals has been frequently tested, whereas the effects of fibrous MPs remain further explored. In this study, the effects of polyethylene terephthalate granular particles (p-PET, approximately 150 μm in diameter) and fibers (f-PET, approximately 3-5 mm in length and 20 μm in diameter) on the development of zebrafish embryos and their joint effects with cadmium (Cd) were compared. p-PET and f-PET accelerated the velocities of blood flow and heart rate and inhibited hatching in zebrafish embryos because of their barrier effects on the channels in the embryonic chorion and enhanced the mechanical strength of the chorion. The Cd content in the chorion increased by p-PET due to the adsorption of p-PET on the chorion. By contrast, more f-PET dissociated in culture medium and resulted in low Cd content in the chorion. Given that chorion can effectively block p-PET and f-PET, the Cd accumulation in eggs significantly decreased (p < 0.05) under p-PET/f-PET and Cd combined treatment because of the reduction in the bioavailability of Cd. Therefore, p-PET and f-PET decreased the toxicities of Cd on all the target endpoints in this study, and the detoxification effect of f-PET at 72 hpf was more significant than that of p-PET. These results suggest that the toxicity induced by MPs might be form-related.
Collapse
Affiliation(s)
- Haodong Cheng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yifan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Xinyue Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
111
|
Missawi O, Bousserrhine N, Zitouni N, Maisano M, Boughattas I, De Marco G, Cappello T, Belbekhouche S, Guerrouache M, Alphonse V, Banni M. Uptake, accumulation and associated cellular alterations of environmental samples of microplastics in the seaworm Hediste diversicolor. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124287. [PMID: 33268200 DOI: 10.1016/j.jhazmat.2020.124287] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
The ubiquitous distribution of microplastics (MPs) in the marine environment raises global concern to understand their impact. Environmental MPs have been shown to exhibit different physicochemical properties during their life cycles. However, the body of knowledge regarding their accumulation and biological effects is still significantly limited compared to manufactured MPs. To evaluate the hazardous effects of a mixture of environmental MPs collected along the Tunisian beaches, their accumulation and cellular effects were investigated in Hediste diversicolor. MP sample was composed of polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) analyzed using Raman microspectroscopy (RM). The concentrations of MPs in seaworm tissues increased over time, following the order 1.2-0.45 µm > 3-1.2 µm > 100-3 µm. The ingestion of MPs by H. diversicolor reduced their survival and growth, affected the neuro-transmission and antioxidant pathways. Our data emphasised that the toxic effects of environmental MPs were closely related to the exposure dose and period. The results also demonstrated that the size distribution of MPs in seaworms was mainly correlated with biochemical markers. This study highlights the ecological risk in the ingestion and accumulation of environmental MPs by biota that threatens their functional parameters.
Collapse
Affiliation(s)
- Omayma Missawi
- University of Sousse, Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, Sousse, Tunisia; University of Monastir, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Noureddine Bousserrhine
- University Paris-Est Creteil, Laboratory of Water, Environment and Urban Systems, Faculty of Science and Technology, Creteil Cedex, France
| | - Nesrine Zitouni
- University of Sousse, Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, Sousse, Tunisia; University of Monastir, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Maria Maisano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Iteb Boughattas
- University of Sousse, Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, Sousse, Tunisia
| | - Giuseppe De Marco
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Tiziana Cappello
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Sabrina Belbekhouche
- CNRS, University of Paris-Est Creteil, Institute of Chemistry and Materials Paris-Est ICMPE, UMR7182, 94320 Thiais, France
| | - Mohamed Guerrouache
- CNRS, University of Paris-Est Creteil, Institute of Chemistry and Materials Paris-Est ICMPE, UMR7182, 94320 Thiais, France
| | - Vanessa Alphonse
- University Paris-Est Creteil, Laboratory of Water, Environment and Urban Systems, Faculty of Science and Technology, Creteil Cedex, France
| | - Mohamed Banni
- University of Sousse, Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, Sousse, Tunisia; University of Monastir, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia.
| |
Collapse
|
112
|
Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M, Deng J, Luo Y, Wen X, Zhang Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124187. [PMID: 33153780 DOI: 10.1016/j.jhazmat.2020.124187] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The microplastic pollution and related ecological impacts in the aquatic environment have attracted global attention over the past decade. Microplastics can be ingested by aquatic organisms from different trophic levels either directly or indirectly, and transferred along aquatic food chains, causing different impacts on life activities of aquatic organisms. In addition, microplastics can adsorb various environmental chemical contaminants and release toxic plastic additives, thereby serving as a sink and source of these associated chemical contaminants and potentially changing their toxicity, bioavailability, and fate. However, knowledge regarding the potential risks of microplastics and associated chemical contaminants (e.g., hydrophobic organic contaminants, heavy metals, plastic additives) on diverse organisms, especially top predators, remains to be explored. Herein, this review describes the effects of microplastics on typical aquatic organisms from different trophic levels, and systematically summarizes the combined effects of microplastics and associated contaminants on aquatic biota. Furthermore, we highlight the research progress on trophic transfer of microplastics and associated contaminants along aquatic food chain. Finally, potential human health concerns about microplastics via the food chain and dietary exposure are discussed. This work is expected to provide a meaningful perspective for better understanding the potential impacts of microplastics and associated contaminants on aquatic ecology and human health.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofeng Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
113
|
Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. FRONTIERS IN TOXICOLOGY 2021; 3:636640. [PMID: 35295124 PMCID: PMC8915801 DOI: 10.3389/ftox.2021.636640] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Micro and nanoplastics are fragments with dimensions less than a millimeter invading all terrestrial and marine environments. They have become a major global environmental issue in recent decades and, indeed, recent scientific studies have highlighted the presence of these fragments all over the world even in environments that were thought to be unspoiled. Analysis of micro/nanoplastics in isolated samples from abiotic and biotic environmental matrices has become increasingly common. Hence, the need to find valid techniques to identify these micro and nano-sized particles. In this review, we discuss the current and potential identification methods used in microplastic analyses along with their advantages and limitations. We discuss the most suitable techniques currently available, from physical to chemical ones, as well as the challenges to enhance the existing methods and develop new ones. Microscopical techniques (i.e., dissect, polarized, fluorescence, scanning electron, and atomic force microscopy) are one of the most used identification methods for micro/nanoplastics, but they have the limitation to produce incomplete results in analyses of small particles. At present, the combination with chemical analysis (i.e., spectroscopy) overcome this limit together with recently introduced alternative approaches. For example, holographic imaging in microscope configuration images microplastics directly in unfiltered water, thus discriminating microplastics from diatoms and differentiates different sizes, shapes, and plastic types. The development of new analytical instruments coupled with each other or with conventional and innovative microscopy could solve the current problems in the identification of micro/nanoplastics.
Collapse
Affiliation(s)
- Stefania Mariano
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Nanotechnologies Applied to Engineering, CNIS Sapienza University of Rome, Rome, Italy
- National Research Council Nanotec, Lecce, Italy
- *Correspondence: Luciana Dini
| |
Collapse
|
114
|
Xu K, Zhang Y, Huang Y, Wang J. Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143730. [PMID: 33277007 DOI: 10.1016/j.scitotenv.2020.143730] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 05/12/2023]
Abstract
The toxicology of microplastics in combination with other pollutants has attracted widespread attention. In this study, zebrafish were exposed to 3 mg/L polystyrene microplastic, 0.2 mg/L phenanthrene, and a combination of both. Zebrafish microplastic uptake, phenanthrene accumulation, antioxidant-associated enzyme activity and related gene expression, immune-associated gene expression, and the gut microflora were measured after 12 and 24 days of exposure. Phenanthrene and microplastic accumulation increased with exposure time and was also greater in the combined exposure group than in the single exposure group. Combined analysis of antioxidant enzyme activity and immune and antioxidant-related genes shows that exposure alone causes oxidative stress in zebrafish, ultimately increasing immunity and the expression of oxidative stress genes, while combined exposure exacerbates these changes. Fusobacteria decreased and Proteobacteria and Bacteroidetes increased in the three exposure groups of gut microorganisms. Overall, our study demonstrates that microplastics enhance the toxicity of phenanthrene and that the two have a synergistic effect.
