101
|
Biaggini K, Borrel V, Szunerits S, Boukherroub R, N'Diaye A, Zébré A, Bonnin-Jusserand M, Duflos G, Feuilloley M, Drider D, Déchelotte P, Connil N. Substance P enhances lactic acid and tyramine production in Enterococcus faecalis V583 and promotes its cytotoxic effect on intestinal Caco-2/TC7 cells. Gut Pathog 2017; 9:20. [PMID: 28439299 PMCID: PMC5399405 DOI: 10.1186/s13099-017-0171-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Enterococcus faecalis, generally considered as a saprophytic bowel commensal, has recently emerged as an important nosocomial pathogen causing severe urinary tract infections, surgical wound infections, bacteremia, and bacterial endocarditis. This bacterium is capable of forming biofilms on various surfaces and its high level of antibiotic resistance contributes to its pathogenicity. The aim of this study was to evaluate the effect on E. faecalis, of Substance P (SP), an antimicrobial peptide that is produced in the gut and skin. Results We found that SP did not have antibacterial activity against E. faecalis V583 (MIC >1000 µg/ml). Conversely, SP stimulated aggregation, hydrophobicity, lactic acid and tyramine production in this bacterium. The cytotoxicity and bacterial translocation were also accelerated when E. faecalis V583 were pretreated with SP before infection of intestinal Caco-2/TC7 cells. Conclusion SP can modulate the physiology of E. faecalis. Extensive studies are now needed to screen within the human microbiota which bacteria are responsive to host molecules, and to identify their sensors.
Collapse
Affiliation(s)
- Kelly Biaggini
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| | - Valérie Borrel
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology, UMR-CNRS 8520, Université Lille 1, Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology, UMR-CNRS 8520, Université Lille 1, Villeneuve d'Ascq, France
| | - Awa N'Diaye
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| | - Arthur Zébré
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| | - Maryse Bonnin-Jusserand
- Institut Charles Viollette, EA7394, Université du Littoral Côte d'Opale, Boulogne Sur Mer, France
| | - Guillaume Duflos
- Laboratoire de Sécurité des Aliments, Département des Produits de la Pêche et de l'Aquaculture, ANSES, Boulogne Sur Mer, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| | - Djamel Drider
- Institut Charles Viollette, EA7394, Université Lille 1 - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Pierre Déchelotte
- INSERM Unité 1073 «Nutrition, Inflammation et dysfonction de l'axe intestin-cerveau», Université de Rouen, Rouen, France
| | - Nathalie Connil
- Laboratoire de Microbiologie, Signaux et Microenvironnement (EA4312), Université de Rouen/IUT d'Evreux, 55, rue saint Germain, 27000 Evreux, France
| |
Collapse
|
102
|
Lorenzo JM, Munekata PES, Domínguez R. Role of autochthonous starter cultures in the reduction of biogenic amines in traditional meat products. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
103
|
Fan P, Liu P, Song P, Chen X, Ma X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci Rep 2017; 7:43412. [PMID: 28252026 PMCID: PMC5333114 DOI: 10.1038/srep43412] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate impacts of dietary protein levels on gut bacterial community and gut barrier. The intestinal microbiota of finishing pigs, fed with 16%, 13% and 10% crude protein (CP) in diets, respectively, were investigated using Illumina MiSeq sequencing. The ileal bacterial richness tended to decrease when the dietary protein concentration reduced from 16% to 10%. The proportion of Clostridium_sensu_stricto_1 in ileum significantly decreased, whereas Escherichia-Shigella increased with reduction of protein concentration. In colon, the proportion of Clostridium_sensu_stricto_1 and Turicibacter increased, while the proportion of RC9_gut_group significantly decreased with the dietary protein reduction. Notably, the proportion of Peptostreptococcaceae was higher in both ileum and colon of 13% CP group. As for metabolites, the intestinal concentrations of SCFAs and biogenic amines decreased with the dietary protein reduction. The 10% CP dietary treatment damaged ileal mucosal morphology, and decreased the expression of biomarks of intestinal cells (Lgr5 and Bmi1), whereas the expression of tight junction proteins (occludin and claudin) in 13% CP group were higher than the other two groups. In conclusion, moderate dietary protein restriction (13% CP) could alter the bacterial community and metabolites, promote colonization of beneficial bacteria in both ileum and colon, and improve gut barrier function.
