101
|
A novel polysaccharide isolated from Ulva Pertusa: Structure and physicochemical property. Carbohydr Polym 2020; 233:115849. [DOI: 10.1016/j.carbpol.2020.115849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 01/08/2023]
|
102
|
Ji X, Hou C, Yan Y, Shi M, Liu Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int J Biol Macromol 2020; 149:1008-1018. [DOI: 10.1016/j.ijbiomac.2020.02.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/24/2023]
|
103
|
Qu H, Gao X, Cheng C, Zhao H, Wang Z, Yi J. Hepatoprotection mechanism against alcohol-induced liver injury in vivo and structural characterization of Pinus koraiensis pine nut polysaccharide. Int J Biol Macromol 2020; 154:1007-1021. [PMID: 32209373 DOI: 10.1016/j.ijbiomac.2020.03.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that Pinus koraiensis pine nut polysaccharide PNP80b-2 exerts widely protective effects against liver injury induced by chemical pollutants, alcohol and drugs. By comparison, PNP80b-2 exhibits the strongest hepatoprotection against alcohol-induced liver injury (AILI). Thus, the purpose of this study is to investigate the hepatoprotection mechanisms of PNP80b-2 against AILI in vivo. The results indicated that PNP80b-2 alleviated oxidative stress induced by alcohol through enhancing antioxidant capacity of hepatocytes via NRF2/HO-1 pathway. PNP80b-2 also effectively suppressed the secretion of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6, exhibiting anti-inflammatory effects via NF-κB signaling pathway in AILI. In addition, PNP80b-2 protected mice from severe DNA damage induced by alcohol through regulating the expression of Hipk2, P53, Hp1γ and Wip1. Taken together all the results, PNP80b-2 exerts hepatoprotective activity against AILI in vivo through enhancing antioxidant capacity, suppressing inflammation response and promoting DNA damage repair in livers. Furthermore, the structural features of PNP80b-2 were also characterized. PNP80b-2, with molecular weight of 23.0 kDa, was found to be composed of 1,2-linked Galf, 1,2-linked Rhap, 1,4-linked Xylp, 1,6-linked Glcp, 1,4-linked GlcpA, 1,2,6-linked Galp, 1,4,6-linked Glcp, 1,2,3,4-linked Arap, 1-linked Galp and Leu- and Ile-linked O-glycopeptide bonds, based on the GC-MS and NMR results.
Collapse
Affiliation(s)
- Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
104
|
Liu HM, Han YF, Wang NN, Zheng YZ, Wang XD. Formation and Antioxidant Activity of Maillard Reaction Products Derived from Different Sugar-amino Acid Aqueous Model Systems of Sesame Roasting. J Oleo Sci 2020; 69:391-401. [PMID: 32132349 DOI: 10.5650/jos.ess19336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This investigation was carried out to offer insight into the formation and antioxidant activity of Maillard reaction products (MRPs) derived from various sugar-amino acid model systems active in the roasting of sesame seeds. Reducing sugars (glucose, fructose, and xylose) and amino acids (serine, cystine, arginine, and lysine) present in sesame seeds were used to prepare the MRPs at various reaction times, and then the effect of reaction time on the MRPs derived from the various model systems was investigated. Within the first 15 min, the amounts of free amino groups decreased around 40% remaining amino groups of Lys-sugar model and around 75% remaining amino groups of Arg-sugar model. Results indicated that reducing sugar and free amino groups decreased obviously in Lys- and Arg-model systems. Based on correlation coefficient of antioxidant activities assessment and MRP formation in the Lys- and Arg-model systems above 0.978 and an extremely significant correlation in Pearson test exists, a conclusion could be made that these model systems are critical contributing factors in MRP formation during the roasting of sesame seeds. These findings offer insight into the formation and antioxidation of MRPs during the sesame seeds roasting.
