101
|
Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:108-17. [DOI: 10.1016/j.mrrev.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
|
102
|
Mills JD, Chen J, Kim WS, Waters PD, Prabowo AS, Aronica E, Halliday GM, Janitz M. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics 2015; 16:201-13. [PMID: 25819921 DOI: 10.1007/s10048-015-0445-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Abstract
Pervasive transcription of the genome produces a diverse array of functional non-coding RNAs (ncRNAs). One particular class of ncRNAs, long intervening non-coding RNAs (lincRNAs) are thought to play a role in regulating gene expression and may be a major contributor to organism and tissue complexity. The human brain with its heterogeneous cellular make-up is a rich source of lincRNAs; however, the functions of the majority of lincRNAs are unknown. Recently, by completing RNA sequencing (RNA-Seq) of the human frontal cortex, we identified linc00320 as being highly expressed in the white matter compared to grey matter in multiple system atrophy (MSA) brain. Here, we further investigate the expression patterns of linc00320 and conclude that it is involved in specific brain regions rather than having involvement in the MSA disease process. We also show that the full-length linc00320 is only expressed in human brain tissue and not in other primates, suggesting that it may be involved in improved functional connectivity for higher human brain cognition.
Collapse
Affiliation(s)
- James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
RNAs not encoding proteins have gained prominence over the last couple of decades as fundamental regulators of cellular function. Not surprisingly, their dysregulation is increasingly being linked to pathology. Here, we review recent reports investigating the pathophysiological relevance of this species of RNA for the cardiovascular system, concentrating mainly on recent findings on long noncoding RNAs and microRNAs in cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Thomas Thum
- From the Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Integrated Research and Treatment Center Transplantation, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany (T.T.); National Heart and Lung Institute, Imperial College London, London, United Kingdom (T.T.); Humanitas Clinical and Research Center, Rozzano, Milan, Italy (G.C.); Institute of Genetics and Biomedical Research, National Research Country of Italy, Milan, Italy (G.C.); University of
| | - Gianluigi Condorelli
- From the Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Integrated Research and Treatment Center Transplantation, and REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany (T.T.); National Heart and Lung Institute, Imperial College London, London, United Kingdom (T.T.); Humanitas Clinical and Research Center, Rozzano, Milan, Italy (G.C.); Institute of Genetics and Biomedical Research, National Research Country of Italy, Milan, Italy (G.C.); University of
| |
Collapse
|
104
|
Cao J, Luo Z, Cheng Q, Xu Q, Zhang Y, Wang F, Wu Y, Song X. Three-dimensional regulation of transcription. Protein Cell 2015; 6:241-53. [PMID: 25670626 PMCID: PMC4383755 DOI: 10.1007/s13238-015-0135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022] Open
Abstract
Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and non-coding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.
Collapse
Affiliation(s)
- Jun Cao
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Zhengyu Luo
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qingyu Cheng
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qianlan Xu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Fei Wang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Wu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Xiaoyuan Song
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
105
|
Mills JD, Kavanagh T, Kim WS, Chen BJ, Waters PD, Halliday GM, Janitz M. High expression of long intervening non-coding RNA OLMALINC in the human cortical white matter is associated with regulation of oligodendrocyte maturation. Mol Brain 2015; 8:2. [PMID: 25575711 PMCID: PMC4302521 DOI: 10.1186/s13041-014-0091-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022] Open
Abstract
Background Long intervening non-coding RNAs (lincRNAs) are a recently discovered subclass of non-coding RNAs. LincRNAs are expressed across the mammalian genome and contribute to the pervasive transcription phenomenon. They display a tissue-specific and species-specific mode of expression and are present abundantly in the brain. Results Here, we report the expression patterns of oligodendrocyte maturation-associated long intervening non-coding RNA (OLMALINC), which is highly expressed in the white matter (WM) of the human frontal cortex compared to the grey matter (GM) and peripheral tissues. Moreover, we identified a novel isoform of OLMALINC that was also up-regulated in the WM. RNA-interference (RNAi) knockdown of OLMALINC in oligodendrocytes, which are the major cell type in the WM, caused significant changes in the expression of genes regulating cytostructure, cell activation and membrane signaling. Gene ontology enrichment analysis revealed that over 10% of the top 25 up- and down-regulated genes were involved in oligodendrocyte maturation. RNAi experiments in neuronal cells resulted in the perturbation of genes controlling cell proliferation. Furthermore, we identified a novel cis-natural antisense non-coding RNA, which we named OLMALINC-AS, which maps to the first exon of the dominant isoform of OLMALINC. Conclusions Our study has demonstrated for the first time that a primate-specific lincRNA regulates the expression of genes critical to human oligodendrocyte maturation, which in turn might be regulated by an antisense counterpart. Electronic supplementary material The online version of this article (doi:10.1186/s13041-014-0091-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomas Kavanagh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia. .,Present address: Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
| | - Woojin S Kim
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia. .,School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia. .,School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
106
|
Chen J, Mills JD, Halliday GM, Janitz M. The role of transcriptional control in multiple system atrophy. Neurobiol Aging 2015; 36:394-400. [DOI: 10.1016/j.neurobiolaging.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
|
107
|
Murakami K. Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev 2015; 11:80-90. [PMID: 25828869 PMCID: PMC5384352 DOI: 10.2174/1573402111666150401105317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as "junk" for a long time and went unnoticed until these days. But recently, it turned out that noncoding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of noncoding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary.