Collapse
Affiliation(s)
- Kaihang Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yindan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
115
|
Zitouni N, Bousserrhine N, Missawi O, Boughattas I, Chèvre N, Santos R, Belbekhouche S, Alphonse V, Tisserand F, Balmassiere L, Dos Santos SP, Mokni M, Guerbej H, Banni M. Uptake, tissue distribution and toxicological effects of environmental microplastics in early juvenile fish Dicentrarchus labrax. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124055. [PMID: 33265060 DOI: 10.1016/j.jhazmat.2020.124055] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 05/12/2023]
Abstract
As the smallest environmental microplastics (EMPs), even at nanoscale, are increasingly present in the environment, their availability and physical and chemical effects on marine organisms are poorly documented. In the present study, we primarily investigated the uptake and accumulation of a mixture of environmental microplastics (EMPs) obtained during an artificial degradation process in early-juvenile sea bass (Dicentrarchus labrax). Moreover, we evaluated their hazardous effects using biochemical markers of cytotoxicity. Polymer distribution and composition in gill, gut, and liver were analyzed using polarized light microscopy (PLM) and Raman microspectroscopy (RMS). Our findings revealed the size-dependent ingestion and accumulation of smaller MPs (0.45-3 µm) in fish tissues even after a short-term exposure (3 and 5 days). In addition to MPs, our results showed the presence of plastic additives including plasticizers, flame retardants, curing agents, heat stabilizers, and fiber-reinforced plastic materials in fish tissues, which contributed mostly to the larger-sized range (≥ 1.2 µm). Our data showed that significant oxidative alterations were highly correlated with MPs size range. Our results emphasized that the toxicity of smaller EMPs (≤ 3 µm) was closely related to different factors, including the target tissue, exposure duration, size range of MPs, and their chemical properties.
Collapse
Affiliation(s)
- Nesrine Zitouni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia
| | - Noureddine Bousserrhine
- Laboratory Water, Environment and Urban Systems, University Paris-Est Créteil, Faculty of Science and Technology, Créteil Cedex, France
| | - Omayma Missawi
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Tunisia
| | - Nathalie Chèvre
- IDYST, Faculty of Geosciences and the Environment, University of Lausanne, Géopolis 3630, CH-1015 Lausanne, Switzerland
| | - Raphael Santos
- HEPIA, University of Applied Sciences Western Switzerland, Ecology and Engineering of Aquatic Systems Research Group, 150 Route de Presinge, CH-1254 Jussy, Switzerland
| | - Sabrina Belbekhouche
- Paris-Est Institute of Chemistry and Materials, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Vanessa Alphonse
- Laboratory Water, Environment and Urban Systems, University Paris-Est Créteil, Faculty of Science and Technology, Créteil Cedex, France
| | - Floriane Tisserand
- IDYST, Faculty of Geosciences and the Environment, University of Lausanne, Géopolis 3630, CH-1015 Lausanne, Switzerland
| | - Ludivine Balmassiere
- IDYST, Faculty of Geosciences and the Environment, University of Lausanne, Géopolis 3630, CH-1015 Lausanne, Switzerland
| | - Sofia Pereira Dos Santos
- IDYST, Faculty of Geosciences and the Environment, University of Lausanne, Géopolis 3630, CH-1015 Lausanne, Switzerland
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Hamadi Guerbej
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technologies (INSTM), Monastir Center, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
116
|
Rai PK, Lee J, Brown RJC, Kim KH. Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123910. [PMID: 33264963 DOI: 10.1016/j.jhazmat.2020.123910] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
In recent decades, the quantity of plastic waste products has increased tremendously. As plastic wastes are released into the environment, they exert harmful effects on biota and human health. In this work, a comprehensive review is offered to describe the physical and chemical characteristics of microplastics and nanoplastics in relation to their fate, microbial ecology, transport, and ecotoxic behavior. Present discussion is expanded further to cover the biochemical, physiological, and molecular mechanisms controlling the environmental fate, ecotoxicity, and human health hazards of micro- and nanoplastics. The risks of their exposure to microbes, plants, animals, and human health are also reviewed with special emphasis. Finally, a direction for future interdisciplinary research in materials and polymer science is also discussed to help control the pollution caused by micro- and nanoplastics.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, South Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
117
|
Suteja Y, Atmadipoera AS, Riani E, Nurjaya IW, Nugroho D, Cordova MR. Spatial and temporal distribution of microplastic in surface water of tropical estuary: Case study in Benoa Bay, Bali, Indonesia. MARINE POLLUTION BULLETIN 2021; 163:111979. [PMID: 33484990 DOI: 10.1016/j.marpolbul.2021.111979] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In 2010, Indonesia estimated as the second-largest country in the world that donates plastic to the sea. This study aims to investigate the spatial and temporal distribution of microplastics in tropical estuaries. The sampling was carried out in Benoa Bay with four repetitions representing the wet and dry seasons. Spatially it was found that the highest microplastic abundance around the Suwung landfill, while the lowest at Badung River Estuary, middle, and an inlet of the Benoa Bay. The highest percentage to the lowest microplastic based on the size was 500-1000 μm (37.9%), >1000 μm (35.7%), 300-500 μm (22.1%), and <300 μm (4.3%), while based on the shape were fragments (73.19%), foam (17.02%), fiber (6.38%), and granule (3.40%). No significant differences were found between the wet and dry seasons based on the abundance, but significantly varied based on size and shape. Polymers of microplastics were dominated by polystyrene, polypropylene, and polyethylene.
Collapse
Affiliation(s)
- Yulianto Suteja
- Marine Science Department, Faculty of Marine and Fisheries, Udayana University Indonesia, Jl. Raya Kampus Universitas Udayana, Bukit Jimbaran, Bali, Indonesia; Faculty of Fisheries and Marine Science, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia.
| | - Agus Saleh Atmadipoera
- Faculty of Fisheries and Marine Science, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
| | - Etty Riani
- Faculty of Fisheries and Marine Science, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
| | - I Wayan Nurjaya
- Faculty of Fisheries and Marine Science, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
| | - Dwiyoga Nugroho
- Agency of Research and Development for Marine and Fisheries, Ministry of Maritime Affairs and Fisheries, Jakarta, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol Timur, Jakarta, Indonesia
| |
Collapse
|
118
|
Banaee M, Gholamhosseini A, Sureda A, Soltanian S, Fereidouni MS, Ibrahim ATA. Effects of microplastic exposure on the blood biochemical parameters in the pond turtle (Emys orbicularis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9221-9234. [PMID: 33140300 DOI: 10.1007/s11356-020-11419-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 05/27/2023]
Abstract
The accumulation of microplastics (MPs) is a growing problem in aquatic ecosystems. Despite increased research on MPs in the last decade, their potential threat to freshwater ecosystems remains an open question. In the present study, the negative impacts of MPs were investigated on blood biochemical parameters in the European pond turtle (Emys orbicularis). Pond turtles were distributed into three experimental groups (n = 9 for each group) and were fed diets containing 250, 500, and 1000 mg MPs (PE100 polyethylene) per kg of food for 30 days, and a control group fed with a standard uncontaminated diet. The results indicated that exposure to 500 and 1000 mg kg-1 MPs caused a significant increase in the activities of alanine and aspartate aminotransferases, and in the levels of cholesterol, glucose, creatinine, urea, and calcium (Ca+2) compared with the control group. On the contrary, the activity of gamma-glutamyl transferase and the levels of total protein, albumin, total immunoglobulins, and phosphorus were significantly reduced in E. orbicularis exposed to 500 and 1000 mg kg-1 MPs when compared with the controls. In all the MP-exposed groups, the activity of lactate dehydrogenase and globulin and magnesium (Mg+2) levels were significantly reduced; while creatine phosphokinase and alkaline phosphatase activities were increased with respect to the control turtles. A significant decrease in triglyceride levels was reported in E. orbicularis exposed to 1000 mg kg-1 MPs. MPs intake induced notable alterations in blood biochemical parameters of E. orbicularis. These results suggest that changes in the blood biochemical parameters could be an appropriate bio-indicator to evidence the existence of tissue damage in E. orbicularis.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources, Behbahan Khatam Alanbia University of Technology, Behbahan, Khuzestan Province, Iran.
