101
|
|
102
|
Nouri M, Mokhtarian M. Optimization of Pectin Extractions from Walnut Green Husks and Characterization of the Extraction Physicochemical and Rheological Properties. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.2.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
103
|
Sengar AS, Rawson A, Muthiah M, Kalakandan SK. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. ULTRASONICS SONOCHEMISTRY 2020; 61:104812. [PMID: 31704498 DOI: 10.1016/j.ultsonch.2019.104812] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 05/09/2023]
Abstract
Concept of waste to wealth is a hot topic with research ongoing globally to reduce carbon footprint. In an effort to follow up this cause present study focused on tomato industry waste specifically the peel of tomatoes for extraction of pectin. Pectin extraction was performed using five different extraction techniques (Ultrasound assisted extraction (UAE); microwave assisted extraction (MAE); ohmic heating assisted extraction (OHAE); ultrasound assisted microwave extraction (UAME) and ultrasound assisted ohmic heating extraction (UAOHE) at different power levels to study its extraction and degradation kinetics and in turn to optimize the extraction process. The extracted pectin yield ranged from 9.30% for OHAE to 25.42% for MAE. Also, there was very less difference in the yield of MAE and UAME extracted pectin, but at the cost of major difference in degree of esterification 59.76 ± 0.70 and 73.33 ± 1.76%, respectively. In addition, all the pectin extracted under optimized conditions was having acceptable purity, [Galacturonic acid (GalA) content ranged from 675.8 ± 11.31 to 913.3 ± 20.50 g/kg of pectin]. FTIR analysis confirmed the presence of functional groups in the finger print region of identification for polysaccharide in all the extracted pectin. According to obtained results, UAME can be considered as better green extraction technology in terms of extraction yield as well as in quality of pectin compared to the other treatments used. Therefore, results suggest that UAME can be used as an efficient pectin extraction method from tomato processing waste.
Collapse
Affiliation(s)
- Animesh Singh Sengar
- Indian Institute of Food Processing Technology, Thanjavur 613 005, Tamil Nadu, India
| | - Ashish Rawson
- Indian Institute of Food Processing Technology, Thanjavur 613 005, Tamil Nadu, India.
| | - Manimekalai Muthiah
- Indian Institute of Food Processing Technology, Thanjavur 613 005, Tamil Nadu, India
| | | |
Collapse
|
104
|
Dranca F, Vargas M, Oroian M. Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105383] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
105
|
Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int J Biol Macromol 2020; 153:169-179. [PMID: 32105695 DOI: 10.1016/j.ijbiomac.2020.02.252] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.5:15.8:20.1:32.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves.
Collapse
|
106
|
Halambek J, Cindrić I, Ninčević Grassino A. Evaluation of pectin isolated from tomato peel waste as natural tin corrosion inhibitor in sodium chloride/acetic acid solution. Carbohydr Polym 2020; 234:115940. [PMID: 32070550 DOI: 10.1016/j.carbpol.2020.115940] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/01/2022]
Abstract
The pectin from tomato peel waste (TPP) was employed as tin corrosion inhibitor with the aim to enhance the knowledge regarding the application of natural inhibitors, instead synthetic, and reducing the waste disposal for value-added biopolymers production. To evaluate the TPP anticorrosion activity the commercial apple pectin (CAP) was also utilised. The gravimetric tests show that the highest inhibitive impact (η) of 75.9 % (CAP) and 73.9 % (TPP) are gained at concentration of 20 g L-1. By electrochemical, potentiodynamic polarization and impedance spectroscopy measurements, the maximum η (60.05-65.5 %) are reached at lower concentration (4 g L-1), due to tendency of pectins to form viscous solution. The prominent decreases in current density with the shifts of potential in the cathodic direction revealed that pectins provided cathodic protection of tin surface. Similar inhibition impact of pectins, and fine agreement between applied methods confirmed their suitability against tin corrosion.