Collapse
Affiliation(s)
- Kazuo Murakami
- Department of Health Care and Preventive Medicine, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama, Ehime, 790-8524, Japan.
| |
Collapse
|
108
|
Gstir R, Schafferer S, Scheideler M, Misslinger M, Griehl M, Daschil N, Humpel C, Obermair GJ, Schmuckermair C, Striessnig J, Flucher BE, Hüttenhofer A. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases. RNA (NEW YORK, N.Y.) 2014; 20:1929-43. [PMID: 25344396 PMCID: PMC4238357 DOI: 10.1261/rna.047225.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 05/24/2023]
Abstract
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.
Collapse
Affiliation(s)
- Ronald Gstir
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schafferer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, 8010 Graz, Austria
| | - Matthias Misslinger
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Griehl
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Daschil
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Claudia Schmuckermair
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Joerg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
109
|
Yan W. Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol Cell Endocrinol 2014; 398:24-30. [PMID: 25224488 PMCID: PMC4262681 DOI: 10.1016/j.mce.2014.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
"Epigenetic transgenerational inheritance" (ETI) has been defined as germline (sperm or egg) transmission of epigenetic information between generations in the absence of direct exposures or genetic manipulations. Among reported cases of ETI in mammals, the majority are induced by environmental factors, including environmental toxicants [e.g. agricultural fungicide vinclozolin, plastic additive bisphenol A, pesticide methoxychlor, dioxin, di-(2-ethylhexyl) phthalate, dichlorodiphenyltrichloroethane, and hydrocarbons] and poor nutritional conditions. Although the ETI phenomenon is well established, the underlying mechanism remains elusive. Putative epimutations, including changes in DNA methylation and histone modification patterns, have been reported, but it remains unclear how these epimutations are formed in the first place, and how they are memorized in the germline and then get transmitted to subsequent generations. Based on recent advances in our understanding of regulatory noncoding RNAs (ncRNAs), I propose that ncRNAs are involved in ETI, during both the initial epimutation formation and the subsequent germline transmission of epimutations. ncRNAs can function at epigenetic levels by affecting DNA methylation and histone modifications, thereby changing gene transcriptional activities, which can lead to an altered mRNA transcriptome associated with a disease phenotype. Alternatively, novel or altered ncRNA expression can cause dysregulated post-transcriptional regulation, thus directly affecting the mRNA transcriptome and inducing a disease phenotype. Sperm-borne ncRNAs are potential mediators for epigenetic memory across generations, but they alone may not be sufficient for stable transmission of epimutations across generations. Overall, research on ncRNAs in the context of ETI is urgently needed to shed light on the underlying mechanism of ETI.
Collapse
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS575, Reno, NV 89557, USA.
| |
Collapse
|
110
|
Villarreal LP. Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N Y Acad Sci 2014; 1341:25-34. [PMID: 25376951 DOI: 10.1111/nyas.12565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lytic viruses were thought to kill the most numerous host (i.e., kill the winner). But persisting viruses/defectives can also protect against viruses, especially in a ubiquitous virosphere. In 1991, Yarmolinsky et al. discovered the addiction modules of P1 phage, in which opposing toxic and protective functions stabilize persistence. Subsequently, I proposed that lytic and persisting cryptic virus also provide addiction modules that promote group identity. In eukaryotes (and the RNA world), a distinct RNA virus-host relationship exists. Retrovirurses/retroposons are major contributors to eukaryotic genomes. Eukaryotic complexity appears to be mostly mediated by regulatory complexity involving noncoding retroposon-derived RNA. RNA viruses evolve via quasispecies, which contain cooperating, minority, and even opposing RNA types. Quasispecies can also demonstrate group preclusion (e.g., hepatitis C). Stem-loop RNA domains are found in long terminal repeats (and viral RNA) and mediate viral regulation/identity. Thus, stem-loop RNAs may be ancestral regulators. I consider the RNA (ribozyme) world scenario from the perspective of addiction modules and cooperating quasispecies (i.e., subfunctional agents that establish group identity). Such an RNA collective resembles a "gang" but requires the simultaneous emergence of endonuclease, ligase, cooperative catalysis, group identity, and history markers (RNA). I call such a collective a gangen (pathway to gang) needed for life to emerge.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, California
| |
Collapse
|
111
|
Blackwell BJ, Lopez MF, Wang J, Krastins B, Sarracino D, Tollervey JR, Dobke M, Jordan IK, Lunyak VV. Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly. Mob Genet Elements 2014; 2:26-35. [PMID: 22754750 PMCID: PMC3383447 DOI: 10.4161/mge.19032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent analyses suggest that transposable element-derived transcripts are processed to yield a variety of small RNA species that play critical functional roles in gene regulation and chromatin organization as well as genome stability and maintenance. Here we report a mass spectrometry analysis of an RNA-affinity complex isolation using a piRNA homologous sequence derived from Alu retrotransposal RNA. Our data point to potential roles for piALU RNAs in DNA repair, cell cycle and chromatin regulations.
Collapse
|
112
|
Ho MW. Horizontal transfer of GM DNA - why is almost no one looking? Open letter to Kaare Nielsen in his capacity as a member of the European Food Safety Authority GMO panel. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:25919. [PMID: 25317115 PMCID: PMC4176668 DOI: 10.3402/mehd.v25.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A culture of denial over the horizontal spread of genetically modified nucleic acids prevails in the face of direct evidence that it has occurred widely when appropriate methods and molecular probes are used for detection.