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad y la Nutrición, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Ahmed Th A Ibrahim
- Zoology Department, Faculty of Science, New Valley University, Kharga Oasis, Egypt
| |
Collapse
|
119
|
Brinkmann BW, Beijk WF, Vlieg RC, van Noort SJT, Mejia J, Colaux JL, Lucas S, Lamers G, Peijnenburg WJGM, Vijver MG. Adsorption of titanium dioxide nanoparticles onto zebrafish eggs affects colonizing microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105744. [PMID: 33535134 DOI: 10.1016/j.aquatox.2021.105744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Teleost fish embryos are protected by two acellular membranes against particulate pollutants that are present in the water column. These membranes provide an effective barrier preventing particle uptake. In this study, we tested the hypothesis that the adsorption of antimicrobial titanium dioxide nanoparticles onto zebrafish eggs nevertheless harms the developing embryo by disturbing early microbial colonization. Zebrafish eggs were exposed during their first day of development to 2, 5 and 10 mg TiO2 L-1 (NM-105). Additionally, eggs were exposed to gold nanorods to assess the effectiveness of the eggs' membranes in preventing particle uptake, localizing these particles by way of two-photon microscopy. This confirmed that particles accumulate onto zebrafish eggs, without any detectable amounts of particles crossing the protective membranes. By way of particle-induced X-ray emission analysis, we inferred that the titanium dioxide particles could cover 25-45 % of the zebrafish egg surface, where the concentrations of sorbed titanium correlated positively with concentrations of potassium and correlated negatively with concentrations of silicon. A combination of imaging and culture-based microbial identification techniques revealed that the adsorbed particles exerted antimicrobial effects, but resulted in an overall increase of microbial abundance, without any change in heterotrophic microbial activity, as inferred based on carbon substrate utilization. This effect persisted upon hatching, since larvae from particle-exposed eggs still comprised higher microbial abundance than larvae that hatched from control eggs. Notably, pathogenic aeromonads tolerated the antimicrobial properties of the nanoparticles. Overall, our results show that the adsorption of suspended antimicrobial nanoparticles on aquatic eggs can have cascading effects across different life stages of oviparous animals. Our study furthermore suggests that aggregation dynamics may occur that could facilitate the dispersal of pathogenic bacteria through aquatic ecosystems.
Collapse
Affiliation(s)
- Bregje W Brinkmann
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.
| | - Wouter F Beijk
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Redmar C Vlieg
- Leiden Institute of Physics (LION), Leiden University, Leiden, the Netherlands
| | - S John T van Noort
- Leiden Institute of Physics (LION), Leiden University, Leiden, the Netherlands
| | - Jorge Mejia
- Namur Institute of Structured Matter (NISM), Synthesis, Irradiation and Analysis of Materials Platform (SIAM), University of Namur, Namur, Belgium
| | - Julien L Colaux
- Namur Institute of Structured Matter (NISM), Synthesis, Irradiation and Analysis of Materials Platform (SIAM), University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Namur Institute of Structured Matter (NISM), Synthesis, Irradiation and Analysis of Materials Platform (SIAM), University of Namur, Namur, Belgium
| | - Gerda Lamers
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| |
Collapse
|
120
|
Huang Y, Ding J, Zhang G, Liu S, Zou H, Wang Z, Zhu W, Geng J. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142256. [PMID: 33207491 DOI: 10.1016/j.scitotenv.2020.142256] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
The present study used red tilapia (Oreochromis niloticusas) as the model fish to compare the interactive effects between aged and virgin microplastics (MPs) with the antibiotic sulfamethoxazole (SMX) and the β-blocker propranolol (PRP). To this end, the ultraviolet irradiation was used to simulate the MP aging in the environment. The accumulations of MPs and pharmaceuticals, and changes in enzyme activities and genes expressions in tilapia were also evaluated. Some physical properties of MPs changed during the aging process, reflected by 0.27- and 0.16-fold increases in the specific surface area and average pore volume, respectively. And more carbonyl formation was observed on the surface of aged MPs. Compared to the 14-d coexposure with virgin MPs, the MP aging increased the accumulation of PRP by 82.3% in the brain, whereas decreased the concentration of SMX by 46.1% in the gills. The stress on tilapia caused by the MPs and PRP was alleviated by the aging process, largely related to the lower neurotoxicity and reduced lipid peroxidation damages. However, the coexposure to aged MPs and SMX would result in higher inhibitions of cytochrome P450 enzymes activities. The results of the transcriptomics showed that the MP aging mainly influenced the expression of genes related to the metabolic process, immune system process, and the genetic information process in tilapia under the coexposure to MPs and pharmaceuticals. Collectively, our results suggest that the MP aging could induce complex changes in the interactive effects between MPs and pharmaceuticals on aquatic organisms.
Collapse
Affiliation(s)
- Yejing Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
| | - Shujiao Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Wuxi 214081, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
121
|
Almeda R, Rodriguez-Torres R, Rist S, Winding MHS, Stief P, Hansen BH, Nielsen TG. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141264. [PMID: 32871308 DOI: 10.1016/j.scitotenv.2020.141264] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Arctic sea ice has alarmingly high concentrations of microplastics (MPs). Additionally, sea ice reduction in the Arctic is opening new opportunities for the oil and maritime industries, which could increase oil pollution in the region. Yet knowledge of the effects of co-exposure to MPs and crude oil on Arctic zooplankton is lacking. We tested the influence of MPs (polyethylene, 20.7 μm) on polycyclic aromatic hydrocarbon (PAH) bioaccumulation and oil toxicity in the key arctic copepod Calanus hyperboreus after exposure to oil with and without dispersant. Up to 30% of the copepods stopped feeding and fecal pellet production rates were reduced after co-exposure to oil (1 μL L-1) and MPs (20 MPs mL-1). The PAH body burden was ~3 times higher in feeding than in non-feeding copepods. Copepods ingested both MPs and crude oil droplets. MPs did not influence bioaccumulation of PAHs in copepods or their fecal pellets, but chemical dispersant increased bioaccumulation, especially of ≥4 ring-PAHs. Our results suggest that MPs do not act as vectors of PAHs in Arctic marine food webs after oil spills, but, at high concentrations (20 MPs mL-1), MPs can trigger behavioral stress responses (e.g., feeding suppression) to oil pollution in zooplankton.
Collapse
Affiliation(s)
- R Almeda
- Section for Oceans and Arctic, DTU Aqua, Technical University of Denmark, Denmark.
| | - R Rodriguez-Torres
- Section for Oceans and Arctic, DTU Aqua, Technical University of Denmark, Denmark
| | - S Rist
- DTU Environment, Technical University of Denmark, Denmark
| | - M H S Winding
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Greenland
| | - P Stief
- University of Southern Denmark, Denmark
| | | | - T Gissel Nielsen
- Section for Oceans and Arctic, DTU Aqua, Technical University of Denmark, Denmark
| |
Collapse
|
122
|
Zhang R, Wang M, Chen X, Yang C, Wu L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140638. [PMID: 32679492 DOI: 10.1016/j.scitotenv.2020.140638] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on organisms have drawn a worldwide attention in the recent years. In this study, zebrafish embryos were employed to assess the combined effects of MPs and cadmium (Cd) on the aquatic organisms. Lethal and sublethal effects were recorded at 8, 24, 32, 48 and 96 hpe (hour post exposure, hpe). The exposure under a series concentration of MPs and/or an environmental level Cd has the negative impacts on survival and heart rate (HR). And there was a positive correlation between MPs concentration and lethal and sublethal toxicity under combined exposure. The physiological parameters showed that the mixture of two stressors had the antagonistic toxicity under low concentration of MPs (0.05, 0.1 mg/L) while the synergistic sublethal toxicity under high levels of MPs (1, 5, 10 mg/L) on zebrafish embryos. Both the scanning electron micrographs (SEM) and fluorescence microscope photos suggested an electrostatic interaction and weak physical forces generated between MPs and chorion membrane. It is inferred that the 10 μm MPs could induce the protective effect of chorion membrane and cause complex toxicities with Cd. But when it involved with other pollutants, the toxic effects and mechanism are still waiting to be figured out.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
123
|
Hanslik L, Sommer C, Huppertsberg S, Dittmar S, Knepper TP, Braunbeck T. Microplastic-associated trophic transfer of benzo(k)fluoranthene in a limnic food web: Effects in two freshwater invertebrates (Daphnia magna, Chironomus riparius) and zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108849. [PMID: 32768657 DOI: 10.1016/j.cbpc.2020.108849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
