101
|
Development of antioxidant and antimicrobial packaging films based on chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and silicon dioxide nanoparticles. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100503] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
102
|
Estakhr P, Tavakoli J, Beigmohammadi F, Alaei S, Mousavi Khaneghah A. Incorporation of the nanoencapsulated polyphenolic extract of Ferula persica into soybean oil: Assessment of oil oxidative stability. Food Sci Nutr 2020; 8:2817-2826. [PMID: 32566199 PMCID: PMC7300055 DOI: 10.1002/fsn3.1575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 01/22/2023] Open
Abstract
In the present study, for the first time, the biological activities of Ferula persica extract (FPE) coated with locust bean gum (LBG) and chitosan in W/O/W emulsions were investigated. Based on the findings, the Z-average size of emulsions coated by chitosan, LBG, and the complex of chitosan and LBG (1:1) (CCL) was 115.47, 128.37, and 68.12 nm, respectively. The encapsulation efficiency of the phenolic extracts in the powder produced by chitosan, LBG, and CCL decreased from 85.3 to 64.1, from 89 to 71.4, and from 93.3% to 77.9% during 24-day storage, respectively. Also, the application of the coating in the encapsulation of FPE increased the antioxidant efficacy in soybean oil while compared with tert-butylhydroquinone (TBHQ) and un-encapsulated FPE. In this regard, The FPE nanoencapsulated by CCL showed the best antioxidative activity in soybean oil, followed by the FPE of nanoencapsulated by LBG and chitosan, respectively, which can be correlated with higher levels of polyphenolic compounds release over time in the sample coated with CCL. In this context, the encapsulation with CCL can be proposed as a promising technique to improve the antioxidant activity of extracts.
Collapse
Affiliation(s)
- Parviz Estakhr
- Department of Food Science and TechnologyFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Javad Tavakoli
- Department of Food Science and TechnologyFaculty of AgricultureJahrom UniversityJahromIran
| | - Faranak Beigmohammadi
- Department of Food Science and TechnologyFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Shima Alaei
- Department of Agronomy and Plant BreedingFaculty of Agriculture, Kermanshah BranchIslamic Azad UniversityKermanshahIran
| | - Amin Mousavi Khaneghah
- Department of Food ScienceFaculty of Food EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
| |
Collapse
|
103
|
Huguet-Casquero A, Moreno-Sastre M, López-Méndez TB, Gainza E, Pedraz JL. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells. Pharmaceutics 2020; 12:pharmaceutics12050429. [PMID: 32384817 PMCID: PMC7285197 DOI: 10.3390/pharmaceutics12050429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage has been linked to a number of diseases. Oleuropein (OLE), a natural occurring polyphenol from olive leaves (Olea europaea L.), is known to be a potent antioxidant compound with inherent instability and compromised bioavailability. Therefore, in this work, nanostructured lipid carriers (NLCs) were proposed for OLE encapsulation to protect and improve its antioxidant efficacy. The lipid matrix, composed of olive oil and Precirol, was optimized prior to OLE encapsulation. The characterization of the optimized oleuropein-loaded NLCs (NLC-OLE) showed a mean size of 150 nm, a zeta potential of −21 mV, an encapsulation efficiency of 99.12%, sustained release profile, and improved radical scavenging activity. The cellular in vitro assays demonstrated the biocompatibility of the NLCs, which were found to improve and maintain OLE antioxidant efficacy in the A549 and CuFi-1 lung epithelial cell lines, respectively. Overall, these findings suggest a promising potential of NLC-OLE to further design a pulmonary formulation for OLE delivery in lung epithelia.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Maria Moreno-Sastre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Tania Belén López-Méndez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Eusebio Gainza
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| |
Collapse
|
104
|
Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci 2020; 279:102153. [PMID: 32289738 DOI: 10.1016/j.cis.2020.102153] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Nowadays, polyphenols as bioactive compounds are being used in producing anti-cancer drugs. Low stability against harsh environmental conditions, untargeted release, low solubility, and low absorption of pure phenolic molecules are significant barriers, which decrease the functions of polyphenols. Recently, the nanoencapsulation processes have been applied to overcome these restrictions, in which the anti-cancer activity of polyphenols has been noticeably increased. This review will focus on the anti-cancer activity of polyphenols, and the effect of loading polyphenolics into various micro/nanoencapsulation systems on their anti-cancer activity. Different encapsulation systems such as lipid and polymer based nanoparticles, and solid form of encapsulated phenolic molecules by nano-spray dryer and electrospinnig have been used for loading of polyphenols. Incorporation of phenolic molecules into various carriers inevitably increases their anti-cancer activity. Because, in this way, encapsulated cargos can provide a targeted release, which will increase the bioavailability of phenolic molecules and their functions such as absorption into cancer cell.