Collapse
Affiliation(s)
- Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology
| | - Ya-Fei Han
- College of Food Science and Technology, Henan University of Technology.,College of Food Science and Technology, Zhengzhou University of Science and Technology
| | - Nan-Nan Wang
- College of Food Science and Technology, Henan University of Technology.,Sinograin Oil & Fats Industrial Dongguan Co., LTD
| | - Yong-Zhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
105
|
Influence of the essential oil of Mentha spicata cv. Henanshixiang on sunflower oil during the deep-frying of Chinese Maye. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Jiang L, Wang W, Wen P, Shen M, Li H, Ren Y, Xiao Y, Song Q, Chen Y, Yu Q, Xie J. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105412] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
107
|
Qin Z, Liu HM, Lv TT, Wang XD. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits. Int J Biol Macromol 2020; 147:1146-1155. [DOI: 10.1016/j.ijbiomac.2019.10.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/13/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022]
|
108
|
Ji X, Yan Y, Hou C, Shi M, Liu Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. Int J Biol Macromol 2020; 147:844-852. [DOI: 10.1016/j.ijbiomac.2019.09.244] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
|
109
|
Li C, Peng D, Huang W, Ou X, Song L, Guo Z, Wang H, Liu W, Zhu J, Yu R. Structural characterization of novel comb-like branched α-d-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo. Food Funct 2020; 10:6589-6603. [PMID: 31552984 DOI: 10.1039/c9fo01395d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the current study, we identified and characterized a novel water-soluble polysaccharide (JNY2PW) with significant immunoregulatory effects and no apparent overall toxicity. JNY2PW, which was isolated from Arca inflata, belongs to a novel class of α-glucans with a molecular weight of 5.25 × 107 Da. Its backbone is composed of (1 → 4)-linked α-d-glucopyranosyl residues and a single (1 → 6)-α-d-glucopyranosyl branched unit for every five α-d-glucopyranosyl residues, showing a comb-like α-d-glucan with intensive short branches. Using in vitro models, we demonstrated that JNY2PW exerts significant immunoregulatory effects by promoting the production of nitric oxide, interleukin-6, and tumor necrosis factor α. The pathway involves the activation of the TLR4-MAPK/NF-κB signaling cassette in murine RAW264.7 macrophages. In an in vivo immunosuppressive mice model induced by cyclophosphamide treatment, we found that the JNY2PW treatment produced good antitumor activity, comparable to that of chemotherapy by doxycycline in murine breast carcinoma 4T1-bearing mice, but devoid of any observable side effects (e.g. weight loss) related with doxycycline treatment. The anti-tumor mechanism of JNY2PW may involve an overall enhancement in the immune responses of the mice to tumors. These results indicate that JNY2PW possesses potential as an adjuvant to existing chemotherapy and current immune-oncology treatment.
Collapse
Affiliation(s)
- Chunlei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Huang Z, Wang JJ, Chen Y, Wei N, Hou Y, Bai W, Hu SQ. Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities. Food Chem 2020; 317:126452. [PMID: 32106008 DOI: 10.1016/j.foodchem.2020.126452] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
A new water-soluble resistant dextrin (WSRD), fabricated by thermal-acid treatment following amylase hydrolysis from corn starch, was expected to strengthen the dietary fibers intake of flour products. This study was to investigate the effects of WSRD on flour processing quality, and further dissect its improvement mechanisms by farinographic and rheological analysis, SDS-PAGE, Fourier transform infrared spectroscopy, texture analyzer, etc. Results showed that WSRD greatly improved the viscoelasticity and strength of dough, which was predominantly contributed by its formation of gel-like networks. Meanwhile, the WSRD-induced increase of gluten aggregates and β-sheet conformation provided the structural basis for enhancing dough quality. Notably, WSRD greatly promoted the sensory appearance and crumb quality of baked breads. Moreover, the WSRD-treated breads resisted the hydrolysis of digestive fluid and enzymes. Therefore, WSRD can strengthen the processing qualities and nutritional values of flour products, which will broaden the application of the novel dietary fiber in flour industry.