The continuously growing plastic production and incomplete recycling processes open manifold entry routes for microplastic particles (MPs) into the environment. Since knowledge on trophic transfer of contaminants sorbed to MPs is still insufficient for freshwater systems, the transfer of the model pollutant benzo(k)fluoranthene (BkF) sorbed to polymethyl methacrylate (PMMA) particles in a limnic food web was investigated: Two freshwater invertebrates (Daphnia magna and Chironomus riparius larvae) were selected and either left untreated, exposed to pristine PMMA, PMMA-associated BkF, or exposed to dissolved BkF (BkFaq). As second-level consumers, zebrafish (Danio rerio) were fed twice daily with pre-treated invertebrates over two days. Induction of hepatic cytochrome P450 by BkF was determined as 7-ethoxy-O-resorufin deethylase (EROD) activity. Both invertebrate species readily ingested PMMA particles, tracked via fluorescence microscopy and accumulated BkFaq, measured via GC-MS. Fluorescence signals in gastrointestinal tracts of zebrafish were quantified with confocal laser scanning microscopy (CLSM). The fluorescence signal in gastrointestinal tracts of zebrafish was not altered, whereas, EROD activity was significantly induced when zebrafish were fed with Chironomus riparius, pre-exposed to BkFaq. Trophic exposure scenarios with BkF sorbed to PMMA did not result in any alterations of investigated endpoints in both invertebrate species and zebrafish compared to controls. Given that BkF amounts were in the low ng-range, as detected by GC-MS, the transport of MP-sorbed BkF to zebrafish was less effective than direct exposure to waterborne BkFaq, and the potential threat of trophic transfer of substances such as BkF in limnic food webs may have been overestimated.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Carmen Sommer
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Stefan Dittmar
- Chair of Water Quality Control, Technical University of Berlin, Str. des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, D-65510 Idstein, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
124
|
Piarulli S, Airoldi L. Mussels facilitate the sinking of microplastics to bottom sediments and their subsequent uptake by detritus-feeders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115151. [PMID: 32673992 DOI: 10.1016/j.envpol.2020.115151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MP) are omnipresent contaminants in the oceans, however little is known about the MP transfer between marine compartments and species. Three connected laboratory experiments using the filter-feeding mussel Mytilus galloprovincialis and the omnivorous polichaete Hediste diversicolor were conducted to evaluate whether the filtering action by mussels affects the vertical transfer of MP of different sizes (MPSMALL = 41 μm; MPLARGE = 129 μm) and densities (polyamide = 1.15 g cm-3; polypropylene = 0.92 g cm-3) across compartments and species with different feeding modes. Mussels significantly removed MP from the water column by incorporating them into biodeposits. This effect was particularly evident for the MPSMALL, whose deposition from the water column to the bottom was enhanced (about 15%) by the action of mussels. The incorporation of MP into faecal pellets increased the particles' sinking velocity by about 3-4 orders of magnitude. Conversely, the MP presence significantly decreased the depositional velocities of faecal pellets, and the magnitude of this effect was greater with increasing MP size and decreasing density. The MP incorporation into mussels' biodeposits also more than doubled the amount of MP uptake by H. diversicolor. We conclude that detrital pathways could be a transfer route of MP across marine compartments and food webs, potentially affecting the distribution of MP in sediments and creating hot-spots of bioavailable MP.
Collapse
Affiliation(s)
- Stefania Piarulli
- Department of Biological, Geological and Environmental Sciences and Interdepartmental Research Centre for Environmental Sciences, UO CoNISMa, University of Bologna, Via S. Alberto 163, 48123, Ravenna, Italy.
| | - Laura Airoldi
- Department of Biological, Geological and Environmental Sciences and Interdepartmental Research Centre for Environmental Sciences, UO CoNISMa, University of Bologna, Via S. Alberto 163, 48123, Ravenna, Italy; Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, 30015, Chioggia, Italy.
| |
Collapse
|
125
|
Lin L, Ma LS, Li HX, Pan YF, Liu S, Zhang L, Peng JP, Fok L, Xu XR, He WH. Low level of microplastic contamination in wild fish from an urban estuary. MARINE POLLUTION BULLETIN 2020; 160:111650. [PMID: 32920257 DOI: 10.1016/j.marpolbul.2020.111650] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Microplastic accumulation in estuarine environments is considered the dominant input of land-based plastics into the oceans. In this study, the level of microplastic contamination was evaluated in 26 species of wild fish from the Pearl River Estuary, South China. Results showed that microplastics abundance ranged from 0.17 items individual-1 (Boleophthalmus pectinirostris & Acanthogobius flavimanus) to 1.33 items individual-1 (Plectorhynchus cinctus) among different species. The distribution of microplastic abundance in the gills and gastrointestinal tracts was not significantly different. Microplastics in gills are strongly related to the filtration area of gills in 15 fish species. Fibers were the dominant shapes accounting for 93.45% of the total shapes. The majority of microplastics were <3 mm in size. The most common polymer composition was polyethylene terephthalate (38.2%) and the most common color was black (30.36%). The findings of this study provide baseline data for microplastic contamination in wild fish from an urban estuary.
Collapse
Affiliation(s)
- Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li-Sha Ma
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Li Zhang
- Marine Environmental Testing Center, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jin-Ping Peng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lincoln Fok
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wei-Hong He
- Marine Environmental Testing Center, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
126
|
Hu M, Palić D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol 2020; 37:101620. [PMID: 32863185 PMCID: PMC7767742 DOI: 10.1016/j.redox.2020.101620] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted considerable attention in the recent years as potential threats to the ecosystem and public health. This review summarizes current knowledge of pathological events triggered by micro- and nano-plastics (MP/NPs) with focus on oxidative damages at different levels of biological complexity (molecular, cellular, tissue, organ, individual and population). Based on published information, we matched the apical toxicity endpoints induced by MP/NPs with key event (KE) or adverse outcomes (AO) and categorized them according to the Adverse Outcome Pathway (AOP) online knowledgebase. We used existing AOPs and applied them to highlight formal mechanistic links between identified KEs and AOs in two possible scenarios: first from ecological, and second from public health perspective. Ecological perspective AOP based literature analysis revealed that MP/NPs share formation of reactive oxygen species as their molecular initiating event, leading to adverse outcomes such as growth inhibition and behavior alteration through oxidative stress cascades and inflammatory responses. Application of AOP on literature data related to public health perspective of MP/NPs showed that oxidative stress and its responding pathways, including inflammatory responses, could play the role of key events. However insufficient information prevented precise definitions of AOPs at this level. To overcome this knowledge gap, further mammalian model and epidemiological studies are necessary to support development and construction of detailed AOPs with public health focus.
Collapse
Affiliation(s)
- Moyan Hu
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
127
|
Tien CJ, Wang ZX, Chen CS. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114962. [PMID: 32554090 DOI: 10.1016/j.envpol.2020.114962] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/12/2023]
Abstract
The occurrence of microplastics was investigated in water, sediment and fish from the Fengshan River system. All collected samples contained microplastics with 334-1058 items/m3 in the water samples, 508-3987 items/kg dry weight in the sediment samples and 14-94 items/fish in the fish samples. The spatial distribution of microplastics in water and sediments was attributed to anthropogenic discharges, flow dynamics, tidal exchanges and microplastic density. This was evidenced by significant correlations of microplastics with the river pollution index (RPI), chemical oxygen demand (COD), suspended solid (SS), flow velocity and the presence of different polymer types of microplastics in water and sediment. Microplastic abundance in fish was correlated to SS, pH and conductivity, indicating that these water quality variables might affect bioavailability of microplastics to fish. Concentrations of microplastics/cm length of demersal fish at a higher trophic level (Leiognathus equulus and Pomadasys argenteus) were higher than those of a benthopelagic fish (Oreochromis niloticus niloticus). The significant relationships observed suggest that collected fish might prefer to ingest long fibrous microplastics from sediments and large fragmented microplastics from water. The high levels of 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs), particularly fluoranthene and pyrene, in fish muscle revealed that the collected fish species might have a high ability to accumulate these PAHs from food and the environment. Significant relationships between some PAHs in fish and microplastic abundances in water/sediments/fish suggested that these PAHs might be accumulated by fish from contaminated microplastics. This study provides unique information on the factors influencing the spatial distribution of microplastics and the role of microplastics on the accumulation of PAHs by fish.