Collapse
|
105
|
Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
106
|
Paulo F, Santos L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:920-945. [PMID: 32274929 DOI: 10.1080/10408398.2020.1748563] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, olive oil consumption is correlated to many health benefits, essentially due to the presence of antioxidants, especially phenolic compounds, which fostered its intensive production worldwide. During olive oil extraction, through continuous or discontinuous processes, many olive oil by-products are generated. These by-products constitute an environmental problem regarding its management and disposal. They are phytotoxic and biotoxic due to their high content of phenolic compounds, presenting contrastingly relevant health benefits due to their potent radical scavenging activities. In the framework of the disposal and management of olive oil by-products, treatment, and valorization approaches are found. As currently, the majority of the valorization techniques applied have a null market value, alternative strategies for the obtainment of innovative products as fortified foods are being investigated. The recovery and valorization strategies of olive oil by-products may comprise extraction and further encapsulation of bioactive compounds, as an innovative valorization blueprint of phenolic compounds present in these by-products. The majority of phenolic compounds present in olive oil by-products possess limited application on the food industry since they are promptly amended by environmental factors like temperature, pH, and light. Consequently, they must be protected previously ending in the final formulation. Prior to foods fortification with phenolic-rich extracts obtained from olive oil by-products, they should be protected through microencapsulation approaches, allowing a sustained release of phenolic compounds in the fortified foods, without losing their physicochemical properties. The combined strategies of extraction and microencapsulation will contribute to promoting the sustainability of the olive oil sector and aid the food industry to obtain reinvented added-value products.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
107
|
Barbera M. Reuse of Food Waste and Wastewater as a Source of Polyphenolic Compounds to Use as Food Additives. J AOAC Int 2020; 103:906-914. [DOI: 10.1093/jaocint/qsz025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Indexed: 01/18/2023]
Abstract
Abstract
The problem of waste and byproducts generated from agro-industrial activities worldwide is an increasing concern in terms of environmental sustainability. In this ambit, the quantity of food wastes—produced in all steps of the whole food chain—is enormous, and it may be forecasted that food waste could amount to more than 120 billion tonnes by 2020. The reuse of food waste and wastewater as source of polyphenolic compounds could be an interesting discussion in this ambit. In fact, polyphenols obtained in this way might be used for food and non-food purposes by means of new, improved, and safe extraction methods. In light of the opportunity represented by the treatment of agro-industrial waste, different systems concerning the winemaking and olive oil production industries have also been discussed as describing approaches applicable to other sectors. More research is needed before considering recovery of phenolic compounds from wastewater as an economically convenient choice for the food sector.
Collapse
Affiliation(s)
- Marcella Barbera
- University of Palermo, Department of Environmental and Agricultural Sciences, Palermo 90100, Italy
| |
Collapse
|
108
|
Soleimanifar M, Jafari SM, Assadpour E. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105572] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
109
|
Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chem 2020; 310:125976. [DOI: 10.1016/j.foodchem.2019.125976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
|
110
|
Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv Colloid Interface Sci 2020; 278:102122. [PMID: 32097732 DOI: 10.1016/j.cis.2020.102122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023]
Abstract
Encapsulation technology, as a promising approach, has been employed for the protection and controlled release of different bioactive compounds including natural antioxidants; there are restrictions for applying these valuable ingredients in real food products, pharmaceuticals, and cosmetics such as low solubility, low shelf life, difficultly in their packaging and handling, losses due to environmental stresses and food processes, undesirable flavors and odors, untargeted release and instability in various conditions during digestion in gastrointestinal tract. Nanocarriers can be employed to overcome these challenges. There are five groups of nanocarriers based on the principal mechanism/ingredient used to make them for the encapsulation of natural antioxidants titled biopolymeric nanoparticles, lipid-based and surfactant-based nanocarriers, nanocarriers made with specially designed equipment, nature-inspired nanocarriers, and miscellaneous ones. The main goal of this study is to have an overview of role of different nanocarriers in improving the efficiency of natural antioxidant compounds for different purposes. It has been verified that antioxidant-loaded nanocarriers can be applied in many formulations with a higher and controlled release antioxidant activity, which would meet the current needs of consumers' expectations towards clean label products.