Collapse
Affiliation(s)
- Mae-Wan Ho
- Institute of Science in Society, London, UK
| |
Collapse
|
113
|
Herb BR. Epigenetics as an answer to Darwin's "special difficulty". Front Genet 2014; 5:321. [PMID: 25309578 PMCID: PMC4162389 DOI: 10.3389/fgene.2014.00321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 11/24/2022] Open
Abstract
Epigenetic modifications produce distinct phenotypes from the same genome through genome-wide transcriptional control. Recently, DNA methylation in honeybees and histone modifications in ants were found to assist the formation of caste phenotypes during development and adulthood. This insight allows us to revisit one of Darwin’s greatest challenges to his natural selection theory; the derivation of multiple forms of sterile workers within eusocial species. Differential feeding of larvae creates two distinct developmental paths between queens and workers, with workers further refined by pheromone cues. Flexible epigenetic control provides a mechanism to interpret the milieu of social cues that create distinct worker sub-caste phenotypes. Recent findings suggest a distinct use for DNA methylation before and after adult emergence. Further, a comparison of genes that are differentially methylated and transcriptionally altered upon pheromone signaling suggests that epigenetics can play a key role in mediating pheromone signals to derive sub-caste phenotypes. Epigenetic modifications may provide a molecular mechanism to Darwin’s ”special difficulty” and explain the emergence of multiple sub-phenotypes among sterile individuals.
Collapse
Affiliation(s)
- Brian R Herb
- Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
114
|
Ulveling D, Dinger ME, Francastel C, Hubé F. Identification of a dinucleotide signature that discriminates coding from non-coding long RNAs. Front Genet 2014; 5:316. [PMID: 25250049 PMCID: PMC4158813 DOI: 10.3389/fgene.2014.00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/22/2014] [Indexed: 11/13/2022] Open
Abstract
To date, the main criterion by which long ncRNAs (lncRNAs) are discriminated from mRNAs is based on the capacity of the transcripts to encode a protein. However, it becomes important to identify non-ORF-based sequence characteristics that can be used to parse between ncRNAs and mRNAs. In this study, we first established an extremely selective workflow to define a highly refined database of lncRNAs which was used for comparison with mRNAs. Then using this highly selective collection of lncRNAs, we found the CG dinucleotide frequencies were clearly distinct. In addition, we showed that the bias in CG dinucleotide frequency was conserved in human and mouse genomes. We propose that this sequence feature will serve as a useful classifier in transcript classification pipelines. We also suggest that our refined database of "bona fide" lncRNAs will be valuable for the discovery of other sequence characteristics distinct to lncRNAs.
Collapse
Affiliation(s)
- Damien Ulveling
- CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Marcel E Dinger
- The University of Queensland Diamantina Institute, The University of Queensland Brisbane, QLD, Australia
| | - Claire Francastel
- CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Florent Hubé
- CNRS UMR7216, Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| |
Collapse
|
115
|
Hudson JE, Porrello ER. The non-coding road towards cardiac regeneration. J Cardiovasc Transl Res 2014; 6:909-23. [PMID: 23797382 DOI: 10.1007/s12265-013-9486-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/05/2013] [Indexed: 12/31/2022]
Abstract
Our understanding of cardiovascular disease has evolved rapidly, leading to a number of treatments that have improved patient quality of life and mortality rates. However, there is still no cure for heart failure. This has led to the pursuit of cardiac regeneration to prevent, and ultimately cure, this debilitating condition. To this end, several approaches have been proposed, including activation of cardiomyocyte proliferation, activation of endogenous or exogenous stem/progenitor cells, delivery of de novo cardiomyocytes, and in situ direct reprogramming of cardiac fibroblasts. While these different methodologies are currently being intensely investigated, there are still a number of caveats limiting their application in the clinic. Given the emerging regulatory potential of non-coding RNAs for controlling diverse cellular processes, these molecules may offer potential solutions in this pursuit of cardiac regeneration. In this concise review, we discuss the potential role of non-coding RNAs in a variety of different cardiac regenerative approaches.
Collapse
|
116
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
117
|
Abstract
The ability to sequence genomes and characterize their products has begun to reveal the central role for regulatory RNAs in biology, especially in complex organisms. It is now evident that the human genome contains not only protein-coding genes, but also tens of thousands of non-protein coding genes that express small and long ncRNAs (non-coding RNAs). Rapid progress in characterizing these ncRNAs has identified a diverse range of subclasses, which vary widely in size, sequence and mechanism-of-action, but share a common functional theme of regulating gene expression. ncRNAs play a crucial role in many cellular pathways, including the differentiation and development of cells and organs and, when mis-regulated, in a number of diseases. Increasing evidence suggests that these RNAs are a major area of evolutionary innovation and play an important role in determining phenotypic diversity in animals.
Collapse
|
118
|
Seth PP, Swayze EE. Unnatural Nucleoside Analogs for Antisense Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
119
|
Harrison BJ, Flight RM, Gomes C, Venkat G, Ellis SR, Sankar U, Twiss JL, Rouchka EC, Petruska JC. IB4-binding sensory neurons in the adult rat express a novel 3' UTR-extended isoform of CaMK4 that is associated with its localization to axons. J Comp Neurol 2014; 522:308-36. [PMID: 23817991 PMCID: PMC3855891 DOI: 10.1002/cne.23398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023]
Abstract
Calcium/calmodulin-dependent protein kinase 4 (gene and transcript: CaMK4; protein: CaMKIV) is the nuclear effector of the Ca(2+) /calmodulin kinase (CaMK) pathway where it coordinates transcriptional responses. However, CaMKIV is present in the cytoplasm and axons of subpopulations of neurons, including some sensory neurons of the dorsal root ganglia (DRG), suggesting an extranuclear role for this protein. We observed that CaMKIV was expressed strongly in the cytoplasm and axons of a subpopulation of small-diameter DRG neurons, most likely cutaneous nociceptors by virtue of their binding the isolectin IB4. In IB4+ spinal nerve axons, 20% of CaMKIV was colocalized with the endocytic marker Rab7 in axons that highly expressed CAM-kinase-kinase (CAMKK), an upstream activator of CaMKIV, suggesting a role for CaMKIV in signaling though signaling endosomes. Using fluorescent in situ hybridization (FISH) with riboprobes, we also observed that small-diameter neurons expressed high levels of a novel 3' untranslated region (UTR) variant of CaMK4 mRNA. Using rapid amplification of cDNA ends (RACE), reverse-transcription polymerase chain reaction (RT-PCR) with gene-specific primers, and cDNA sequencing analyses we determined that the novel transcript contains an additional 10 kb beyond the annotated gene terminus to a highly conserved alternate polyadenylation site. Quantitative PCR (qPCR) analyses of fluorescent-activated cell sorted (FACS) DRG neurons confirmed that this 3'-UTR-extended variant was preferentially expressed in IB4-binding neurons. Computational analyses of the 3'-UTR sequence predict that UTR-extension introduces consensus sites for RNA-binding proteins (RBPs) including the embryonic lethal abnormal vision (ELAV)/Hu family proteins. We consider the possible implications of axonal CaMKIV in the context of the unique properties of IB4-binding DRG neurons.