Collapse
Affiliation(s)
- Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan
| | - Zi-Xuan Wang
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan
| | - Colin S Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62 Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan.
| |
Collapse
|
128
|
Xia Y, Zhou JJ, Gong YY, Li ZJ, Zeng EY. Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115061. [PMID: 32599333 DOI: 10.1016/j.envpol.2020.115061] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Microplastic (MP) pollution has become an area of increasing concern because MPs accumulate various types of pollutants. Many previous studies have explored the interactions between MPs and hydrophobic pollutants. However, little research has been conducted on hydrophilic pollutants, which are of much higher concentration and ubiquitous in environment. Surfactants cause hydrophobic MPs to become hydrophilic, which may significantly enhance their capacities to adsorb hydrophilic pollutants. This study explored the influence of co-existing surfactants on the adsorption of ionic organic pollutants by MPs, and found that the presence of an ionic surfactant could significantly enhance the capacity of polyvinyl chloride (PVC, 0.2 mm) MPs to adsorb pollutants with opposite charges. The Langmuir methylene blue adsorption capacity of PVC could be increased from 172 to 4417 ppm in the presence of a sodium dodecyl benzene sulfonate surfactant. Nonionic surfactants impeded the adsorption of both cationic and anionic pollutants due to the steric resistance of the hydrophilic polyethelene glycol chains. The electrostatic interaction mechanism dominated the interfacial behaviors of ionic pollutants on surfactant-adsorbed MP interfaces. The effects of the surfactants were further verified using four different model pollutants and six surfactants. The adsorption capacities of real environmental MPs, including PVC, polyethylene (PE), polypropylene (PP), and polystyrene (PS), increased by three to twenty-six times. The adsorption properties of MPs may be determined by the presence of co-existing surfactants, rather than their polymer species or additives.
Collapse
Affiliation(s)
- Yan Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Juan-Juan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Yan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhan-Jun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
129
|
Cousin X, Batel A, Bringer A, Hess S, Bégout ML, Braunbeck T. Microplastics and sorbed contaminants - Trophic exposure in fish sensitive early life stages. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105126. [PMID: 32891915 DOI: 10.1016/j.marenvres.2020.105126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated very small microplastic particle (MPs) transfer to zebrafish and marine medaka larvae via prey experimentally exposed to MPs from the onset of feeding. Larvae were fed Paramecium or Artemia nauplii loaded with fluorescent 1-5 or 10-20 μm MP. Pollutant accumulation was analyzed by optically tracking of benzo[a]pyrene (BaP) and recording cyp1a transcription. Paramecium transferred 1-5 μm particles only, whereas Artemia efficiently transferred both MPs. Although zebrafish and medaka larvae fed from the onset of active food intake (2-3 dph, respectively) on Paramecium and from days 6-7 post-hatch on Artemia nauplii, neither MP accumulation nor translocation to tissues was detected. MP egestion started within few hours after ingestion. Cyp1a induction and fluorescent analyses proved BaP bioavailability after transfer via Paramecium and Artemia. Unicellular or plankton organisms ingest contaminants via MPS and transfer effectively these to sensitive early life-stages of vertebrates, giving rise to whole-life exposure.
Collapse
Affiliation(s)
- Xavier Cousin
- Laboratoire Ressources Halieutiques, IFREMER, Place Gaby Coll, L'Houmeau, France; MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD Palavas-les-Flots, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France.
| | - Annika Batel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Arno Bringer
- Laboratoire Ressources Halieutiques, IFREMER, Place Gaby Coll, L'Houmeau, France
| | - Sebastian Hess
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Marie-Laure Bégout
- Laboratoire Ressources Halieutiques, IFREMER, Place Gaby Coll, L'Houmeau, France; MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD Palavas-les-Flots, France
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
130
|
Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, Zhu W, Geng J. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122693. [PMID: 32353735 DOI: 10.1016/j.jhazmat.2020.122693] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
Nanoplastics (NPs) and microplastics (MPs) are a heterogeneous class of pollutants with diverse sizes in aquatic environments. To evaluate the hazardous effects of N/MPs with different sizes, the accumulation, oxidative stress, cytochrome P450 (CYP) enzymes, neurotoxicity, and metabolomics changes were investigated in the red tilapia exposed to three sizes of polystyrene (PS) N/MPs (0.3, 5, and 70 - 90 μm). After 14-d exposures, the largest particles (70 - 90 μm) showed the highest accumulation levels in most cases. Exposures to PS-MPs (5 and 70 - 90 μm) caused a more severe oxidative stress in red tilapia than PS-NPs. The activity of CYP3A-related enzyme was obviously inhibited by PS-NPs, whereas the CYP enzymes in the liver may not be sensitive to MP exposures. In the brain, only 5 μm PS-MPs significantly inhibited the acetylcholinesterase activity. After exposures, the treatments with 0.3, 5, and 70 - 90 μm N/MPs resulted in 31, 40, and 23 significantly differentially expressed metabolites, respectively, in which the pathway of tyrosine metabolism was significantly affected by all the three PS-N/MP exposures. Overall, the PS particles within the μm size posed more severe stress to red tilapia. Our results suggest that the toxicity of N/MPs may not show a simply monotonic negative correlation with their sizes.
Collapse
Affiliation(s)
- Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Yejing Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shujiao Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shanshan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China.
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi, 214122, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Wuxi, 214081, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
131
|
Assas M, Qiu X, Chen K, Ogawa H, Xu H, Shimasaki Y, Oshima Y. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. MARINE POLLUTION BULLETIN 2020; 158:111446. [PMID: 32753222 DOI: 10.1016/j.marpolbul.2020.111446] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to elucidate the uptake and bioaccumulation of polystyrene microplastics (PS-MPs) in Japanese medaka (freshwater fish) and Java medaka (marine fish), and to assess its impacts on the survival, reproduction, and gene expression of Japanese medaka. Both species were exposed to 2-μm fluorescent PS-MPs (107 beads/L) for 3 weeks. The bioaccumulation factor of PS-MPs for Java medaka was calculated at about 4 × 102, higher than that for Japanese medaka (about 1 × 102). The exposure had no significant effects on the survival and reproduction of Japanese medaka. The mRNA sequencing analysis showed that the expression of a few genes involved in the cell adhesion, xenobiotic metabolic process, brain development, and other functions in medaka intestines significantly changed after exposure. These results suggest that virgin PS-MPs can potentially accumulate in medaka intestines, but has limited toxicity to Japanese medaka at the concentration up to 107 beads/L.
Collapse
Affiliation(s)
- Mona Assas
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Department of Fish Processing and Biotechnology, Faculty of Fisheries, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Xuchun Qiu
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hijiri Ogawa
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yohei Shimasaki
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, 920-1192, Japan.
| |
Collapse
|
132
|
O'Donovan S, Mestre NC, Abel S, Fonseca TG, Carteny CC, Willems T, Prinsen E, Cormier B, Keiter SS, Bebianno MJ. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32446057 DOI: 10.3389/fmars.2018.00143] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 μm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.
Collapse
Affiliation(s)
- Sarit O'Donovan
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Nélia C Mestre
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Serena Abel
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Camilla C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden; UMR Centre National dela Recherche Scientifique EPOC, University of Bordeaux, Talence, France
| | - Steffen S Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal.
| |
Collapse
|
133
|
O'Donovan S, Mestre NC, Abel S, Fonseca TG, Carteny CC, Willems T, Prinsen E, Cormier B, Keiter SS, Bebianno MJ. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139102. [PMID: 32446057 DOI: 10.1016/j.scitotenv.2020.139102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 μm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.
Collapse
Affiliation(s)
- Sarit O'Donovan
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Nélia C Mestre
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Serena Abel
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Camilla C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden; UMR Centre National dela Recherche Scientifique EPOC, University of Bordeaux, Talence, France
| | - Steffen S Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal.
| |
Collapse
|
134
|
Zhou R, Lu G, Yan Z, Jiang R, Bao X, Lu P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139222. [PMID: 32438173 DOI: 10.1016/j.scitotenv.2020.139222] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
PPCPs (pharmaceutical and personal care products) and microplastics (MPs) are two types of emerging pollutants that are ubiquitous and widely concerned in the environment. Both of them can accumulate in fish or aquatic invertebrates and transfer to offspring, thereby producing toxic effects on both parents and offspring, in which the characteristics of MPs also enable them to adsorb PPCPs thus producing carrier effects. In this study, we have conducted a comprehensive review of MPs and PPCPs and found that MPs can act as a carrier of PPCPs to influence the bioaccumulation of PPCPs. MPs and PPCPs have toxicity and transgenerational effects on both fish and aquatic invertebrates in many aspects, and MPs can also affect the toxicity and transgenerational effects of PPCPs due to their carrier effects. This paper revealed that MPs may have an important impact on the bioavailability of PPCPs and the interaction between MPs and PPCPs is a hot topic in future research. This study also puts forward the shortcomings of the current research and related suggestions, and relevant research should be carried out as soon as possible to provide the basis for the prevention and treatment of fresh water.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ping Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
135
|
Duan Z, Duan X, Zhao S, Wang X, Wang J, Liu Y, Peng Y, Gong Z, Wang L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122621. [PMID: 32289630 DOI: 10.1016/j.jhazmat.2020.122621] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Embryonic stage is important for the development of aquatic animals, and embryonic chorion is an efficient barrier against exogenous pollutants. The efficient barrier function of zebrafish (Danio rerio) embryonic chorions against micro- and nano- polystyrene (PS) particles was observed. Embryonic chorions presented high affinity to PS particles. The covering layer of PS particles on the outer surface of chorions affected the patency of pores in chorions, and the nano- PS particles exerted a considerable effect. The accelerated heart rate and blood flow velocity in the embryos indicated that the PS particles adhering to embryonic chorions might cause an internal hypoxic microenvironment in the embryos. The coating of PS particles on embryonic chorions also resulted in delayed hatching of the embryos. The observed development toxicity induced by the nano- and micro-PS particles was confirmed via the expressions of metabolic pathways related to antioxidant system. The pathways of biosynthesis of unsaturated fatty acid, linoleic acid metabolism and alanine, and aspartate and glutamate metabolism extensively altered when the embryos were exposed to PS particles, especially to the nano- PS particles. Although micro- and nano- plastic particles can be efficiently blocked by embryonic chorions, they can still affect the early development of aquatic organisms.