Collapse
|
111
|
Lu T, Shen Y, Wang J, Xie H, Wang Y, Zhao Q, Zhou D, Shahidi F. Improving oxidative stability of flaxseed oil with a mixture of antioxidants. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Lu
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
| | - Yan Shen
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
| | - Jing‐Han Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
| | - Hong‐Kai Xie
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Yong‐Fu Wang
- Qingdao Seawit Life Science Co., LTD Qingdao PR China
| | - Qi Zhao
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Da‐Yong Zhou
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Fereidoon Shahidi
- Department of Biochemistry Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
112
|
Gharehbeglou P, Jafari SM. Antioxidant Components of Brassica Vegetables Including Turnip and the Influence of Processing and Storage on their Anti-oxidative Properties. Curr Med Chem 2019; 26:4559-4572. [PMID: 30430937 DOI: 10.2174/0929867325666181115111040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
Abstract
Brassica vegetables, particularly turnip, contain many natural antioxidants. This review focuses on antioxidant components and the influence of different processing and storage conditions on antioxidant activities of some Brassica vegetables including turnip. Long storage times had an adverse effect on antioxidant value of turnip. Also, the activity of antioxidants in cruciferous vegetables could be influenced by antioxidant breakdown and leaching during cooking. Heat treatment has a major impact on the antioxidant activity of Brassica vegetables and it has been perceived minor antioxidant ability in processed vegetables compared with uncooked samples. Food processing operations in terms of blanching, canning, sterilizing and freezing, in addition to cooking methods perhaps can have a major influence on the yield, chemical structure and bioavailability of antioxidants in Brassica family. Cooking methods such as steaming and microwaving are proper methods for a short time. Consumption of raw or slightly blanched turnip is an appropriate way to maximize its health benefits.
Collapse
Affiliation(s)
- Pouria Gharehbeglou
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
113
|
Soltaninejad F, Sekhavatizadeh SS. Effects of encapsulated black caraway extract and sesame oil on kolompeh quality. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-311-320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the physicochemical and sensory properties of kolompeh containing black caraway and sesame oil were investigated. Black caraway extract (BCE), encapsulated black caraway extract (EBCE), and black caraway powder (BCP) were added to kolompeh and compared to the sample without black caraway (FBC). All products contained sesame oil and were compared to control (without sesame oil). Among the samples, kolompeh with encapsulated extract demonstrated a higher oxidative stability (24.37 h), with a high IC50 of black caraway extract (124.1 μg·mL–1). In addition, the emulsion exhibited size distribution between 3.20 and 8.51 μm, and Fourier transform infrared spectroscopy confirmed the well encapsulated extract. Gas chromatography identified oleic and linoleic acids as the main fatty acids in kolompeh with the black caraway encapsulated extract. Although, there were no significant differences in the colour parameters (L*, a* and b*) of the samples, kolompeh with EBCE had the highest score given by panelists. The control had a higher (2466 g) hardness compared to kolompeh containing EBCE (1688 g) at the end of storage. Therefore, the encapsulated extract of black caraway not only had no an adverse effect on the properties of kolompeh but also improved its quality.
Collapse
|
114
|
Yang W, Li X, Jiang J, Fan X, Du M, Shi X, Cao R. Improvement in the Oxidative Stability of Flaxseed Oil Using an Edible Guar Gum‐Tannic Acid Nanofibrous Mat. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiqiao Yang
- State Key Laboratory of Food Nutrition and SafetySchool of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjin 300457China
- Tianjin Gasin‐Donghui Fresh Keeping Technology Co., Ltd.Tianjin 300403China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and SafetySchool of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjin 300457China
| | - Jianan Jiang
- State Key Laboratory of Food Nutrition and SafetySchool of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjin 300457China
| | - Xuetong Fan
- USDA, ARSEastern Regional Research Center600 E. Mermaid LaneWyndmoor, PA 19038USA
| | - Meijun Du
- State Key Laboratory of Food Nutrition and SafetySchool of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjin 300457China
| | - Xianai Shi
- College of Biological Science and EngineeringFuzhou UniversityFujian 350108China
| | - Ruizhi Cao
- State Key Laboratory of Food Nutrition and SafetySchool of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjin 300457China
| |
Collapse
|
115
|
Sharma S, Cheng SF, Bhattacharya B, Chakkaravarthi S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
116
|