Collapse
Affiliation(s)
- Benjamin J. Harrison
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
| | - Robert M. Flight
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Cynthia Gomes
- Department of Biochemistry and Molecular Bi ology, University of Louisville School of Medicine, Kentucky, 40202, USA
| | - Gayathri Venkat
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Bi ology, University of Louisville School of Medicine, Kentucky, 40202, USA
| | - Uma Sankar
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40292, USA
- Owensboro Cancer Research Program, University of Louisville, Owensboro, KY 42303, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Jeffrey C. Petruska
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202, USA
- Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, Louisville, Kentucky, 40292, USA
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40202, USA
| |
Collapse
|
120
|
Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 2014; 129:1009-21. [PMID: 24429688 DOI: 10.1161/circulationaha.113.003863] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD). METHODS AND RESULTS Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs. CONCLUSIONS The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.
Collapse
Affiliation(s)
- Kai-Chien Yang
- Department of Developmental Biology (K.-C.Y., J.M.N.) and Center for Cardiovascular Research, Division of Cardiology, Department of Internal Medicine (K.A.Y., A.Y.P., V.K.T., G.A.E., D.L.M.), Washington University Medical School, St. Louis, MO; Division of Cardiothoracic Surgery, New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY (I.G.); and Department of Surgery, University of Maryland School of Medicine, Baltimore (F.H.C.). Dr Yang's current affiliation is the Department of Pharmacology, National Taiwan University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
David L, Clauder-Münster S, Steinmetz LM. High-density tiling microarray analysis of the full transcriptional activity of yeast. Methods Mol Biol 2014; 1205:257-73. [PMID: 25213250 DOI: 10.1007/978-1-4939-1363-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the relationship between DNA sequence variation and phenotypic variation in complex or quantitative traits is one of the major challenges in modern biology. We are witnessing a deluge of DNA sequence information and association studies of genetic polymorphisms with phenotypes of interest in families and populations. In addition, it has become clear that large portions of eukaryotic genomes beyond protein-coding genes are transcribed, generating numerous noncoding RNA (ncRNA) molecules whose functions remain mostly unknown.DNA oligonucleotide microarrays constitute a powerful technology for studying the expression of genes in different organisms. The Saccharomyces cerevisiae tiling array presents a significant advance over previous array-based platforms. It has a high density of overlapping probes that start on average every 8 bp along each strand of the genome, enabling precise definition of transcript structure. Furthermore, the array includes probes specific for the polymorphic positions of another, distantly related yeast strain, allowing accurate measurement of allele-specific expression in a hybrid of the two strains. This technology thus allows high-resolution, quantitative, strand- and allele-specific measurements of transcription from a full eukaryotic genome. In this chapter, we describe the methods for extracting RNA, synthesizing first-strand cDNA, fragmenting, and labeling of samples for hybridization to the tiling array. Combining genome-wide information on variation in DNA sequence with variation in transcript structure and levels promises to increase our understanding of the genotype-to-phenotype relationship.
Collapse
Affiliation(s)
- Lior David
- Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
122
|
Hitzemann R, Darakjian P, Walter N, Iancu OD, Searles R, McWeeney S. Introduction to sequencing the brain transcriptome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:1-19. [PMID: 25172469 DOI: 10.1016/b978-0-12-801105-8.00001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-throughput next-generation sequencing is now entering its second decade. However, it was not until 2008 that the first report of sequencing the brain transcriptome appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors compared short-read RNA-Seq data for mouse whole brain with microarray results for the same sample and noted both the advantages and disadvantages of the RNA-Seq approach. While RNA-Seq provided exon level resolution, the majority of the reads were provided by a small proportion of highly expressed genes and the data analysis was exceedingly complex. Over the past 6 years, there have been substantial improvements in both RNA-Seq technology and data analysis. This volume contains 11 chapters that detail various aspects of sequencing the brain transcriptome. Some of the chapters are very methods driven, while others focus on the use of RNA-Seq to study such diverse areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the transition from microarrays to RNA-Seq as the preferred method for analyzing the brain transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, and can be used to extract genotype information, e.g., nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the complexity of the brain transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior-disease relationships is substantial.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA.