Collapse
Affiliation(s)
- Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xinyue Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoli Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiao Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yubin Liu
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yawen Peng
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lei Wang
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
136
|
Ribeiro F, Okoffo ED, O'Brien JW, Fraissinet-Tachet S, O'Brien S, Gallen M, Samanipour S, Kaserzon S, Mueller JF, Galloway T, Thomas KV. Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9408-9417. [PMID: 32644808 DOI: 10.1021/acs.est.0c02337] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microplastic contamination of the marine environment is widespread, but the extent to which the marine food web is contaminated is not yet known. The aims of this study were to go beyond visual identification techniques and develop and apply a simple seafood sample cleanup, extraction, and quantitative analysis method using pyrolysis gas chromatography mass spectrometry to improve the detection of plastic contamination. This method allows the identification and quantification of polystyrene, polyethylene, polyvinyl chloride, polypropylene, and poly(methyl methacrylate) in the edible portion of five different seafood organisms: oysters, prawns, squid, crabs, and sardines. Polyvinyl chloride was detected in all samples and polyethylene at the highest total concentration of between 0.04 and 2.4 mg g-1 of tissue. Sardines contained the highest total plastic mass concentration (0.3 mg g-1 tissue) and squid the lowest (0.04 mg g-1 tissue). Our findings show that the total concentration of plastics is highly variable among species and that microplastic concentration differs between organisms of the same species. The sources of microplastic exposure, such as packaging and handling with consequent transference and adherence to the tissues, are discussed. This method is a major development in the standardization of plastic quantification techniques used in seafood.
Collapse
Affiliation(s)
- Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, U.K
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sarah Fraissinet-Tachet
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Stacey O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michael Gallen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Saer Samanipour
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Van't Hoff Institute for Molecular Sciences University of Amsterdam 1098 XH Amsterdam, The Netherlands
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, U.K
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
137
|
Bhagat J, Zang L, Nishimura N, Shimada Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138707. [PMID: 32361115 DOI: 10.1016/j.scitotenv.2020.138707] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have received global concern due to its widespread contamination, ingestion in aquatic organisms and the ability to cross the biological barrier. However, our understanding of its bioaccumulation, toxicity, and interaction with other environmental pollutants is limited. Zebrafish is increasingly used to study the bioaccumulation and toxicity of environmental contaminants because of their small size, ease of breed, short life cycle and inexpensive maintenance. The transparent nature of zebrafish embryo and larvae provides excellent experimental advantages over other model organisms in studying the localization of fluorescent-labeled MPs/NPs particles. Zebrafish outplays the traditional rodent models with the availability of transgenic lines, high-throughput sequencing and genetic similarities to humans. All these characteristics provide an unprecedented opportunity to investigate the toxicity of MPs/NPs and associated contaminants. This review summarizes the existing literature on MPs/NPs research in zebrafish and suggests a path forward for future research.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
138
|
Le Bihanic F, Clérandeau C, Cormier B, Crebassa JC, Keiter SH, Beiras R, Morin B, Bégout ML, Cousin X, Cachot J. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. MARINE POLLUTION BULLETIN 2020; 154:111059. [PMID: 32319895 DOI: 10.1016/j.marpolbul.2020.111059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
The role of polyethylene microplastics 4-6 μm size (MPs) in the toxicity of environmental compounds to fish early life stages (ELS) was investigated. Marine medaka Oryzias melastigma embryos and larvae were exposed to suspended MPs spiked with three model contaminants: benzo(a)pyrene (MP-BaP), perfluorooctanesulfonic acid (MP-PFOS) and benzophenone-3 (MP-BP3) for 12 days. There was no evidence of MPs ingestion but MPs agglomerated on the surface of the chorion. Fish ELS exposed to virgin MPs did not show toxic effects. Exposure to MP-PFOS decreased embryonic survival and prevented hatching. Larvae exposed to MP-BaP or MP-BP3 exhibited reduced growth, increased developmental anomalies and abnormal behavior. Compared to equivalent waterborne concentrations, BaP and PFOS appeared to be more embryotoxic when spiked on MPs than when alone in seawater. These results suggest a relevant pollutant transfer by direct contact of MPs to fish ELS that should be included in the ecotoxicological risk assessment of MPs.
Collapse
Affiliation(s)
| | | | - Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France; Örebro University, Man-Technology Environment Research Center, Örebro, Sweden
| | | | - Steffen H Keiter
- Örebro University, Man-Technology Environment Research Center, Örebro, Sweden
| | | | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France
| | | | - Xavier Cousin
- Ifremer, Laboratoire Ressources Halieutiques, 17137 L'Houmeau, France; MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, 34250 Palavas, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France
| |
Collapse
|
139
|
Chang W, Nie J, Geng Y, Zhang D, Wang Q, Farooq S. Etoxazole stereoselective determination, bioaccumulation, and resulting oxidative stress in Danio rerio (zebrafish). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110287. [PMID: 32036102 DOI: 10.1016/j.ecoenv.2020.110287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
An environmentally-friendly and fast analytical method for the stereoselective determination of etoxazole was developed and then applied to estimate stereoselective bioaccumulation and elimination in zebrafish using SFC-MS/MS. Optimal enantioseparation conditions were determined using a Chiralpak IG-3 column and CO2/MeOH mobile phase (80/20, v/v), at 3.0 mL/min within 1 min, 30°Me and 18 MPa. A modified QuEChERS method was developed for zebrafish sample pretreatment, and mean recoveries were 88.43-110.12% with relative standard deviations ranging from 0.32 to 5.34%. The enantioselectives of etoxazole enantiomers in zebrafish during uptake and depuration phases were evaluated. Significant enantioselective bioaccumulation was observed, with preferential accumulation of (-)-R-etoxazole compared to its antipode, during uptake at both low and high exposure concentrations. The toxic effects of etoxazole on zebrafish were further explored, and activities of antioxidant enzymes were determined in liver of zebrafish. Significant changes were observed in the SOD and GST activities and in the MDA levels, which indicated the occurrence of oxidative stress in liver of zebrafish. The toxic effects exhibited time- and dose-dependent properties. These results can facilitate the accurate risk evaluation of etoxazole and provide basic knowledge for further study of biotoxicity mechanisms.
Collapse
Affiliation(s)
- Weixia Chang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China; College of Horticulture, Qingdao Agriculture University, Qingdao, 266109, China.
| | - Yue Geng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Danyang Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Qi Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Saqib Farooq
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|
140
|
Li R, Yu L, Chai M, Wu H, Zhu X. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135025. [PMID: 31787304 DOI: 10.1016/j.scitotenv.2019.135025] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 05/28/2023]
Abstract
During the production, use and disposal of plastic products, microplastics (MPs) are dispersed into the surrounding environment and have inevitable impacts on mangrove ecosystems in estuaries and offshore areas. In the mangroves of Southern China, the systematic evaluation of the distribution, characteristics and ecological risks of MPs is lacking. In this study, surface sediments (0-5 cm depth) were collected from six representative mangroves in China to explore MP contamination and its associated ecological risk. Based on the results, MP concentrations of MPs in mangrove sediments were as follows: FT (2249 ± 747 items/kg), ZJ (736 ± 269 items/kg), DF (649 ± 443 items/kg), DZG (431 ± 170 items/kg), YX (424 ± 127 items/kg), and FCG (227 ± 173 items/kg). The higher MP concentration in the Futian mangrove was mainly related to inputs from the Pearl River, the third largest river in China. The predominant shape, colour, and size of MPs were fibrous, white-transparent, and 500-5000 μm, respectively. The main MP polymer types were polypropylene, polyethylene, and polystyrene. Degradation artefacts were present on surface of MPs as well as metallic and non-metallic elements. MPs concentration in mangrove sediments increased with increasing social-economic development of surrounding districts, which indicated the clear influence of anthropogenic activity on MP pollution in these mangroves. Furthermore, total organic carbon (TOC) and silt content were positively associated with MPs (P < 0.01), indicating a facilitatory role in deposition of MPs in mangroves. Based on a comprehensive evaluation using the potential ecological risk factor (Ei), potential ecological risk (RI), polymer risk index (H) and pollution load index (PLI), MPs were found to present ecological risks in these mangroves, with the highest risk occurring in the Futian mangrove.