Sayyed-Alangi SZ, Nematzadeh M. Formulation, development and evaluation of bifunctionalized nanoliposomes containing Trifolium resupinatum sprout methanolic extract: as effective natural antioxidants on the oxidative stability of soybean oil. BMC Chem 2019; 13:77. [PMID: 31384824 PMCID: PMC6661728 DOI: 10.1186/s13065-019-0594-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/22/2019] [Indexed: 11/12/2022] Open
Abstract
Background The various extracts of Trifolium resupinatum (Persian clover) sprout was obtained by using different solvents and microwave assisted extraction in the present study. Then, the bifunctionalized nanoliposomes were prepared and added to soybean oil for evaluating their effect on deferring the oxidation process. Methods The total phenol and antioxidant activity of the extracts was determined by using the free radical scavenging assay. Then, various nanoliposomal structures of the methanolic extract of Persian clover sprout (PCSE) were prepared by using six several formulations containing different ratios of soybean oil, lecithin and the extract. Afterward, the most stable nanoliposome was bifunctionalized by using WPC and pectin (PCSEN-W and PCSEN-WP, respectively). The size and zeta potential of nanoparticles were measured. Furthermore, in order to evaluate the effects of PCSE, PCSEN, PCSEN-W and PCSEN-WP at 100–300 ppm concentrations in deferring the oxidation process of soybean oil, the heat treatment tests were applied (PV and TBA) at 63 °C within a 20-day period. Results The methanolic extract had the highest level of total phenol and antioxidant activity. The results of creaming index and microencapsulation efficiency were exhibited that formulation containing 30% oil, 5% lecithin and 2% the extract was led to the production of the most stable nanoliposomal structure (PCSEN). The size of nanoparticles was in the range of 282.5–491.2 nm. Zeta potential of the samples was obtained in the range between − 56.9 and − 36.3 mV. Polydispersity index of them was ranged from 0.424 to 0.541. The results were confirmed the existence of stable nanoliposomal systems. The results of the PV and TBA values of the extracts in free and nanoliposomal forms were shown that the nanoliposomal forms had very good antioxidant activity against the oxidation process in soybean oil.![]()
Collapse
Affiliation(s)
| | - Meysam Nematzadeh
- Department of Food Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| |
Collapse
|
117
|
Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, Khan IM, Zhao L, Riaz T, Tong Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
118
|
Soleimanifard M, Sadeghi Mahoonak A, Sepahvand A, Heydari R, Farhadi S. Spanish olive leaf extract‐loaded nanostructured lipid carriers: Production and physicochemical characterization by Zetasizer, FT‐IR, DTA/TGA, FE‐SEM and XRD. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mansooreh Soleimanifard
- Department of Food Science and Technology, College of Food Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Alireza Sadeghi Mahoonak
- Department of Food Science and Technology, College of Food Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center Lorestan University of Medical Sciences & Health Services Khoramabad Iran
| | - Rouhollah Heydari
- Razi Herbal Medicines Research Center Lorestan University of Medical Sciences & Health Services Khoramabad Iran
| | - Saeed Farhadi
- Department of Mineral Chemistry, College of Basic Sciences Lorestan University Khoramabad Iran
| |
Collapse
|
119
|
Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chem 2019; 279:40-48. [DOI: 10.1016/j.foodchem.2018.11.127] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
|
120
|
Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
121
|
Major-Godlewska M. Evaluation of drops dimensions in time and rheological properties of the multiple emulsion. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00754-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
122
|
Tavakoli HR, Naderi M, Jafari SM, Naeli MH. Postmarketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market. Food Sci Nutr 2019; 7:1455-1465. [PMID: 31024719 PMCID: PMC6475748 DOI: 10.1002/fsn3.982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, postmarketing surveillance (PMS) was conducted in terms of the parameters which are reliable indicators of the oxidative stability of cooking oils, frying oils, and vanaspati samples. The analyzed parameters were fatty acid composition, peroxide value (PV), free fatty acids (FFA), p-anisidine value (p-AV), induction period at 110°C (IP110) determined by Rancimat test, and TOTOX value. For this purpose, different samples from four highly popular brands of mentioned products were randomly collected from Iran's market during 2016-2018. All monitored products had trans fatty acid <1.0%. In the case of FFA and IP110, the ranges of 0.03-0.08 (%) and 9.3-17.2 hr were obtained, respectively, being mostly in conformity with the National Standard of Iran (FFA < 0.1% and IP110 > 15 hr). The ranges of PV of cooking oils, frying oils, and vanaspati samples were 1.2-2.7, 0.93-2, and 0.84-1.6 meq/kg, respectively. Our results revealed that p-AV of frying oils and cooking oils was mostly outside of legal limits of Iran (p-AV > 6) with the ranges of 4.2-12.5 and 4.3-12.3, respectively. In terms of TOTOX value, monitored products had a range from 5.2 to 13.0 (mostly <10) being nearly acceptable.