Collapse
Affiliation(s)
- Jasna Halambek
- Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000, Karlovac, Croatia
| | - Ines Cindrić
- Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000, Karlovac, Croatia
| | - Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| |
Collapse
|
107
|
Khedmat L, Izadi A, Mofid V, Mojtahedi SY. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr Polym 2020; 229:115474. [DOI: 10.1016/j.carbpol.2019.115474] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
|
108
|
Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
109
|
Kazemi M, Khodaiyan F, Hosseini SS, Najari Z. An integrated valorization of industrial waste of eggplant: Simultaneous recovery of pectin, phenolics and sequential production of pullulan. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:101-111. [PMID: 31526957 DOI: 10.1016/j.wasman.2019.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Based on a bio-refinery concept, the valorization of eggplant peel wastes (EPW) in the production of multiple value-added products was aimed. The acid-free extraction process was applied in the simultaneous recovery of pectin and phenolic compounds. The extraction variables were optimized by response surface methodology using a Box-Behnken design and the maximum yield of pectin (26.1%) and phenolic compounds (20.2%) was obtained in the extraction temperature of 90 °C, time of 90 min and liquid/solid ratio of 40 mL/g. After recovery of pectin and phenolic compounds from EPW, the solid leftovers were enzymatic hydrolyzed and the hydrolysates were used as a carbon source in the microbial production of pullulan by Aureobasidium pullulans. The produced pectin and pullulan were characterized through the chemical and structural features. The results of FT-IR and H-NMR analysis approved the predominant presence of these two polysaccharides in the isolated samples. On the other hand, the antioxidant activity of the recovered phenolic compounds extract was evaluated by DPPH and ABTS radical scavenging activity and reducing power assay.
Collapse
Affiliation(s)
- Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Zahra Najari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
110
|
Di Francesco A, Di Foggia M, Baraldi E. Aureobasidium pullulans volatile organic compounds as alternative postharvest method to control brown rot of stone fruits. Food Microbiol 2019; 87:103395. [PMID: 31948636 DOI: 10.1016/j.fm.2019.103395] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Volatile compounds produced by L1 and L8 strains were assayed against mycelia and conidia growth of Monilinia laxa, M. fructicola, M. polystroma, and M. fructigena of stone fruits. Results showed that volatile metabolites inhibited significantly pathogens growth, in particular M. fructigena mycelium growth (70% by L1 and 50% by L8) and M. fructicola conidia germination (85% by L1 and 70% by L8) compared to the control. Moreover, the antagonistic activity was enhanced by the addition of asparagine (120 mg L-1) in the culture media composition. Synthetic pure compounds were tested in vitro on pathogens mycelial and conidia growth and their EC50 values were estimated, confirming 2-phenethyl as the most active compound. For this reason 2-phenethyl and VOCs of both yeast strains were assayed in vivo on cherry, peach, and apricot fruits. Regarding peach fruit, both treatments, yeasts and pure compounds, displayed the best inhibiting action against all the pathogens especially against M. laxa (100% by L1, 84% by L8 and 2-phenethyl). ATR/IR spectroscopy analysis showed how VOCs produced by both strains increase the fruit waxes complexity reducing the pathogens attack so playing an essential role in the antagonistic activity of both yeast strains and on fruit structural composition.
Collapse
Affiliation(s)
- Alessandra Di Francesco
- CRIOF - Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 46, 40127, Bologna, Italy
| | - Michele Di Foggia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Belmeloro, 8/2, 40126, Bologna, Italy
| | - Elena Baraldi
- CRIOF - Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 46, 40127, Bologna, Italy.
| |
Collapse
|
111
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
112
|
Kazemi M, Khodaiyan F, Labbafi M, Hosseini SS. Ultrasonic and heating extraction of pistachio by-product pectin: physicochemical, structural characterization and functional measurement. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00315-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
113
|
Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
114
|
Yu P, Wang X, Ren Q, Huang X, Yan T. Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism. World J Microbiol Biotechnol 2019; 35:165. [PMID: 31641866 DOI: 10.1007/s11274-019-2749-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism were investigated. The fused strain B. subtilis FS105 with the highest activity of alkaline pectinase was obtained after two rounds of genome shuffling. The activity of alkaline pectinase in B. subtilis FS105 was 499 U/ml, which was improved by 1.6 times compared to that in original strain. To elucidate its molecular mechanism, rpsL gene sequences from original and fused strains were cloned and aligned, and the space structure of their coding proteins were also analyzed and compared. The alignment of the rpsL gene sequences indicated that three bases G, G and C were respectively replaced by A, A and G in the positions 52, 408 and 409 after genome shuffling. This resulted in the substitution of two amino acid residues in ribosomal protein S12: D18N and P137A, and therefore improving the biosynthesis of alkaline pectinase. This study lays a foundation for improving the activity of alkaline pectinase by genome shuffling and understanding its molecular mechanism.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China.