Collapse
Affiliation(s)
- Peixin Fan
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ping Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Peixia Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Department of Internal Medicine, Department of Biochemistry, Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
| |
Collapse
|
104
|
Tuwei AK, Williams NH, Mulla MY, Di Natale C, Paolesse R, Grell M. 'Rough guide' evanescent wave optrode for colorimetric metalloporphyrine sensors. Talanta 2017; 164:228-232. [PMID: 28107922 DOI: 10.1016/j.talanta.2016.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
Abstract
When films of zinc 5-(4-carboxyphenyl),10,15,20-triphenyl porphyrin (ZnTPP) are exposed to waterborne amine in pH- neutral or alkaline media, both Q- band and Soret band respond with a change of absorbance due to the donation of amine 'lone pair' electrons to the metalloprophyrin π orbital. However, this is difficult to reveal with a conventional spectrometer even under high amine concentration. We therefore introduce optical fibres coated with ZnTPP into a bespoke 'light balance' evanescent wave absorbance meter [doi:10.1016/j.snb.2016.05.065]. The light balance makes absorbance changes clearly visible under only 5μM aqueous amine, making PVC membranes redundant. We find sensitivity is higher, and limit- of- detection lower, in the Soret band rather than the Q- band, reflecting the stronger Soret band absorbance. Also, we find that sensitivity is higher, and limit- of- detection approximately two times lower, when rough rather than smooth fibres are used. We believe the rough fibre surface leads to enhanced evanescence, and therefore better overlap of the wave propagating in the fibre with the ZnTPP fibre cladding. We find a limit of detection to waterborne amines below 1μM, which compares well to other sensors for waterborne amines [Korent, S.M. et.al. Anal. Bioanal. Chem. 387 (2007) 2863-2870; Algarni, S. A. et.al. Talanta 153 (2016) 107-110]. We therefore recommend 'rough guide' evanescent wave optrodes, in combination with sensitive 'light balance' detector, to succeed membrane- embedding of colorimetric sensitisers such as metalloporphyrines.
Collapse
Affiliation(s)
- Abraham Kirwa Tuwei
- Department of Physics and Astronomy, University of Sheffield, S3 7RH Sheffield, United Kingdom; Department of Physical Sciences, Chuka University, P.O. Box 109, 60400 Chuka, Kenya.
| | - Nicholas H Williams
- Centre for Chemical Biology, Department of Chemistry, University of Sheffield, S3 7HF Sheffield, United Kingdom
| | - Mohammad Yusuf Mulla
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Roma 00133, Italy
| | - Martin Grell
- Department of Physics and Astronomy, University of Sheffield, S3 7RH Sheffield, United Kingdom
| |
Collapse
|
105
|
The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem 2017; 218:249-255. [DOI: 10.1016/j.foodchem.2016.09.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
|
106
|
Redruello B, Ladero V, del Rio B, Fernández M, Martin M, Alvarez MA. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chem 2017; 217:117-124. [DOI: 10.1016/j.foodchem.2016.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/08/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
107
|
Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 2016; 44:94-102. [PMID: 27998788 DOI: 10.1016/j.copbio.2016.11.010] [Citation(s) in RCA: 731] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Fermented foods and beverages were among the first processed food products consumed by humans. The production of foods such as yogurt and cultured milk, wine and beer, sauerkraut and kimchi, and fermented sausage were initially valued because of their improved shelf life, safety, and organoleptic properties. It is increasingly understood that fermented foods can also have enhanced nutritional and functional properties due to transformation of substrates and formation of bioactive or bioavailable end-products. Many fermented foods also contain living microorganisms of which some are genetically similar to strains used as probiotics. Although only a limited number of clinical studies on fermented foods have been performed, there is evidence that these foods provide health benefits well-beyond the starting food materials.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, USA
| | - Sylvie Binda
- Danone Nutricia, Centre Daniel CArasso, Avenue de la Vauve - Route Départementale 128, 91120 Palaiseau, France
| | | | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark and APC Microbiome Institute, Cork, Ireland
| | - Benoit Foligné
- Lille Inflammation Research International Center, Inserm U995, University of Lille, CHRU de Lille, France
| | - Michael Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Remco Kort
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist and VU University Amsterdam, Department of Molecular Cell Biology, Amsterdam, The Netherlands
| | - Gonca Pasin
- California Dairy Research Foundation, 501 G Street, #203, Davis, CA 95616, USA
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie 1, 31600 Jokioinen, Finland
| | - Eddy J Smid
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska - Lincoln, Lincoln, NE 68588-6205, USA.
| |
Collapse
|
108
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
109
|
Diaz M, del Rio B, Sanchez-Llana E, Ladero V, Redruello B, Fernández M, Martin MC, Alvarez MA. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiol 2016; 59:85-91. [DOI: 10.1016/j.fm.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
|
110
|
Ordóñez JL, Troncoso AM, García-Parrilla MDC, Callejón RM. Recent trends in the determination of biogenic amines in fermented beverages – A review. Anal Chim Acta 2016; 939:10-25. [DOI: 10.1016/j.aca.2016.07.045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023]
|
111
|
Redruello B, Ladero V, del Rio B, Fernández M, Martín MC, Alvarez MA. Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data Brief 2016; 9:398-400. [PMID: 27689128 PMCID: PMC5035235 DOI: 10.1016/j.dib.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
A novel chromatographic method for the simultaneous analysis of nine biogenic amines, 21 amino acids and ammonium ions in beer has been recently described in “A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer” (Redruello et al., 2017) [1]. The present article provides recovery data of the 31 analytes after spiking four different beers with five concentrations of each analyte (15, 30, 60, 120 and 240 µM).