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Nikki Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Searles
- Integrative Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon McWeeney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Division of Biostatistics, Public Health & Preventative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
123
|
Maguire G. Using a systems-based approach to overcome reductionist strategies in the development of diagnostics. Expert Rev Mol Diagn 2013; 13:895-905. [PMID: 24138553 DOI: 10.1586/14737159.2013.846828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Systems biology is a recent addition to the necessary but insufficient reductionist approach used in biological research. Systems biology is focused on understanding living things as a function of their various interactions at multiple levels: not simply as a sum of all their individual parts at any one level. This integrative approach yields predictive models of the normal state, the disease state and therapeutic actions. Although molecular biology has collected an enormous amount of information, including the sequencing of the entire human genome in the year 2000, few real-world applications have resulted from this molecular approach. The pharmaceutical industry's R&D expenditure has increased substantially since 2000, but the number of approved therapeutics has dropped simultaneously, due in part to over-reliance on reductionist genomic, and not systems, approaches. Instead of using reductionist genomics approaches alone, genomics should be incorporated into a multi-level systems biology approach to develop diagnostics and therapeutics.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc., San Diego, CA, USA +1 858 413 7372
| |
Collapse
|
124
|
Sun J, Lin Y, Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One 2013; 8:e75750. [PMID: 24130740 PMCID: PMC3794988 DOI: 10.1371/journal.pone.0075750] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023] Open
Abstract
Mammalian testis development and spermatogenesis play critical roles in male fertility and continuation of a species. Previous research into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small non-coding RNAs, such as microRNAs and piRNAs. Recently, it has become apparent that large numbers of long (>200 nt) non-coding RNAs (lncRNAs) are transcribed from mammalian genomes and that lncRNAs perform important regulatory functions in various developmental processes. However, the expression of lncRNAs and their biological functions in post-natal testis development remain unknown. In this study, we employed microarray technology to examine lncRNA expression profiles of neonatal (6-day-old) and adult (8-week-old) mouse testes. We found that 8,265 lncRNAs were expressed above background levels during post-natal testis development, of which 3,025 were differentially expressed. Candidate lncRNAs were identified for further characterization by an integrated examination of genomic context, gene ontology (GO) enrichment of their associated protein-coding genes, promoter analysis for epigenetic modification, and evolutionary conservation of elements. Many lncRNAs overlapped or were adjacent to key transcription factors and other genes involved in spermatogenesis, such as Ovol1, Ovol2, Lhx1, Sox3, Sox9, Plzf, c-Kit, Wt1, Sycp2, Prm1 and Prm2. Most differentially expressed lncRNAs exhibited epigenetic modification marks similar to protein-coding genes and tend to be expressed in a tissue-specific manner. In addition, the majority of differentially expressed lncRNAs harbored evolutionary conserved elements. Taken together, our findings represent the first systematic investigation of lncRNA expression in the mammalian testis and provide a solid foundation for further research into the molecular mechanisms of lncRNAs function in mammalian testis development and spermatogenesis.
Collapse
Affiliation(s)
- Jin Sun
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
125
|
Role of pseudoexons and pseudointrons in human cancer. Int J Cell Biol 2013; 2013:810572. [PMID: 24204383 PMCID: PMC3800588 DOI: 10.1155/2013/810572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In all eukaryotic organisms, pre-mRNA splicing and alternative splicing processes play an essential role in regulating the flow of information required to drive complex developmental and metabolic pathways. As a result, eukaryotic cells have developed a very efficient macromolecular machinery, called the spliceosome, to correctly recognize the pre-mRNA sequences that need to be inserted in a mature mRNA (exons) from those that should be removed (introns). In healthy individuals, alternative and constitutive splicing processes function with a high degree of precision and fidelity in order to ensure the correct working of this machinery. In recent years, however, medical research has shown that alterations at the splicing level play an increasingly important role in many human hereditary diseases, neurodegenerative processes, and especially in cancer origin and progression. In this minireview, we will focus on several genes whose association with cancer has been well established in previous studies, such as ATM, BRCA1/A2, and NF1. In particular, our objective will be to provide an overview of the known mechanisms underlying activation/repression of pseudoexons and pseudointrons; the possible utilization of these events as biomarkers of tumor staging/grading; and finally, the treatment options for reversing pathologic splicing events.
Collapse
|
126
|
Moelling K. What contemporary viruses tell us about evolution: a personal view. Arch Virol 2013; 158:1833-48. [PMID: 23568292 PMCID: PMC3755228 DOI: 10.1007/s00705-013-1679-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Recent advances in information about viruses have revealed novel and surprising properties such as viral sequences in the genomes of various organisms, unexpected amounts of viruses and phages in the biosphere, and the existence of giant viruses mimicking bacteria. Viruses helped in building genomes and are driving evolution. Viruses and bacteria belong to the human body and our environment as a well-balanced ecosystem. Only in unbalanced situations do viruses cause infectious diseases or cancer. In this article, I speculate about the role of viruses during evolution based on knowledge of contemporary viruses. Are viruses our oldest ancestors?
Collapse
Affiliation(s)
- Karin Moelling
- Max Planck Institute for Molecular Genetics, Ihnestr 63-73, 14195, Berlin, Germany.
| |
Collapse
|
127
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
128
|
Abstract
Dysfunctions at the level of RNA processing have recently been shown to play a fundamental role in the pathogenesis of many neurodegenerative diseases. Several proteins responsible for these dysfunctions (TDP-43, FUS/TLS, and hnRNP A/Bs) belong to the nuclear class of heterogeneous ribonucleoproteins (hnRNPs) that predominantly function as general regulators of both coding and noncoding RNA metabolism. The discovery of the importance of these factors in mediating neuronal death has represented a major paradigmatic shift in our understanding of neurodegenerative processes. As a result, these discoveries have also opened the way toward novel biomolecular screening approaches in our search for therapeutic options. One of the major hurdles in this search is represented by the correct identification of the most promising targets to be prioritized. These may include aberrant aggregation processes, protein-protein interactions, RNA-protein interactions, or specific cellular pathways altered by disease. In this review, we discuss these four major options together with their various advantages and drawbacks.
Collapse
Affiliation(s)
- Maurizio Romano
- 1Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
129
|
St Laurent G, Shtokalo D, Dong B, Tackett MR, Fan X, Lazorthes S, Nicolas E, Sang N, Triche TJ, McCaffrey TA, Xiao W, Kapranov P. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol 2013; 14:R73. [PMID: 23876380 PMCID: PMC4053963 DOI: 10.1186/gb-2013-14-7-r73] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/22/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. RESULTS Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. CONCLUSIONS These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.