Collapse
Affiliation(s)
- Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Lingyun Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Hailun Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
141
|
Sørensen L, Rogers E, Altin D, Salaberria I, Booth AM. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113844. [PMID: 31874435 DOI: 10.1016/j.envpol.2019.113844] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/07/2019] [Accepted: 12/16/2019] [Indexed: 05/22/2023]
Abstract
Organic chemical pollutants associated with microplastic (MP) may represent an alternative exposure route for these chemicals to marine biota. However, the bioavailability of MP-sorbed organic pollutants under conditions where co-exposure occurs from the same compounds dissolved in the water phase has rarely been studied experimentally, especially where pollutant concentrations in the two phases are well characterized. Importantly, higher concentrations of organic pollutants on ingested MP may be less bioavailable to aquatic organisms than the same chemicals present in dissolved form in the surrounding water. In the current study, the sorption kinetics of two model polycyclic aromatic hydrocarbons (PAHs; fluoranthene and phenanthrene) to MP particles in natural seawater at 10 and 20 °C were studied and the bioavailability of MP-sorbed PAHs to marine copepods investigated. Polyethylene (PE) and polystyrene (PS) microbeads with mean diameters ranging from 10 to 200 μm were used to identify the role of MP polymer type and size on sorption mechanisms. Additionally, temperature dependence of sorption was investigated. Results indicated that adsorption dominated at lower temperatures and for smaller MP (10 μm), while absorption was the prevailing process for larger MP (100 μm). Monolayer sorption dominated at lower PAH concentrations, while multilayer sorption dominated at higher concentrations. PE particles representing ingestible (10 μm) and non-ingestible (100 μm) MP for the marine copepod species Acartia tonsa and Calanus finmarchicus were used to investigate the availability and toxicity of MP-sorbed PAHs. Studies were conducted under co-exposure conditions where the PAHs were also present in the dissolved phase (Cfree), thereby representing more environmentally relevant exposure scenarios. Cfree reduction through MP sorption was reflected in a corresponding reduction of lethality and bioaccumulation, with no difference observed between ingestible and non-ingestible MP. This indicates that only free dissolved PAHs are significantly bioavailable to copepods under co-exposure conditions with MP-sorbed PAHs.
Collapse
Affiliation(s)
- Lisbet Sørensen
- SINTEF Ocean, Department of Environment and New Resources, Trondheim, Norway
| | - Emilie Rogers
- Norwegian University of Science and Technology, Department of Chemistry, Trondheim, Norway
| | | | - Iurgi Salaberria
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Andy M Booth
- SINTEF Ocean, Department of Environment and New Resources, Trondheim, Norway.
| |
Collapse
|
142
|
Qu H, Ma R, Barrett H, Wang B, Han J, Wang F, Chen P, Wang W, Peng G, Yu G. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). ENVIRONMENT INTERNATIONAL 2020; 136:105480. [PMID: 31962271 DOI: 10.1016/j.envint.2020.105480] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The biological impacts of microplastics on many organisms have been well documented. However, the combined effects of microplastics and chiral chemicals on the aquatic food chain are less clear. In the present study, the enantioselective environmental behaviors of methamphetamine co-exposed with microplastics through an aquatic food chain (from Chlorella pyrenoidosa to Cipangopaludian cathayensis) have been investigated in a laboratory environment. It was found that the acute toxicity of methamphetamine against these two species was significantly increased in the presence of microplastics: Chlorella pyrenoidosa showed an EC50 shift from 0.77 to 0.32 mg L-1, while cipangopaludian cathayensis showed an LC50 shift from 4.15 to 1.48 mg L-1, upon the addition of microplastics as a co-contaminant with methamphetamine. Upon exposure to methamphetamine and microplastics, the oxidative damage of algae (19.9 to 36.8 nmol mgprot-1), apoptosis (increase about 2.17 times) and filtration rate (41.2 to 65.4 mL h-1) of snails were observably higher when compared to exposure to methamphetamine alone. After ingestion and accumulation of microplastics, the enantioselectivity, BCFs, BMFs, and distribution of methamphetamine were significantly altered. These results provide evidence that the co-occurrence of microplastics and the chiral drug methamphetamine may increase the burden on aquatic species, with potential further impacts throughout aquatic food chain.
Collapse
Affiliation(s)
- Han Qu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruixue Ma
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecological Environment, Guangzhou 510655, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto. Toronto, ON M5S 3H6, Canada
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiajun Han
- Department of Chemistry, University of Toronto. Toronto, ON M5S 3H6, Canada
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pin Chen
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guilong Peng
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
143
|
SanJuan-Reyes N, Gómez-Oliván LM, Pérez-Pastén Borja R, Luja-Mondragón M, Orozco-Hernández JM, Heredia-García G, Islas-Flores H, Galar-Martínez M, Escobar-Huérfano F. Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. ENVIRONMENTAL RESEARCH 2020; 182:108992. [PMID: 31830696 DOI: 10.1016/j.envres.2019.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Marlenne Luja-Mondragón
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - José Manuel Orozco-Hernández
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Gerardo Heredia-García
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Francisco Escobar-Huérfano
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
144
|
Shang X, Lu J, Feng C, Ying Y, He Y, Fang S, Lin Y, Dahlgren R, Ju J. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135837. [PMID: 31846818 DOI: 10.1016/j.scitotenv.2019.135837] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 05/27/2023]
Abstract
As an emerging environmental pollutant, microplastics (MPs) are increasingly viewed as a serious health concern to terrestrial and aquatic ecosystems. However, previous toxicological studies examining MPs on freshwater and terrestrial organisms provide contradictory results, possibly due to few investigations at environmentally relevant concentrations. Here, the nematode Caenorhabditis elegans (C. elegans), a model organisms with both aquatic and terrestrial free-living forms, was employed to investigate the effects of 1 and 5 μm MPs (107-1010 particles/m2) on the intake, lifespan, defecation rhythm, defecation-related neurons and transcriptional expression of related genes (skn-1, mkk-4, pmk-1, cpr-1 and itr-1). We demonstrated that the percentage of MP-contaminated nematodes increased with increasing exposure concentrations and duration. The lifespan of nematodes in the lower concentration exposure groups (2.4 × 107 and 2.4 × 108 particles/m2) decreased more prominently than that of higher concentration groups (2.4 × 109 and 2.4 × 1010 particles/m2) after a 72-h exposure period. Concomitantly, expression of the skn-1 gene, involved in detoxification and lifespan regulation, was significantly altered at lower MP concentrations. Physiologically, the defecation rhythm after a 72-h exposure period was most strongly affected by 1 μm MPs at 2.4 × 108 particles/m2. The significant up-regulation of related genes by 1 μm MPs appears responsible for the shortened defecation interval. Results of this study identified a potential toxicity threat to C. elegans from exposure to MPs at environmentally relevant concentrations and provide novel evidence for MP risks to freshwater and terrestrial organisms. Capsule. After exposure to 1 and 5 μm MPs (107-1010 particles/m2), the lifespan of C. elegans decreased more rapidly at lower concentrations.