Collapse
Affiliation(s)
- Hamid Reza Tavakoli
- Health Research Center, Life Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Mehdi Naderi
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design EngineeringGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Mohammad Hossein Naeli
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
123
|
Cejudo Bastante C, Cran M, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa E, Bigger S. Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
124
|
Vargas FC, Gómez B, Mousavi Khaneghah A, Strozzi I, Gavahian M, Barba FJ, Sobral PJDA, Lorenzo JM. Assessment of the Suitability of Pitanga Leaf Extract as a Natural Antioxidant for Enhancing Canola Oil Stability: Monitoring Lipid Oxidation Parameters. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Flávia C. Vargas
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Belen Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science, University of Campinas (UNICAMP)Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083‐862 CampinasSão PauloBrazil
| | - Isabella Strozzi
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development InstituteNo. 331 Shih‐Pin Rd., Hsinchu30062 TaiwanRepublic of China
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine DepartmentNutrition and Food Science Area, Avda.Vicent Andrés Estellés, s/n, 46100 BurjassotValènciaSpain
| | - Paulo José do Amaral Sobral
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| |
Collapse
|
125
|
|
126
|
Ferreira CD, Nunes IL. Oil nanoencapsulation: development, application, and incorporation into the food market. NANOSCALE RESEARCH LETTERS 2019; 14:9. [PMID: 30617711 PMCID: PMC6323048 DOI: 10.1186/s11671-018-2829-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/06/2018] [Indexed: 05/13/2023]
Abstract
Oils are very important substances in human nutrition. However, they are sensitive to oxygen, heat, moisture, and light. In recent years, there has been a growing interest in the modification technology of oils. Methods that modify oil characteristics and make oils suitable applications have been increasingly studied. Nanotechnology has become one of the most promising studied technologies that could revolutionize conventional food science and the food industry. Oil nanoencapsulation could be a promising alternative to increase the stability and improve the bioavailability of nanoencapsulated compounds. The occurrence of oil nanoencapsulation has been rapidly increasing, especially in the food industry. Conventional nanoencapsulation technologies applied in different oils exert a direct impact on oil nanoparticle synthesis, influencing parameters such as zeta potential, size, and the polydispersity index; these characteristics might limit the use of oils in different industries. This review summarizes oil nanoencapsulation in the food industry and highlights the technologies, advantages, and limitations of different techniques for obtaining stable oil nanocapsules; it also illustrates key opportunities for and the benefits of technological innovations and analyzes the protection of this technology through patent applications. In the last 20 years, oil nanoencapsulation has grown considerably in the food industry. Although nanoencapsulated oil products are not currently found in the food industry, there are numerous articles in the food science area reporting that oil nanoencapsulation will be a market trend. Nevertheless, different areas can apply nanoencapsulated oils, as demonstrated via patent applications.
Collapse
Affiliation(s)
- Camila Duarte Ferreira
- Nutrition School, Federal University of Bahia, Basílio da Gama Street, w/n, Canela. 40.110-150, Salvador, Bahia Brazil
| | - Itaciara Larroza Nunes
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Highway, 1346, Itacorubi. 88034-000, Florianópolis, Santa Catarina Brazil
| |
Collapse
|
127
|
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2018; 59:3129-3151. [PMID: 29883187 DOI: 10.1080/10408398.2018.1484687] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
128
|
Karimi Sani I, Alizadeh M, Pirsa S, Moghaddas Kia E. Impact of operating parameters and wall material components on the characteristics of microencapsulated
Melissa officinalis
essential oil. FLAVOUR FRAG J 2018. [DOI: 10.1002/ffj.3482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Iraj Karimi Sani
- Food Science and Technology DepartmentAgriculture FacultyUrmia University Urmia Iran
| | - Mohammad Alizadeh
- Food Science and Technology DepartmentAgriculture FacultyUrmia University Urmia Iran
| | - Sajad Pirsa
- Food Science and Technology DepartmentAgriculture FacultyUrmia University Urmia Iran
| | - Ehsan Moghaddas Kia
- Food Science and Technology DepartmentMaragheh University Of Medical Sciences Maragheh Iran
| |
Collapse
|
129
|
Robert P, Zamorano M, González E, Silva-Weiss A, Cofrades S, Giménez B. Double emulsions with olive leaves extract as fat replacers in meat systems with high oxidative stability. Food Res Int 2018; 120:904-912. [PMID: 31000312 DOI: 10.1016/j.foodres.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Double emulsions (DE) with a healthy oil blend as lipid phase and an olive leave extract (OLE) encapsulated in the internal aqueous phase (DE/OLE) were incorporated as fat replacers in meat systems, in order to improve both the lipid profile and the oxidative stability. After 14 days of storage at 4 °C, DE/OLE showed good physical stability (90% of globule population was still below 10 μm diameter), and high antioxidant capacity (over 80%), longer than time required for this type of food ingredients. A high correlation was found between the remaining oleuropein content and the antioxidant capacity in both meat systems with DE/OLE (MS-DE/OLE) and meat systems with the oil blend as liquid oil and non-encapsulated OLE (MS-L/OLE). MS-DE/OLE were technologically feasible and showed higher retention of oleuropein (69%), oxidative stability and antioxidant capacity at 60 °C for 7 days than MS-L/OLE, where oleuropein was almost depleted. The encapsulation of OLE in DE could be a suitable strategy to avoid lipid oxidation in meat systems with healthier lipid profile.