Collapse
Affiliation(s)
- Georges St Laurent
- St. Laurent Institute, One Kendall Square, Cambridge, MA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| | - Dmitry Shtokalo
- St. Laurent Institute, One Kendall Square, Cambridge, MA
- A.P.Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentjev ave., Novosibirsk 630090, Russia
| | - Biao Dong
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | | | - Xiaoxuan Fan
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | - Sandra Lazorthes
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France
- CNRS, LBCMCP, F-31062 Toulouse, France
| | - Estelle Nicolas
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France
- CNRS, LBCMCP, F-31062 Toulouse, France
| | - Nianli Sang
- Department of Biology, Drexel University, 3245 Chestnut St, PISB 417, Philadelphia, PA
| | - Timothy J Triche
- Department of Pathology, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA
| | - Timothy A McCaffrey
- The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, D.C
| | - Weidong Xiao
- Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
| | | |
Collapse
|
130
|
Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Biochem Soc Trans 2013; 41:844-9. [DOI: 10.1042/bst20120353] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is now becoming largely accepted that the non-coding portion of the genome, rather than its coding counterpart, is likely to account for the greater complexity of higher eukaryotes. Moreover, non-coding RNAs have been demonstrated to participate in regulatory circuitries that are crucial for development and differentiation. Whereas the biogenesis and function of small non-coding RNAs, particularly miRNAs (microRNAs), has been extensively clarified in many eukaryotic systems, very little is known about the long non-coding counterpart of the transcriptome. In the present review, we revise the current knowledge of how small non-coding RNAs and lncRNAs (long non-coding RNAs) impinge on circuitries controlling proper muscle differentiation and homoeostasis and how their biogenesis is regulated. Moreover, we provide new insights into an additional mechanism of post-transcriptional regulation mediated by lncRNAs, which, acting as miRNA ‘sponges’, have an impact on the distribution of miRNA molecules on their targets with features similar to those described for ceRNAs (competing endogenous RNAs).
Collapse
|
131
|
Abstract
Recently articles have been published disputing the main finding of the ENCODE project that the majority of the human genome exhibits biochemical indices of function, based primarily on low sequence conservation and the existence of larger genomes in some ostensibly simpler organisms (the C-value enigma), indicating the likely presence of significant amounts of junk. Here we challenge these arguments, showing that conservation is a relative measure based on circular assumptions of the non-functionality of transposon-derived sequences and uncertain comparison sets, and that regulatory sequence evolution is subject to different and much more plastic structure-function constraints than protein-coding sequences, as well as positive selection for adaptive radiation. We also show that polyploidy accounts for the higher than expected genome sizes in some eukaryotes, compounded by variable levels of repetitive sequences of unknown significance. We argue that the extent of precise dynamic and differential cell- and tissue-specific transcription and splicing observed from the majority of the human genome is a more reliable indicator of genetic function than conservation, although the unexpectedly large amount of regulatory RNA presents a conceptual challenge to the traditional protein-centric view of human genetic programming. Finally, we suggest that resistance to these findings is further motivated in some quarters by the use of the dubious concept of junk DNA as evidence against intelligent design.
Collapse
|
132
|
Rosa A, Brivanlou AH. Regulatory non-coding RNAs in pluripotent stem cells. Int J Mol Sci 2013; 14:14346-73. [PMID: 23852015 PMCID: PMC3742248 DOI: 10.3390/ijms140714346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023] Open
Abstract
The most part of our genome encodes for RNA transcripts are never translated into proteins. These include families of RNA molecules with a regulatory function, which can be arbitrarily subdivided in short (less than 200 nucleotides) and long non-coding RNAs (ncRNAs). MicroRNAs, which act post-transcriptionally to repress the function of target mRNAs, belong to the first group. Included in the second group are multi-exonic and polyadenylated long ncRNAs (lncRNAs), localized either in the nucleus, where they can associate with chromatin remodeling complexes to regulate transcription, or in the cytoplasm, acting as post-transcriptional regulators. Pluripotent stem cells, such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), represent useful systems for modeling normal development and human diseases, as well as promising tools for regenerative medicine. To fully explore their potential, however, a deep understanding of the molecular basis of stemness is crucial. In recent years, increasing evidence of the importance of regulation by ncRNAs in pluripotent cells is accumulating. In this review, we will discuss recent findings pointing to multiple roles played by regulatory ncRNAs in ESC and iPSCs, where they act in concert with signaling pathways, transcriptional regulatory circuitries and epigenetic factors to modulate the balance between pluripotency and differentiation.
Collapse
Affiliation(s)
- Alessandro Rosa
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome 00185, Italy; E-Mail:
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H. Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-327-8656; Fax: +1-212-327-8685
| |
Collapse
|
133
|
Tushir JS, Akbarian S. Chromatin-bound RNA and the neurobiology of psychiatric disease. Neuroscience 2013; 264:131-41. [PMID: 23831425 DOI: 10.1016/j.neuroscience.2013.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022]
Abstract
A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the brain-derived neurotrophic factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry.
Collapse
Affiliation(s)
- J S Tushir
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
134
|
Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32:1805-16. [PMID: 23756463 PMCID: PMC3981183 DOI: 10.1038/emboj.2013.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non-coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.