Collapse
|
112
|
Cernei N, Lackova Z, Guran R, Hynek D, Skladanka J, Horky P, Zitka O, Adam V. Determination of Histamine in Silages Using Nanomaghemite Core (γ-Fe₂O₃)-Titanium Dioxide Shell Nanoparticles Off-Line Coupled with Ion Exchange Chromatography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090904. [PMID: 27626434 PMCID: PMC5036737 DOI: 10.3390/ijerph13090904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe2O3) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles’ (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage.
Collapse
Affiliation(s)
- Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, 61600 Brno, Czech Republic.
| |
Collapse
|
113
|
Bartkiene E, Bartkevics V, Rusko J, Starkute V, Zadeike D, Juodeikiene G. Changes in the free amino acids and the biogenic amine contents during lactic acid fermentation of different lupin species. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena Bartkiene
- Lithuanian University of Health Sciences; Tilzes g. 18 47181 Kaunas Lithuania
| | - Vadims Bartkevics
- University of Latvia; Jelgavas iela 1 1004 Riga Latvia
- Institute of Food Safety, Animal Health and Environment; Lejupes iela 3 1076 Riga Latvia
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment; Lejupes iela 3 1076 Riga Latvia
| | - Vytaute Starkute
- Lithuanian University of Health Sciences; Tilzes g. 18 47181 Kaunas Lithuania
| | - Daiva Zadeike
- Kaunas University of Technology; Radvilenu pl. 19 50254 Kaunas Lithuania
| | | |
Collapse
|
114
|
Kochana J, Wapiennik K, Knihnicki P, Pollap A, Janus P, Oszajca M, Kuśtrowski P. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal Bioanal Chem 2016; 408:5199-210. [PMID: 27209590 PMCID: PMC4925687 DOI: 10.1007/s00216-016-9612-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 11/21/2022]
Abstract
A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer-i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO2) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(-1) cm(-2), and limit of detection of 1.5 μM. The apparent Michaelis-Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. Graphical abstract Different food samples were analyzed to determine tyramine using biosensor based on tyrosinase.
Collapse
Affiliation(s)
- Jolanta Kochana
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland.
| | - Karolina Wapiennik
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paweł Knihnicki
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Aleksandra Pollap
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Paula Janus
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Marcin Oszajca
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| |
Collapse
|
115
|
Moncalvo A, Marinoni L, Dordoni R, Duserm Garrido G, Lavelli V, Spigno G. Waste grape skins: evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1116-26. [PMID: 27295010 DOI: 10.1080/19440049.2016.1191320] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Skin powders and aqueous alcohol extracts were obtained from waste marcs from different grape varieties (Barbera, Nebbiolo, Pinot Noir, Chardonnay, Moscato and Müller-Thurgau). Both skins and extracts were analysed for the content of chemical contaminants: ochratoxin A (OTA), biogenic amines (BIAs), pesticides and metals. OTA was detected in low concentrations in Barbera, Moscato and Nebbiolo skins, but only in Barbera and Moscato extracts. Cadaverine, putrescine, ethanolamine and ethylamine were found in extracts at very low levels, while potential allergenic amines, tyramine and histamine, were never detected. Different pesticides were present in both skins and extracts. Pb and Cd were found in trace only in the powders, and K, Ca and Mg were the most abundant elements in both skin powders and extracts. Concentrations of the different contaminants were related to fibre content or total phenolics content of powders and extracts, respectively, in order to evaluate their use in the food sector.