Collapse
Affiliation(s)
- Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 133, Santiago, Chile
| | - Marcela Zamorano
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Estefanía González
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 133, Santiago, Chile
| | - Andrea Silva-Weiss
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Susana Cofrades
- Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain
| | - Begoña Giménez
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
130
|
Shalaby AR, Anwar MM, Sallam EM. Improving quality and shelf-life of minced beef using irradiated olive leaf extract. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ali Ragab Shalaby
- Food Science and Technology Department; National Research Center; Dokki Egypt
| | - Mervat Mohamed Anwar
- Plant Research Department; Nuclear Research Center, Atomic Energy Authority; Inshas Egypt
| | - Essam Mohamed Sallam
- Plant Research Department; Nuclear Research Center, Atomic Energy Authority; Inshas Egypt
| |
Collapse
|
131
|
Soleimanifar M, Niazmand R, Jafari SM. Evaluation of oxidative stability, fatty acid profile, and antioxidant properties of black cumin seed oil and extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9953-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
132
|
Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
133
|
Tavakoli H, Hosseini O, Jafari SM, Katouzian I. Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9231-9240. [PMID: 30110548 DOI: 10.1021/acs.jafc.8b02759] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Olive leaf extract is a rich source of phenolic compounds and oleuropein which is well-known regarding its antioxidant and antimicrobial attributes. However, the mentioned phenolic compounds will lose their beneficial properties during storage and induce undesirable aftertaste in food products. In this study, olive leaf extract-bearing nanoliposomes were produced via the ethanol injection method and using phosphatidyl choline plus cholesterol as the reagents for the wall material. Later, the prepared nanocarriers were examined in regard to their zeta potential, stability, encapsulation efficiency, and particle size. Moreover, the prepared nanoliposome-loaded yogurt samples were examined considering syneresis, antioxidant activity, pH, acidity, color, and sensorial properties. The mean particle size of the fabricated nanoliposomes was in the range of 25-158 nm. Also, the entire formulation had a negative charge. The encapsulation efficiency was between 70.7 to 88.2%. Besides, the application of nanoliposomes in yogurt improved the antioxidant activity, and unlike the yogurt with nonencapsulated olive extract, no significant changes in color and sensorial attributes were observed and even the syneresis rate was minimized. To conclude, olive leaf phenolics can be entrapped within nanoliposomes with a considerable encapsulation efficiency for application in food products like yogurt to increase their nutritional value and public acceptance.
Collapse
Affiliation(s)
- Hamidreza Tavakoli
- Health Research Center, Life Style Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Omidreza Hosseini
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering , Gorgan University of Agricultural Science and Natural Resources , Gorgan , Iran
| |
Collapse
|
134
|
Vitali Čepo D, Radić K, Jurmanović S, Jug M, Grdić Rajković M, Pedisić S, Moslavac T, Albahari P. Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules 2018; 23:E2070. [PMID: 30126204 PMCID: PMC6222651 DOI: 10.3390/molecules23082070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Waste remaining after the production of olive oil (olive pomace) is known to contain significant amounts of phenolic compounds that exert different types of biological activities, primarily acting as antioxidants. In this work, a sustainable approach that combines ultrasound-assisted extraction with food-grade solvents and encapsulation with different types of cyclodextrins was used to prepare olive pomace-based polyphenol rich extracts that were tested as antioxidants in various chemical, food, and biological model systems. Encapsulation with cyclodextrins had a significant positive impact on the chemical composition of obtained extracts and it positively affected their antioxidant activity. Observed effects can be explained by an increased content of polyphenols in the formulations, specific physical properties of encapsulated compounds improving their antioxidant activity in complex food/physiological environment, and enhanced interaction with natural substrates. Depending on the applied model, the tested samples showed significant antioxidant protection in the concentration range 0.1⁻3%. Among the investigated cyclodextrins, hydroxypropyl-β-cyclodextrin and randomly methylated-β-cyclodextrin encapsulated extracts showed particularly good antioxidant activity and were especially potent in oil-in-water emulsion systems (1242 mg/g and 1422 mg/g of Trolox equivalents, respectively), showing significantly higher antioxidant activity than Trolox (reference antioxidant). In other models, they provided antioxidant protection comparable to commonly used synthetic antioxidants at concentration levels of 2⁻3%.