Collapse
|
135
|
Noncoding RNAs in Neurodegenerative Diseases. ISRN NEUROLOGY 2013; 2013:375852. [PMID: 23738143 PMCID: PMC3657400 DOI: 10.1155/2013/375852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 01/29/2023]
Abstract
Noncoding RNAs are widely known for their various essential roles in the development of central nervous system. It involves neurogenesis, neural stem cells generation, maintenance and maturation, neurotransmission, neural network plasticity, formation of synapses, and even brain aging and DNA damage responses. In this review, we will discuss the biogenesis of microRNA, various functions of noncoding RNA's specifically microRNAs (miRNAs) that act as the chief regulators of gene expression, and focus in particular on misregulation of miRNAs which leads to several neurodegenerative diseases as well as its therapeutic outcome. Recent evidences has shown that miRNAs expression levels are changed in patients with neurodegenerative diseases; hence, miRNA can be used as a potential diagnostic biomarker and serve as an effective therapeutic tool in overcoming various neurodegenerative disease processes.
Collapse
|
136
|
|
137
|
Calduch-Giner JA, Bermejo-Nogales A, Benedito-Palos L, Estensoro I, Ballester-Lozano G, Sitjà-Bobadilla A, Pérez-Sánchez J. Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 2013; 14:178. [PMID: 23497320 PMCID: PMC3606596 DOI: 10.1186/1471-2164-14-178] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
Background The gilthead sea bream (Sparus aurata) is the main fish species cultured in the Mediterranean area and constitutes an interesting model of research. Nevertheless, transcriptomic and genomic data are still scarce for this highly valuable species. A transcriptome database was constructed by de novo assembly of gilthead sea bream sequences derived from public repositories of mRNA and collections of expressed sequence tags together with new high-quality reads from five cDNA 454 normalized libraries of skeletal muscle (1), intestine (1), head kidney (2) and blood (1). Results Sequencing of the new 454 normalized libraries produced 2,945,914 high-quality reads and the de novo global assembly yielded 125,263 unique sequences with an average length of 727 nt. Blast analysis directed to protein and nucleotide databases annotated 63,880 sequences encoding for 21,384 gene descriptions, that were curated for redundancies and frameshifting at the homopolymer regions of open reading frames, and hosted at http://www.nutrigroup-iats.org/seabreamdb. Among the annotated gene descriptions, 16,177 were mapped in the Ingenuity Pathway Analysis (IPA) database, and 10,899 were eligible for functional analysis with a representation in 341 out of 372 IPA canonical pathways. The high representation of randomly selected stickleback transcripts by Blast search in the nucleotide gilthead sea bream database evidenced its high coverage of protein-coding transcripts. Conclusions The newly assembled gilthead sea bream transcriptome represents a progress in genomic resources for this species, as it probably contains more than 75% of actively transcribed genes, constituting a valuable tool to assist studies on functional genomics and future genome projects.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Marine Species Biology, Culture and Pathology, Institute of Aquaculture Torre de la Sal, Castellón, CSIC, Spain
| | | | | | | | | | | | | |
Collapse
|
138
|
Buratti E, Romano M, Baralle FE. TDP-43 high throughput screening analyses in neurodegeneration: advantages and pitfalls. Mol Cell Neurosci 2013; 56:465-74. [PMID: 23500590 DOI: 10.1016/j.mcn.2013.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022] Open
Abstract
Dysfunctions in RNA processing and in particular the aberrant regulation of RNA binding proteins (RBPs) have recently been shown to play a fundamental role in the pathogenesis of neurodegenerative diseases. Understanding the pathogenic mechanisms involved will require the elucidation of the role(s) played by these RBPs in the general cell metabolism and neuronal survival in particular. In the past, the preferred approach has been to determine first of all the functional properties of the factor(s) of interest and then use this knowledge to determine targets in biologically relevant events. More recently, novel experimental approaches such as microarrays, RNA-seq and CLIP-seq have also become very popular to study RBPs. The advantage of these approaches, collectively known as high throughput screening (HTS), is their ability to determine gene expression changes or RNA/protein targets at a global cellular level. In theory, HTS strategies should be ideal for uncovering novel functional roles/targets of any RBP inside the cell. In practice, however, there are still difficulties in getting a coherent picture from all the huge amount of data they generate, frequently not validated experimentally and thus of unknown value. They may even act unfavorably towards a specific increase of knowledge of RBP functions, as the incomplete results are taken as solid data. In this work we will illustrate as an example the use of the HTS methodologies to characterize the interactions of a specific RBP: TDP-43. The multiple functions of this protein in RNA processing and its involvement in the pathogenesis of several forms of amyotrophic lateral sclerosis, frontotemporal lobar degeneration and other neurodegenerative diseases make it an excellent substrate for our analysis of the various advantages and limitations of different HTS experimental approaches.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| | | | | |
Collapse
|
139
|
Koonin EV. Elaborate security TRAINing to fight against expression of genomic junk. Cell Cycle 2013; 12:553-4. [PMID: 23370394 DOI: 10.4161/cc.23717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A new study shows that the expression of two classes of repetitive elements in the mouse genome is controlled through two complementary mechanisms: DNA methylation and p53-mediated transcription suppression.¹ When both lines of defense fail, expression of the repeats yields large quantities of double-stranded RNA, triggering interferon response that leads to caspase-dependent cell death. These notable findings highlight two fundamental trends: tight coupling of defense and cell death mechanisms that appears to be universal in cellular life and the exploitation of the expression of "junk" DNA as a signal triggering "altruistic" cell suicide.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
140
|
Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R, Wilmot B, McWeeney S. Genes, behavior and next-generation RNA sequencing. GENES, BRAIN, AND BEHAVIOR 2013; 12:1-12. [PMID: 23194347 PMCID: PMC6050050 DOI: 10.1111/gbb.12007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/31/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
Advances in next-generation sequencing suggest that RNA-Seq is poised to supplant microarray-based approaches for transcriptome analysis. This article briefly reviews the use of microarrays in the brain-behavior context and then illustrates why RNA-Seq is a superior strategy. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, detects allele specific expression and can be used to extract genotype information, e.g. nonsynonymous coding single nucleotide polymorphisms. Examples of where RNA-Seq has been used to assess brain gene expression are provided. Despite the advantages of RNA-Seq, some disadvantages remain. These include the high cost of RNA-Seq and the computational complexities associated with data analysis. RNA-Seq embraces the complexity of the transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior relationship is substantial.