| | - Xinxin Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Qian Ren
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Xingxing Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Tingting Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| |
Collapse
|
115
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
116
|
Kazemi M, Khodaiyan F, Hosseini SS. Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chem 2019; 294:339-346. [DOI: 10.1016/j.foodchem.2019.05.063] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
|
117
|
Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. Int J Biol Macromol 2019; 136:275-283. [DOI: 10.1016/j.ijbiomac.2019.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
|
118
|
Gao R, Ye F, Wang Y, Lu Z, Yuan M, Zhao G. The spatial-temporal working pattern of cold ultrasound treatment in improving the sensory, nutritional and safe quality of unpasteurized raw tomato juice. ULTRASONICS SONOCHEMISTRY 2019; 56:240-253. [PMID: 31101259 DOI: 10.1016/j.ultsonch.2019.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
In considering the adverse nutritional and flavor consequences of thermal pasteurization on fruit juices, freshly squeezed and unpasteurized fruit juices, commonly called raw juices, are of increasing demand as they are served in bars, restaurants and at home. Apparently, due to lack of controlled processing regime as did in a juice factory, the raw juice often undergoes a rapid phase separation and is at the risk of microbial unsafety. To this end, an attempt of cold ultrasound treatment (CUT, 87.52 W/cm2, 10 °C) was implemented to a raw tomato juice up to 30 min. Appreciatively, the physical stability, nutritional value and microbial safety substantially improved. On a CUT time scale, cloud stability and total phenolic content continuously increased; the total plate count was adversely altered; the rheological parameters (viscosity, thixotropy and shear-thinning tendency) and total carotenoids obtained shared a parabolic changing pattern but peaked at 15 min and 10 min, respectively. Finally, the ascorbic acid sharply increased at an earlier stage (5 min), and then remained stable throughout the whole process. Notably, the occurrences of these improvements are of spatial-temporal nature and resulted from different cavitation induced stress fields. At the initial stage, CUT chiefly worked via the mechanical field with the particles in pulp phase, making them smaller and releasing the soluble materials into serum phase. When the particles larger than approximately of 160 μm were completely disintegrated, the CUT entered its second stage and mainly functioned in the serum phase via both mechanical and chemical fields. As a result, the serum pectin and carotenoids were depolymerized and degraded, respectively. The present results are valuable in uncovering the mechanism and kinetics underlying the ultrasound treatment of fruit juices and the present CUT is highly recommended due to its high maneuverability and excellent performance.
Collapse
Affiliation(s)
- Ruiping Gao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yulin Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhiqiang Lu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Maoyi Yuan
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Center of Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
119
|
Li Q, Li J, Li H, Xu R, Yuan Y, Cao J. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydr Polym 2019; 219:181-190. [DOI: 10.1016/j.carbpol.2019.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
120
|
Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, Khan IM, Zhao L, Riaz T, Tong Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
121
|
Ultrasound-Assisted Extraction of Pectin from Malus domestica ‘Fălticeni’ Apple Pomace. Processes (Basel) 2019. [DOI: 10.3390/pr7080488] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of an ultrasonic treatment for the extraction of pectin from Malus domestica ‘Fălticeni’ apple pomace, its effects on extraction yield and galacturonic acid content, and degree of esterification of the extracted pectin were investigated. The optimization of the extraction process showed that the highest yield of 9.183% pectin, with a 98.127 g/100 g galacturonic acid content and 83.202% degree of esterification, was obtained at 100% amplitude, pH of 1.8, SLR of 1:10 g/mL, and 30 min. The pectin obtained in optimal extraction conditions was compared to commercial citrus and apple pectin in terms of chemical composition (determined by FT-IR), thermal behaviour (analyzed by differential scanning calorimetry), rheological properties, and morphological structure (analyzed by scanning electron microscopy). By comparison to commercial citrus and apple pectin samples, the FT-IR analysis of pectin extracted by ultrasound treatment confirmed the high degree of esterification and showed similarity to that of apple pectin (88.526%). It was found that the thermal behaviour of the pectin obtained by ultrasound-assisted extraction was influenced by the narrower distribution of molecular weights and the orderly molecular arrangement, while the rheological properties (high viscosity, G0, and G1) of this sample were influenced by the morphological structure and the galacturonic acid content. The correlation coefficient showed a strong positive relationship between viscosity and galacturonic acid content (r = 0.992**).