Collapse
Affiliation(s)
- Xu Shang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiawei Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Cheng Feng
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yimeng Ying
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yuanchen He
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Sheng Fang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Ying Lin
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Randy Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Jingjuan Ju
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
145
|
Honda M, Suzuki N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1363. [PMID: 32093224 PMCID: PMC7068426 DOI: 10.3390/ijerph17041363] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that are widely distributed in the air, water, and soil. Recently, the amount of PAHs derived from fuels and from incomplete combustion processes is increasing. In the aquatic environment, oil spills directly cause PAH pollution and affect marine organisms. Oil spills correlate very well with the major shipping routes. Furthermore, accidental oil spills can seriously impact the marine environment toxicologically. Here, we describe PAH toxicities and related bioaccumulation properties in aquatic animals, including invertebrates. Recent studies have revealed the toxicity of PAHs, including endocrine disruption and tissue-specific toxicity, although researchers have mainly focused on the carcinogenic toxicity of PAHs. We summarize the toxicity of PAHs regarding these aspects. Additionally, the bioaccumulation properties of PAHs for organisms, including invertebrates, are important factors when considering PAH toxicity. In this review, we describe the bioaccumulation properties of PAHs in aquatic animals. Recently, microplastics have been the most concerning environmental problem in the aquatic ecosystem, and the vector effect of microplastics for lipophilic compounds is an emerging environmental issue. Here, we describe the correlation between PAHs and microplastics. Thus, we concluded that PAHs have a toxicity for aquatic animals, indicating that we should emphasize the prevention of aquatic PAH pollution.
Collapse
Affiliation(s)
- Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan;
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| |
Collapse
|
146
|
Guo Y, Ma W, Li J, Liu W, Qi P, Ye Y, Guo B, Zhang J, Qu C. Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113628. [PMID: 31771928 DOI: 10.1016/j.envpol.2019.113628] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Most laboratory studies have focused on the effects of nanoplastics instead of plastics at the micrometer scale, which are the major microplastics (MPs) discarded in marine environments. Knowledge on the potential effects of micrometer scale plastics on marine microalgae remains limited. It remains unknown whether the micrometer scale plastics also affect microalgal growth, lipid accumulation and resistance to organic contaminants? In addition, the role of polymer-size on the potential hazardous effects of MPs on microalgae is unknown. In the present study, cell populations of a marine diatom, Phaeodactylum tricornutum, were treated with micrometer scale polyethylene (PEMP, 150 μm) and unplasticized polyvinyl chloride (uPVCMP, 250 μm) powders in the laboratory. Growth was assessed using a hemacytometer and neutral lipid concentrations were evaluated using the Nile Red staining method under short-term (four days) and long-term (nine days) exposure. The effects of combined PEMP and phenanthrene (Phe), and uPVCMP and Phe exposures over four days on growth were investigated. Importance scores and SHapley Additive exPlanations (SHAP) values were calculated to assess the contributions of seven factors in exposure systems to the hazardous effects of MPs on microalgae using a machine-learning prediction based on 165 data sets. Both MP types did not influence algal growth and lipid accumulation but minimized algal inhibition by the action of Phe at four days. In addition, lipid accumulation was induced at nine days. Both importance scores and SHAP values indicated that MP polymer-size was the key factor influencing MP toxicity in microalgae. In conclusion, MPs had adverse effects only in chronic tests and the potential adsorption of MPs could have led to the lower levels of toxicity in a combined MP-Phe exposure system. Compared to nanoplastics, MPs in the hundred-micrometer range do not significantly affect growth and their adsorption would not be influenced by size. Therefore, MP size is the most critical factor that should be considered in future laboratory tests and eco-toxicological risk assessments for microalgae.
Collapse
Affiliation(s)
- Yahong Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Wei Ma
- The Huaihe River Water Resources Protection Bureau, Bengbu, 233001, Anhui, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Wei Liu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Jianshe Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, Hubei, China
| |
Collapse
|
147
|
Habib RZ, Thiemann T, Al Kendi R. Microplastics and Wastewater Treatment Plants—A Review. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jwarp.2020.121001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
148
|
Meng Y, Kelly FJ, Wright SL. Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113445. [PMID: 31733965 DOI: 10.1016/j.envpol.2019.113445] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Microplastics have been increasingly documented in freshwater ecosystems in recent years, and growing concerns have been raised about their potential environmental health risks. To assess the current state of knowledge, with a focus on the UK, a literature review of existing freshwater microplastics studies was conducted. Sampling and analytical methodologies currently used to detect, characterise and quantify microplastics were assessed and microplastic types, sources, occurrence, transport and fate, and microplastic-biota interactions in the UK's freshwater environments were examined. Just 32% of published microplastics studies in the UK have focused on freshwater environments. These papers cover microplastic contamination of sediments, water and biota via a range of methods, rendering comparisons difficult. However, secondary microplastics are the most common type, and there are point (e.g. effluent) and diffuse (non-point, e.g. sludge) sources. Microplastic transport over a range of spatial scales and with different residence times will be influenced by particle characteristics, external forces (e.g. flow regimes), physical site characteristics (e.g. bottom topography), the degree of biofouling, and anthropogenic activity (e.g. dam release), however, there is a lack of data on this. It is predicted that impacts on biota will mirror that of the marine environment. There are many important gaps in current knowledge; field data on the transport of microplastics from diffuse sources are less available, especially in England. We provide recommendations for future research to further our understanding of microplastics in the environment and their impacts on freshwater biota in the UK.
Collapse
Affiliation(s)
- Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China; MRC Centre for Environment and Health, Analytical and Environmental Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Frank J Kelly
- MRC Centre for Environment and Health, Analytical and Environmental Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Stephanie L Wright
- MRC Centre for Environment and Health, Analytical and Environmental Sciences, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
149
|
Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A. Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). CHEMOSPHERE 2019; 236:124335. [PMID: 31325830 DOI: 10.1016/j.chemosphere.2019.07.066] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 05/27/2023]
Abstract
The growing accumulation of microplastics (MPs) in aquatic environments is a global concern. MPs are capable to interact with other environmental contaminants, including heavy metals, altering their toxicity. The aim of the study was to investigate the sub-lethal effects of cadmium chloride (Cd) alone and in combination with MPs on common carp (Cyprinus carpio). Multi-biomarkers, including plasma biochemical parameters and intrinsic immunological factors, were measured after 30 days of exposure. Exposure to Cd or NPs reduced the plasma activities of acetylcholinesterase (AChE) and gamma-glutamyl-transferase (GGT) and increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP). Exposure to both compounds enhanced the observed effects except for AST activity and ALP at the highest concentrations, whereas evidenced an antagonistic interaction in ALT. Plasma total protein, albumin, and globulin levels were decreased, and the levels of glucose, triglyceride, and cholesterol levels increased mainly in the Cd groups with no additional effects derived from the co-exposure to both stressors. Lysozyme and alternative complement (ACH50) activities and the levels of total immunoglobulins, and complement C3 and C4 in fish exposed to Cd and MPs were lower than those in the control group and this decrease was more significant by the mixture of both compounds. These findings showed that the exposure to Cd or MPs alone is toxic to fish altering the biochemical and immunological parameters. Moreover, these alterations are even greater when the Cd and the MPS are combined suggesting synergistic effects in increasing Cd toxicity and vice versa.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de La Obesidad La Nutrición, University of Balearic Islands, 07122, Palma de Mallorca, Spain.
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mostafa Akhlaghi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azam Derikvandy
- Department of Environment, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Iran
| |
Collapse
|
150
|
Chisada S, Yoshida M, Karita K. Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113094. [PMID: 31479815 DOI: 10.1016/j.envpol.2019.113094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Research using various species of wild and cultured fish has identified negative effects of short-term exposure to microbeads. Although wild animals might be contaminated with microbeads and/or other pharmaceuticals, data regarding the long-term effects remain limited. To clearly elucidate the effects of microbeads, studies of long-term exposure using animal models are necessary. Our aim was to elucidate the effects of microbeads alone on the growth and fecundity of medaka following long-term exposure (12 weeks). In experiment 1, fish groups (except controls) were temporarily exposed to polyethylene microbeads (10-63 μm diameter) a low dose of 0.065 microbeads-mg/L and high dose of 0.65 microbeads-mg/L. In experiment 2, see-through medaka and fluorescent polyethylene microbeads (10-45 μm diameter) were used to estimate the retention time of ingested microbeads in the digestive tract, which was 4-9 days. The low dose of microbeads did not affect growth but did decrease the number of eggs and the hatching rate. The high dose decreased growth, the number of eggs, and hatching rate. Growth differences were recognized for the first time at 7 weeks, and differences in the number of eggs at 12 weeks. Thus, long-term tests using medaka indicated that microbeads per se exhibit growth inhibition and reproductive toxicity. These effects could be associated with nutritional factors resulting from the long retention time of microbeads in the digestive tract. We also determined the dose that affects only fecundity. This suggests that normal growth of medaka in the wild does not mean the environment is free from microbead contamination. We are thus attempting to identify new biological indexes for monitoring the status of microbead contamination using our system.
Collapse
Affiliation(s)
- Shinichi Chisada
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Masao Yoshida
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Kanae Karita
- Department of Hygiene and Public Health, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan.
| |
Collapse
|