Collapse
Affiliation(s)
- Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Sanja Jurmanović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Marija Grdić Rajković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Sandra Pedisić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pijerottijeva 6, 10000, Zagreb, Croatia.
| | - Tihomir Moslavac
- Faculty of Food Technology, University in Osijek, Franje Kuhača 20, 31000 Osijek, Croatia.
| | - Petra Albahari
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
135
|
Faridi Esfanjani A, Assadpour E, Jafari SM. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.002] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
136
|
Akhavan S, Assadpour E, Katouzian I, Jafari SM. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
137
|
Hu Y, Li Y, Zhang W, Kou G, Zhou Z. Physical stability and antioxidant activity of citrus flavonoids in arabic gum-stabilized microcapsules: Modulation of whey protein concentrate. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
138
|
Delfanian M, Razavi SMA, Haddad Khodaparast MH, Esmaeilzadeh Kenari R, Golmohammadzadeh S. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Res Int 2018; 108:136-143. [PMID: 29735042 DOI: 10.1016/j.foodres.2018.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/15/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and basil seed gum (SPI-BSG), whey protein isolate and basil seed gum (WPI-BSG) and also Hi-Cap 100 in the outer aqueous phase were used to produce W/O/W nano-emulsions. Z-average size of emulsions stabilized by Hi-Cap, WPI-BSG, and SPI-BSG was 318, 736.9 and 1918 nm, respectively. The encapsulation efficiency of polyphenols for powders produced by Hi-Cap, WPI-BSG, and SPI-BSG was 95.25, 90.9 and 92.88%, respectively, which was decreased to 72.47, 67.12 and 64.44% after 6 weeks storage at 30 °C. The antioxidant activity of encapsulated polyphenols at 100, 200 and 300 ppm was measured in oil by peroxide and p-anisidine values during storage and was compared to non-encapsulated extract and synthetic antioxidant. Results showed oxidative alterations in oils containing encapsulated polyphenols was lower than unencapsulated form, which among them capsules produced by SPI-BSG exhibited higher antioxidant effects due to the better gradual release. Generally, the higher antioxidant potential was achieved with increased solubility and controlled release of polyphenols through their nano-encapsulation.
Collapse
Affiliation(s)
- Mojtaba Delfanian
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box: 91775-1163, Mashhad, Iran
| | - Seyed M A Razavi
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box: 91775-1163, Mashhad, Iran.
| | | | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agriculture and Natural Resources University, Sari, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
139
|
Liu L, Jin Z, Wang M, Shen W, Zhu Z, Wang Z, Liu L. W/O Nano-Emulsions with Olive Leaf Phenolics Improved Oxidative Stability of Sacha Inchi
Oil. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingyi Liu
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
- Key Laboratory for Deep Processing of Major Grain and Oil; Ministry of Education; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Zhou Jin
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Min Wang
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Wangyang Shen
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
- Key Laboratory for Deep Processing of Major Grain and Oil; Ministry of Education; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Zhenzhou Zhu
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
- Key Laboratory for Deep Processing of Major Grain and Oil; Ministry of Education; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Zhan Wang
- College of Food Science and Engineering; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
- Key Laboratory for Deep Processing of Major Grain and Oil; Ministry of Education; Wuhan Polytechnic University; Wuhan 430023 Hubei P.R. China
| | - Lianliang Liu
- Key Laboratory of Applied Marine Biotechnology (Ministry of Education); School of marine sciences; Ningbo University; Ningbo 315211 Zhejiang P.R. China
| |
Collapse
|
140
|
Şahin S, Bilgin M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1271-1279. [PMID: 28799642 DOI: 10.1002/jsfa.8619] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/31/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Research into finding new uses for by-products of table olive and olive oil industry are of great value not only to the economy but also to the environment where olives are grown and to the human health. Since leaves represent around 10% of the total weight of olives arriving at the mill, it is worth obtaining high added-value compounds from those materials for the preparation of dietary supplements, nutraceuticals, functional food ingredients or cosmeceuticals. In this review article, olive tree (Olea europaea L.) leaf is reviewed as being a potential inexpensive, renewable and abundant source of biophenols. The importance of this agricultural and industrial waste is emphasised by means of describing its availability, nutritional and therapeutic effects and studies conducted on this field. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Selin Şahin
- Istanbul University, Engineering Faculty, Department of Chemical Engineering, Avcilar, Istanbul, Turkey
| | - Mehmet Bilgin
- Istanbul University, Engineering Faculty, Department of Chemical Engineering, Avcilar, Istanbul, Turkey
| |
Collapse
|
141
|
|
142
|
|
143
|
McClements DJ, Jafari SM. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv Colloid Interface Sci 2018; 251:55-79. [PMID: 29248154 DOI: 10.1016/j.cis.2017.12.001] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
The formation, stability, and performance of oil-in-water emulsions may be improved by using combinations of two or more different emulsifiers, rather than an individual type. This article provides a review of the physicochemical basis for the ability of mixed emulsifiers to enhance emulsion properties. Initially, an overview of the most important physicochemical properties of emulsifiers is given, and then the nature of emulsifier interactions in solution and at interfaces is discussed. The impact of using mixed emulsifiers on the formation and stability of emulsions is then reviewed. Finally, the impact of using mixed emulsifiers on the functional performance of emulsifiers is given, including gastrointestinal fate, oxidative stability, antimicrobial activity, and release characteristics. This information should facilitate the selection of combinations of emulsifiers that will have improved performance in emulsion-based products.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, MA, USA.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
144
|
Raei M, Shahidi F, Farhoodi M, Jafari SM, Rafe A. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. Int J Biol Macromol 2017; 105:281-291. [DOI: 10.1016/j.ijbiomac.2017.07.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022]
|
145
|
Gaikwad KK, Singh S, Lee YS. A new pyrogallol coated oxygen scavenging film and their effect on oxidative stability of soybean oil under different storage conditions. Food Sci Biotechnol 2017; 26:1535-1543. [PMID: 30263690 DOI: 10.1007/s10068-017-0232-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022] Open
Abstract
The current study investigates the oxidative stability of soybean oil packaged with an oxygen scavenging film prepared by pyrogallol coating with concentrations of 5, 10, and 20% at 5, 23, and 60 °C and 95 ± 2% RH respectively. The oil stability was evaluated in terms of peroxide, thiobarbituric acid, and p-anisidine then compared with oil packed without the oxygen scavenging film. The results showed that the LDPE/PG 10 and 20% were efficient in the stabilization of soybean oil, even at high temperature. Peroxide, Thiobarbituric acid, and p-anisidine values, the oil samples packed with LDPE/PG films delayed the oil oxidation. The synergetic effect of LDPE/PG films, which can scavenge oxygen from the packaged product thereby slowing the oxidation of fats, was established in the study. The present study confirmed that active packaging could be introduced as a worthy replacement for direct addition of artificial antioxidants to the soybean oil.
Collapse
Affiliation(s)
| | - Suman Singh
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493 Korea
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju, Gangwon 26493 Korea
| |
Collapse
|
146
|
Urzúa C, González E, Dueik V, Bouchon P, Giménez B, Robert P. Olive leaves extract encapsulated by spray-drying in vacuum fried starch–gluten doughs. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
147
|
Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2995-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
148
|
Shamsara O, Jafari SM, Muhidinov ZK. Development of double layered emulsion droplets with pectin/β-lactoglobulin complex for bioactive delivery purposes. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
149
|
Comunian TA, Ravanfar R, de Castro IA, Dando R, Favaro-Trindade CS, Abbaspourrad A. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds. Food Chem 2017; 233:125-134. [DOI: 10.1016/j.foodchem.2017.04.085] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 01/21/2023]
|
150
|
Shamsara O, Jafari SM, Muhidinov ZK. Fabrication, characterization and stability of oil in water nano-emulsions produced by apricot gum-pectin complexes. Int J Biol Macromol 2017; 103:1285-1293. [DOI: 10.1016/j.ijbiomac.2017.05.164] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 01/16/2023]
|