Collapse
|
122
|
Polanco-Lugo E, Martínez-Castillo JI, Cuevas-Bernardino JC, González-Flores T, Valdez-Ojeda R, Pacheco N, Ayora-Talavera T. Citrus pectin obtained by ultrasound-assisted extraction: Physicochemical, structural, rheological and functional properties. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1600036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Erik Polanco-Lugo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - José Isabel Martínez-Castillo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - Juan Carlos Cuevas-Bernardino
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - Tania González-Flores
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - Ruby Valdez-Ojeda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Mérida, México
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - Teresa Ayora-Talavera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Sureste, Parque Científico Tecnológico de Yucatán, Mérida, México
| |
Collapse
|
123
|
Løvdal T, Droogenbroeck BV, Eroglu EC, Kaniszewski S, Agati G, Verheul M, Skipnes D. Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey as Examples. Foods 2019; 8:E229. [PMID: 31252678 PMCID: PMC6678325 DOI: 10.3390/foods8070229] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.
Collapse
Affiliation(s)
- Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068 Stavanger, Norway.
| | - Bart Van Droogenbroeck
- ILVO - Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, 9090 Melle, Belgium.
| | - Evren Caglar Eroglu
- Department of Food Technology, Alata Horticultural Research Institute, 33740 Mersin, Turkey.
| | - Stanislaw Kaniszewski
- Department of Soil Science and Vegetable Cultivation, InHort - Research Institute of Horticulture, 96-100 Skierniewice, Poland.
| | - Giovanni Agati
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata 'Nello Carrara', 50019 Sesto Fiorentino, Italy.
| | - Michel Verheul
- NIBIO - Norwegian Institute of Bioeconomy Research, N-4353 Klepp Stasjon, Norway.
| | - Dagbjørn Skipnes
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068 Stavanger, Norway.
| |
Collapse
|
124
|
Lu J, Li J, Jin R, Li S, Yi J, Huang J. Extraction and characterization of pectin from Premna microphylla Turcz leaves. Int J Biol Macromol 2019; 131:323-328. [DOI: 10.1016/j.ijbiomac.2019.03.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023]
|
125
|
Kazemi M, Khodaiyan F, Hosseini SS. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
126
|
Tulukcu E, Cebi N, Sagdic O. Chemical Fingerprinting of Seeds of Some Salvia Species in Turkey by Using GC-MS and FTIR. Foods 2019; 8:foods8040118. [PMID: 30987396 PMCID: PMC6518353 DOI: 10.3390/foods8040118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Six species of Salvia seeds cultivated and grown in Cumra/Konya (Turkey) were evaluated using headspace gas chromatography mass spectroscopy (GC-MS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) combined chemometrics of hierarchical cluster analysis (HCA) and principal component analysis (PCA). The major volatile compounds in the Salvia species are determined as n-hexanal (present in seven samples), sabinene (present in three samples), α-pinene (present in 13 samples), α-thujone (present in four samples), borneol (present in 11 samples), linalyl acetate (present in 10 samples), β-pinene (present in 13 samples), camphene (present in 13 samples), α-thujene (present in four samples), 2,4(10)-thujadien (present in two samples), β-myrcene (present in seven samples), limonen (present in 12 samples), 1,8-cineole (eucalyptol) (present in 13 samples) and camphor (present in nine samples). The most abundant (%) volatile compounds among all were detected as α-pinene, camphene, β-pinene and eucalyptol. For the first time, chemometrics of HCA and PCA is applied to FTIR and GC-MS data. The classification of all samples is performed on the basis of their chemical similarities and differences.