Collapse
Affiliation(s)
- Alessandro Moncalvo
- a Institute of Oenology and Agro-Food Engineering , Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Laura Marinoni
- a Institute of Oenology and Agro-Food Engineering , Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Roberta Dordoni
- a Institute of Oenology and Agro-Food Engineering , Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Guillermo Duserm Garrido
- a Institute of Oenology and Agro-Food Engineering , Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Vera Lavelli
- b DeFENS, Department of Food, Environmental and Nutritional Sciences , Università degli Studi di Milano , Milan , Italy
| | - Giorgia Spigno
- a Institute of Oenology and Agro-Food Engineering , Università Cattolica del Sacro Cuore , Piacenza , Italy
| |
Collapse
|
116
|
Valenzano S, De Girolamo A, DeRosa MC, McKeague M, Schena R, Catucci L, Pascale M. Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing. ACS COMBINATORIAL SCIENCE 2016; 18:302-13. [PMID: 27057927 DOI: 10.1021/acscombsci.5b00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aptamers are synthetic single-stranded DNA or RNA sequences that can fold into tertiary structures allowing them to interact with and bind to targets with high affinity and specificity. This paper describes the first selection and identification of DNA aptamers able to recognize the biogenic amine tyramine. To successfully isolate aptamers to this challenging small molecule target, the SELEX methodology was adapted by combining a systematic strategy to increase the selection stringency and monitor enrichment success. As the benefits of applying high-throughput sequencing (HTS) in SELEX experiments is becoming more clear, this method was employed in combination with bioinformatics analysis to evaluate the utility of the selection strategy and to uncover new potential high affinity sequences. On the basis of the presence of consensus regions (sequence families) and family similarities (clusters), 15 putative aptamers to tyramine were identified. A recently described workflow approach to perform a primary screening and characterization of the aptamer candidates by microequilibrium dialysis and by microscale thermophoresis was next leveraged. These candidate aptamers exhibited dissociation constant (Kd) values in the range of 0.2-152 μM with aptamer Tyr_10 as the most promising one followed by aptamer Tyr_14. These aptamers could be used as promising molecular recognition tools for the development of inexpensive, robust and innovative biosensor platforms for the detection of tyramine in food and beverages.
Collapse
Affiliation(s)
- Stefania Valenzano
- Institute
of Sciences of Food Production, National Research Council of Italy, via G. Amendola 122/O, 70126 Bari, Italy
| | - Annalisa De Girolamo
- Institute
of Sciences of Food Production, National Research Council of Italy, via G. Amendola 122/O, 70126 Bari, Italy
| | - Maria C. DeRosa
- Chemistry
Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada K1S 5B6
| | - Maureen McKeague
- Chemistry
Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada K1S 5B6
| | - Roberto Schena
- Institute
of Sciences of Food Production, National Research Council of Italy, via G. Amendola 122/O, 70126 Bari, Italy
| | - Lucia Catucci
- Chemistry
Department, University of Bari “Aldo Moro”, via Orabona
4, 70126 Bari, Italy
| | - Michelangelo Pascale
- Institute
of Sciences of Food Production, National Research Council of Italy, via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
117
|
Pessione E, Cirrincione S. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front Microbiol 2016; 7:876. [PMID: 27375596 PMCID: PMC4899451 DOI: 10.3389/fmicb.2016.00876] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/24/2016] [Indexed: 01/14/2023] Open
Abstract
Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain functional food. The detailed knowledge of the modulation of human physiology, exploiting the health-promoting properties of fermented food, is an open field of investigation that will constitute the next challenge.
Collapse
Affiliation(s)
- Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| | | |
Collapse
|
118
|
Ladero V, Gómez-Sordo C, Sánchez-Llana E, del Rio B, Redruello B, Fernández M, Martín MC, Alvarez MA. Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products. Front Microbiol 2016; 7:445. [PMID: 27092117 PMCID: PMC4820458 DOI: 10.3389/fmicb.2016.00445] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/18/2016] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions -including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods.
Collapse
Affiliation(s)
- Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA–CSIC)Villaviciosa, Spain
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Diaz M, Ladero V, Redruello B, Sanchez-Llana E, del Rio B, Fernandez M, Martin MC, Alvarez MA. Nucleotide sequence alignment of hdcA from Gram-positive bacteria. Data Brief 2016; 6:674-9. [PMID: 26958625 PMCID: PMC4773395 DOI: 10.1016/j.dib.2016.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/22/2015] [Accepted: 01/09/2016] [Indexed: 12/01/2022] Open
Abstract
The decarboxylation of histidine -carried out mainly by some gram-positive bacteria- yields the toxic dietary biogenic amine histamine (Ladero et al. 2010 〈10.2174/157340110791233256〉 [1], Linares et al. 2016 〈http://dx.doi.org/10.1016/j.foodchem.2015.11.013〉〉 [2]). The reaction is catalyzed by a pyruvoyl-dependent histidine decarboxylase (Linares et al. 2011 〈10.1080/10408398.2011.582813〉 [3]), which is encoded by the gene hdcA. In order to locate conserved regions in the hdcA gene of Gram-positive bacteria, this article provides a nucleotide sequence alignment of all the hdcA sequences from Gram-positive bacteria present in databases. For further utility and discussion, see 〈http://dx.doi.org/ 10.1016/j.foodcont.2015.11.035〉〉 [4].
Collapse
Affiliation(s)
| | - Victor Ladero
- Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | | | | | | | | | | | | |
Collapse
|