Collapse
Affiliation(s)
- R Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition.
Collapse
Affiliation(s)
- Nina V Fedoroff
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| |
Collapse
|
142
|
Schonrock N, Götz J. Decoding the non-coding RNAs in Alzheimer's disease. Cell Mol Life Sci 2012; 69:3543-59. [PMID: 22955374 PMCID: PMC11114718 DOI: 10.1007/s00018-012-1125-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 01/28/2023]
Abstract
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Nicole Schonrock
- Victor Chang Cardiac Research Institute (VCCRI), Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
143
|
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613-34. [PMID: 22538991 PMCID: PMC3474909 DOI: 10.1007/s00018-012-0990-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as "junk DNA", it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5' and 3' untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This review discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Collapse
Affiliation(s)
- Lucy W Barrett
- Centre for Neuromuscular and Neurological Disorders (CNND), The University of Western Australia (M518), 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
144
|
Abstract
Heart function requires sophisticated regulatory networks to orchestrate organ development, physiological responses, and environmental adaptation. Until recently, it was thought that these regulatory networks are composed solely of protein-mediated transcriptional control and signaling systems; consequently, it was thought that cardiac disease involves perturbation of these systems. However, it is becoming evident that RNA, long considered to function primarily as the platform for protein production, may in fact play a major role in most, if not all, aspects of gene regulation, especially the epigenetic processes that underpin organogenesis. These include not only well-validated classes of regulatory RNAs, such as microRNAs, but also tens of thousands of long noncoding RNAs that are differentially expressed across the entire genome of humans and other animals. Here, we review this emerging landscape, summarizing what is known about their functions and their role in cardiac biology, and provide a toolkit to assist in exploring this previously hidden layer of gene regulation that may underpin heart adaptation and complex heart diseases.
Collapse
Affiliation(s)
- Nicole Schonrock
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| | - Richard P. Harvey
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| | - John S. Mattick
- From the Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (N.S., R.R.H.); St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia (N.S., R.P.H., J.S.M.); and Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (J.S.M.)
| |
Collapse
|
145
|
Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33. [PMID: 23170223 PMCID: PMC3501640 DOI: 10.1002/ece3.400] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Science and Biotechnology, Faculty of Science and Engineering, Murdoch University Perth, W.A., 6150, Australia
| | | |
Collapse
|
146
|
Tan L, Yu JT, Hu N, Tan L. Non-coding RNAs in Alzheimer's Disease. Mol Neurobiol 2012; 47:382-93. [DOI: 10.1007/s12035-012-8359-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
|
147
|
|
148
|
St Laurent G, Shtokalo D, Tackett MR, Yang Z, Eremina T, Wahlestedt C, Urcuqui-Inchima S, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 2012; 13:504. [PMID: 23006825 PMCID: PMC3507791 DOI: 10.1186/1471-2164-13-504] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/14/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The function of RNA from the non-coding (the so called "dark matter") regions of the genome has been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found. However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised introns en route to degradation. RESULTS We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we show that intronic RNAs have a number of features that would be expected from functional, standalone RNA species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall abundance, which changes throughout the inflammation timecourse, and other properties suggest that they function in yet unknown ways. CONCLUSIONS So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation--the sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such, they should not be ignored in surveys of functional transcripts or other genomic studies.
Collapse
Affiliation(s)
- Georges St Laurent
- Immunovirology-Biogenisis Group, University of Antioquia, Medellin A.A. 1226, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Pertea M. The human transcriptome: an unfinished story. Genes (Basel) 2012; 3:344-60. [PMID: 22916334 PMCID: PMC3422666 DOI: 10.3390/genes3030344] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/14/2012] [Accepted: 06/25/2012] [Indexed: 11/16/2022] Open
Abstract
Despite recent technological advances, the study of the human transcriptome is still in its early stages. Here we provide an overview of the complex human transcriptomic landscape, present the bioinformatics challenges posed by the vast quantities of transcriptomic data, and discuss some of the studies that have tried to determine how much of the human genome is transcribed. Recent evidence has suggested that more than 90% of the human genome is transcribed into RNA. However, this view has been strongly contested by groups of scientists who argued that many of the observed transcripts are simply the result of transcriptional noise. In this review, we conclude that the full extent of transcription remains an open question that will not be fully addressed until we decipher the complete range and biological diversity of the transcribed genomic sequences.
Collapse
Affiliation(s)
- Mihaela Pertea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
150
|
Barry G, Mattick JS. The role of regulatory RNA in cognitive evolution. Trends Cogn Sci 2012; 16:497-503. [PMID: 22940578 DOI: 10.1016/j.tics.2012.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 12/18/2022]
Abstract
The evolution of the human brain has resulted in the emergence of higher-order cognitive abilities, such as reasoning, planning and social awareness. Although there has been a concomitant increase in brain size and complexity, and component diversification, we argue that RNA regulation of epigenetic processes, RNA editing, and the controlled mobilization of transposable elements have provided the major substrates for cognitive advance. We also suggest that these expanded capacities and flexibilities have led to the collateral emergence of psychiatric fragilities and conditions.
Collapse
Affiliation(s)
- Guy Barry
- Institute for Molecular Bioscience, The University of Queensland, Brisbane Queensland, 4072, Australia.
| | | |
Collapse
|