Collapse
Affiliation(s)
- Eray Tulukcu
- Technical Vocational School of Higher Education, Program of Medical Aromatic Plants, Selcuk University, 42500 Cumra, Konya, Turkey.
| | - Nur Cebi
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, 34210 Istanbul, Turkey.
| | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, 34210 Istanbul, Turkey.
| |
Collapse
|
127
|
Mehrali M, Thakur A, Kadumudi FB, Pierchala MK, Cordova JAV, Shahbazi MA, Mehrali M, Pennisi CP, Orive G, Gaharwar AK, Dolatshahi-Pirouz A. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12283-12297. [PMID: 30864429 DOI: 10.1021/acsami.9b00154] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The emergence of nontoxic, eco-friendly, and biocompatible polymers derived from natural sources has added a new and exciting dimension to the development of low-cost and scalable biomaterials for tissue engineering applications. Here, we have developed a mechanically strong and durable hydrogel composed of an eco-friendly biopolymer that exists within the cell walls of fruits and plants. Its trade name is pectin, and it bears many similarities with natural polysaccharides in the native extracellular matrix. Specifically, we have employed a new pathway to transform pectin into a ultraviolet (UV)-cross-linkable pectin methacrylate (PEMA) polymer. To endow this hydrogel matrix with cell differentiation and cell spreading properties, we have also incorporated thiolated gelatin into the system. Notably, we were able to fine-tune the compressive modulus of this hydrogel in the range ∼0.5 to ∼24 kPa: advantageously, our results demonstrated that the hydrogels can support growth and viability for a wide range of three-dimensionally (3D) encapsulated cells that include muscle progenitor (C2C12), neural progenitor (PC12), and human mesenchymal stem cells (hMSCs). Our results also indicate that PEMA-gelatin-encapsulated hMSCs can facilitate the formation of bonelike apatite after 5 weeks in culture. Finally, we have demonstrated that PEMA-gelatin can yield micropatterned cell-laden 3D constructs through UV light-assisted lithography. The simplicity, scalability, processability, tunability, bioactivity, and low-cost features of this new hydrogel system highlight its potential as a stem cell carrier that is capable of bridging the gap between clinic and laboratory.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ashish Thakur
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Firoz Babu Kadumudi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Malgorzata Karolina Pierchala
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Julio Alvin Vacacela Cordova
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Mohammad-Ali Shahbazi
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Mohammad Mehrali
- Faculty of Engineering Technology, Laboratory of Thermal Engineering , University of Twente , Enschede 7500 AE , The Netherlands
| | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Laboratory for Stem Cell Research , Aalborg University , Fredrik Bajers Vej 3B , 9220 , Aalborg , Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , 01006 Vitoria-Gasteiz , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , 01006 Vitoria-Gasteiz , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundacion Eduardo Anitua) , 01007 Vitoria , Spain
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower , 169856 Singapore
| | | | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Regenerative Biomaterials , Radboud University Medical Center , Philips van Leydenlaan 25 , Nijmegen 6525 EX , The Netherlands
| |
Collapse
|
128
|
Recyclable enzymatic recovery of pectin and punicalagin rich phenolics from waste pomegranate peels using magnetic nanobiocatalyst. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
129
|
Lu Z, Wang J, Gao R, Ye F, Zhao G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
130
|
Yang JS, Mu TH, Ma MM. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chem 2019; 289:351-359. [PMID: 30955623 DOI: 10.1016/j.foodchem.2019.03.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022]
Abstract
The ultrasound-microwave assisted HCl extraction of pectin from potato pulp was optimized using the response surface methodology. Effects of extraction temperature, pH, and time on the yield were evaluated, and structural characteristics of pectin extracted under optimal conditions were determined. The yield was 22.86 ± 1.29% under optimal conditions of temperature 93 °C, pH 2.0, and time 50 min. The obtained pectin was rich in branched rhamnogalacturonan I (61.54 mol%). Furthermore, the pectin was a low-methoxyl (degree of methylation, 32.58%) but highly acetylated (degree of acetylation, 17.84%) pectin and the molecular weight was 1.537 × 105 g/mol. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance indicated that pectin had a linear region of α-1, 4-linked galacturonic acids which could be methyl and acetyl-esterified, and rhamnose linked with galacturonic acid to form rhamnogalacturonan which was branched with side chains. Scanning electron microscopy showed most of pectin had a lamellae structure.
Collapse
Affiliation(s)
- Jin-Shu Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Tai-Hua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Meng-Mei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| |
Collapse
|
131
|
Yeung YK, Lee Y, Chang YH. Physicochemical, microbial, and rheological properties of yogurt substituted with pectic polysaccharide extracted from
Ulmus davidiana. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuen Kwan Yeung
- Department of Food and Nutrition, Bionanocomposite Research CenterKyung Hee University Seoul Republic of Korea
| | - Yun‐Kyung Lee
- Department of Food and Nutrition, Bionanocomposite Research CenterKyung Hee University Seoul Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, Bionanocomposite Research CenterKyung Hee University Seoul Republic of Korea
| |
Collapse
|
132
|
Muthusamy S, Manickam LP, Murugesan V, Muthukumaran C, Pugazhendhi A. Pectin extraction from Helianthus annuus (sunflower) heads using RSM and ANN modelling by a genetic algorithm approach. Int J Biol Macromol 2019; 124:750-758. [DOI: 10.1016/j.ijbiomac.2018.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
|
133
|
Hosseini SS, Khodaiyan F, Kazemi M, Najari Z. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 2019; 125:621-629. [DOI: 10.1016/j.ijbiomac.2018.12.096] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/01/2018] [Accepted: 12/09/2018] [Indexed: 12/26/2022]
|
134
|
Rosa ACSD, Stevanato N, Iwassa I, Garcia VADS, Silva CD. Obtaining oil from macauba kernels by ultrasound-assisted extraction using ethyl acetate as the solvent. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.19518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract The objective of this work was to evaluate the efficacy of ethyl acetate as a solvent in the extraction of macauba kernel oil (MKO) using ultrasonic-assisted extraction (UAE). It was shown that more MKO oil could be extracted with the use of larger amounts of solvent, higher temperatures and longer extraction times. Thus the maximum oil yield (40.61%) was obtained by UAE at 60 °C for 45 min, using a solvent to kernel ratio of 12 (mL g-1), obtaining a higher yield than that obtained with n-hexane under the same experimental conditions. UAE was favorable for this oil extraction (p < 0.05), presenting a yield close to that reported for classical extraction but with a shorter extraction time and smaller solvent volume. Lauric acid corresponded to ~44% of the MKO composition. The oils presented low free fatty acid contents (<0.80% wt), and the phytosterols, campesterol and β-sitosterol, were identified in the MKO with higher levels in the oil obtained by UAE.
Collapse
Affiliation(s)
| | | | | | | | - Camila da Silva
- Universidade Estadual de Maringá, Brasil; Universidade Estadual de Maringá, Brasil
| |
Collapse
|
135
|
Characterization of chemical, molecular, thermal and rheological properties of medlar pectin extracted at optimum conditions as determined by Box-Behnken and ANFIS models. Food Chem 2019; 271:650-662. [DOI: 10.1016/j.foodchem.2018.07.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022]
|
136
|
Zhang W, Xie F, Liu X, Luo J, Wu J, Wang Z. Pectin from Black Tomato Pomace: Characterization, Interaction with Gallotannin, and Emulsifying Stability Properties. STARCH-STARKE 2018. [DOI: 10.1002/star.201800172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zhang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Fan Xie
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Xiaohui Liu
- College of Longrun Pu-erh Tea, Yunnan Agriculturual University; Kunming 650201 Yunnan China
| | - Jing Luo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| |
Collapse
|
137
|
Wang W, Chen W, Zou M, Lv R, Wang D, Hou F, Feng H, Ma X, Zhong J, Ding T, Ye X, Liu D. Applications of power ultrasound in oriented modification and degradation of pectin: A review. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
138
|
Talekar S, Patti AF, Vijayraghavan R, Arora A. An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. BIORESOURCE TECHNOLOGY 2018; 266:322-334. [PMID: 29982054 DOI: 10.1016/j.biortech.2018.06.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
An integrated biorefinery, incorporating hydrothermal processing of waste pomegranate peels (WPP), was proposed for the acid and organic solvent-free simultaneous recovery of pectin and phenolics with bioethanol production. The hydrothermal treatment (HT) was optimized using Box-Behnken design and the maximum recovery of pectin (18.8-20.9%) and phenolics (10.6-11.8%) were obtained by hydrothermal treatment at 115 °C for 40 min with a liquid-solid ratio of 10. The WPP pectin was characterized by IR, 1H NMR, and TGA which showed close similarity to commercial pectin. Depending on WPP cultivar type the degree of esterification, galacturonic acid content and molecular weight of pectin were in the range of 68-74%, 71-72%, and 131,137-141,538 Da, respectively. The recovered phenolics contained 57-60% punicalagin. Enzyme digestibility of WPP improved using HT with 177 g glucose produced per kg dry mass which was fermented to obtain 80 g ethanol with 88% of theoretical yield.
Collapse
Affiliation(s)
- Sachin Talekar
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Antonio F Patti
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - R Vijayraghavan
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amit Arora
- Bioprocessing Laboratory, Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
139
|
Upgrading Pectin Production from Apple Pomace by Acetic Acid Extraction. Appl Biochem Biotechnol 2018; 187:1300-1311. [PMID: 30218302 DOI: 10.1007/s12010-018-2893-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
Pectin, as one of the most widely used functional polysaccharide, can be abundantly extracted from apple pomace which is the main by-product of apple juice industry. In the case of 110 min, 10% (w/w) acetic acid (AA), and 100 °C, extraction yield of pectin reached 19.6%. Compared with mineral acid-extracted pectin, the yield, molecular weight, galacturonic acid content, and DE of the AA-extracted pectin were higher while neutral sugars were lower. Furthermore, the AA-extracted pectin solution demonstrated a higher viscosity during the shear rate increased, and a higher G″ modulus than pectin extracted with mineral acid and commercial pectin possibly because of stronger polymer chain interaction, which was reflected in gel textural properties. The green approach for the pectin production, in terms of pectin components was developed from apple pomace using AA that was highly competitive and environmentally friendly process.
Collapse
|
140
|
Baran T. Pd(0) nanocatalyst stabilized on a novel agar/pectin composite and its catalytic activity in the synthesis of biphenyl compounds by Suzuki-Miyaura cross coupling reaction and reduction of o-nitroaniline. Carbohydr Polym 2018; 195:45-52. [DOI: 10.1016/j.carbpol.2018.04.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
141
|
Fermoso FG, Serrano A, Alonso-Fariñas B, Fernández-Bolaños J, Borja R, Rodríguez-Gutiérrez G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8451-8468. [PMID: 30010339 DOI: 10.1021/acs.jafc.8b02667] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a society where the environmental conscience is gaining attention, it is necessary to evaluate the potential valorization options for agricultural biomass to create a change in the perception of the waste agricultural biomass from waste to resource. In that sense, the biorefinery approach has been proposed as the roadway to increase profit of the agricultural sector and, at the same time, ensure environmental sustainability. The biorefinery approach integrates biomass conversion processes to produce fuels, power, and chemicals from biomass. The present review is focused on the extraction of value-added compounds, anaerobic digestion, and composting of agricultural waste as the biorefinery approach. This biorefinery approach is, nevertheless, seen as a less innovative configuration compared to other biorefinery configurations, such as bioethanol production or white biotechnology. However, any of these processes has been widely proposed as a single operation unit for agricultural waste valorization, and a thoughtful review on possible single or joint application has not been available in the literature up to now. The aim is to review the previous and current literature about the potential valorization of agricultural waste biomass, focusing on valuable compound extraction, anaerobic digestion, and composting of agricultural waste, whether they are not, partially, or fully integrated.
Collapse
Affiliation(s)
- Fernando G Fermoso
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Antonio Serrano
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
- School of Civil Engineering , The University of Queensland , Advanced Engineering Building 49, St Lucia , Queensland 4072 , Australia
| | - Bernabé Alonso-Fariñas
- Department of Chemical and Environmental Engineering, Higher Technical School of Engineering , University of Seville , Camino de los Descubrimientos, s/n , 41092 Seville , Spain
| | - Juan Fernández-Bolaños
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Rafael Borja
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| |
Collapse
|
142
|
Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front Microbiol 2018; 9:1639. [PMID: 30087662 PMCID: PMC6066648 DOI: 10.3389/fmicb.2018.01639] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
This work aims to evaluate the antimicrobial potential of ethanolic and water extracts of roselle (Hibiscus sabdariffa), rosemary (Rosmarinus officinalis), clove (Syzygium aromaticum), and thyme (Thymus vulgaris) on some food pathogens and spoilage microorganisms. Agar well diffusion method has been used to determine the antimicrobial activities and minimum inhibitory concentrations (MIC) of different plant extracts against Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), Gram-negative bacteria (Escherichia coli, Salmonella enteritidis, Vibrio parahaemolyticus, and Pseudomonas aeruginosa), and one fungus (Candida albicans). The extracts exhibited both antibacterial and antifungal activities against tested microorganisms. Ethanolic roselle extract showed significant antibacterial activity (P < 0.05) against all tested bacterial strains, while no inhibitory effect on Candida albicans (CA) was observed. Only the ethanolic extracts of clove and thyme showed antifungal effects against CA with inhibition zones ranging from 25.2 ± 1.4 to 15.8 ± 1.2 mm, respectively. Bacillus cereus (BC) appears to be the most sensitive strain to the aqueous extract of clove with a MIC of 0.315%. To enhance our understanding of antimicrobial activity mechanism of plant extracts, the changes in internal pH (pHint), and membrane potential were measured in Staphylococcus aureus (SA) and Escherichia coli (EC) cells after exposure to the plant extracts. The results indicated that the plant extracts significantly affected the cell membrane of Gram-positive and Gram-negative bacteria, as demonstrated by the decline in pHint as well as cell membrane hyperpolarization. In conclusion, plant extracts are of great value as natural antimicrobials and can use safely as food preservatives.
Collapse
Affiliation(s)
- Faraja D. Gonelimali
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science and Technology, College of Agricultural Science and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jiheng Lin
- Zhoushan Institute of Food and Drug Inspection, Zhoushan, China
| | - Wenhua Miao
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
| | - Jinghu Xuan
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
| | - Fedrick Charles
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
| | - Meiling Chen
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
| | - Shaimaa R. Hatab
- College of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
- Faculty of Environmental Agricultural Science, Arish University, North Sinai, Egypt
| |
Collapse
|
143
|
Zhang M, Zeng G, Pan Y, Qi N. Difference research of pectins extracted from tobacco waste by heat reflux extraction and microwave-assisted extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
144
|
Yang Y, Wang Z, Hu D, Xiao K, Wu JY. Efficient extraction of pectin from sisal waste by combined enzymatic and ultrasonic process. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
145
|
Marić M, Grassino AN, Zhu Z, Barba FJ, Brnčić M, Rimac Brnčić S. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
146
|
Grassino AN, Barba FJ, Brnčić M, Lorenzo JM, Lucini L, Brnčić SR. Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: A review. Food Chem 2018; 266:47-55. [PMID: 30381214 DOI: 10.1016/j.foodchem.2018.05.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022]
Abstract
Pectin is the methylated ester of polygalacturonic acid and has a wide range of applications. It can be used in food and animal feed as well as in pharmaceutical and cosmetic products. Pectin is traditionally used as a gelling agent in fruit-based products, as a stabilizer in some fruit juices and milk drinks and fruit filling for bakery and confectionary products, but their potential applications differ according to their chemical composition. Therefore, at this stage of development, it is of a great importance to find fast, reliable methods to not only identify and quantify pectin, but also to determine its chemical structure and composition when it is extracted from plant matrices, wastes and by-products. The present review will focus on the analytical tools used to identify and quantify the amount of pectin obtained from plant matrices, wastes and by-products as well as determining its chemical and structural composition.
Collapse
Affiliation(s)
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/Galicia, 4, San Ciprián de Viñas, Ourense, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | | |
Collapse
|
147
|
Mzoughi Z, Abdelhamid A, Rihouey C, Le Cerf D, Bouraoui A, Majdoub H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr Polym 2018; 185:127-137. [DOI: 10.1016/j.carbpol.2018.01.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/04/2023]
|
148
|
|
149
|
Comparisons of three modifications on structural, rheological and functional properties of soluble dietary fibers from tomato peels. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
150
|
Zhang W, Xie F, Lan X, Gong S, Wang Z. Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.07.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|