Collapse
Affiliation(s)
- Zheng Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Jing Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Food Science and Technology, Foshan University, Foshan 528000, China
| | - Yu Chen
- Guangdong Food Industry Research Institute Co Ltd, Guangzhou 511400, China
| | - Na Wei
- Guangdong Food Industry Research Institute Co Ltd, Guangzhou 511400, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Weidong Bai
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
111
|
Gu Y, Qiu Y, Wei X, Li Z, Hu Z, Gu Y, Zhao Y, Wang Y, Yue T, Yuan Y. Characterization of selenium-containing polysaccharides isolated from selenium-enriched tea and its bioactivities. Food Chem 2020; 316:126371. [PMID: 32062579 DOI: 10.1016/j.foodchem.2020.126371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Two novel selenium polysaccharide fractions (SeTPS-1 and SeTPS-2) were isolated purified, characterized from Se-enriched tea. The results showed that the molecular weights and Se content of SeTPS-1 and SeTPS-2 were 1.7 × 104 Da, 1.3 × 104 Da, and 23.50 μg/g and 13.47 μg/g, respectively. SeTPS-1 and SeTPS-2 had absorption spectra typical of selenium esters. SeTPS-1 was composed of glucose and galactose at a molar ratio of 80.1:2.3, respectively, while SeTPS-2 was composed of arabinose, glucose, galactose and galacturonic acid with a molar ratio of 2.04: 48.83: 3.21: 1.30, respectively. Both SeTPS-1 and SeTPS-2 adopted a random coil conformation. Importantly, in vitro assessment of the antioxidant capacity revealed that SeTPS-1 is a more potent antioxidant compared to SeTPS-2. Both compounds were effective at reducing DNA damage induced by H2O2. The promising data suggesting that these compounds confer natural protection against DNA-damaging agents, thereby contributing to the functional food qualities of tea.
Collapse
Affiliation(s)
- Yangeng Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Xin Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Zhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhu Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yidi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China; College of Food Science and Technology, Northwest University, Xian, Shaanxi 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China.
| |
Collapse
|
112
|
Gu J, Zhang H, Yao H, Zhou J, Duan Y, Ma H. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr Polym 2020; 235:115939. [PMID: 32122481 DOI: 10.1016/j.carbpol.2020.115939] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
To investigate and compare the preliminary structural characteristics and biological activity in vitro of polysaccharides from Sagittaria sagittifolia L. (SSs) by different extration methods, three polysaccharides (SSW, SSU, and SSP) were obtained with hot water, ultrasound-assisted, and subcritical water extraction. Their structural features were elucidated using High Performance Liquid Chromatography (HPLC), Gas Chromatography (GC), Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR), Atomic Force Microscopy (AFM), Zeta Potential and Congo red methods. Furthermore, the antioxidant activity and immunostimulatory effects were investigated in vitro. Molecular weight and monosaccharide composition analysis exhibited that SSW (2275.0 kDa), SSU (148.7 kDa), and SSP (1984.0 kDa) were heteropolysaccharide with dramatically different monosaccharide species and mole ratios. In addition, SSP exhibited stronger antioxidant activity in vitro and more potent immunomodulatory activity than SSW and SSU. SSP has greater potential to be explored as biologicalagents for use in complementary medicine or functional foods.
Collapse
Affiliation(s)
- Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
113
|
A Novel Pectic Polysaccharide of Jujube Pomace: Structural Analysis and Intracellular Antioxidant Activities. Antioxidants (Basel) 2020; 9:antiox9020127. [PMID: 32024245 PMCID: PMC7070808 DOI: 10.3390/antiox9020127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
After extraction from jujube pomace and purification by two columns (DEAE-Sepharose Fast Flow and Sepharcyl S-300), the structure of SAZMP4 was investigated by HPGPC, GC, FI-IR, GC-MS, NMR, SEM, and AFM. Analysis determined that SAZMP4 (Mw = 28.94 kDa) was a pectic polysaccharide mainly containing 1,4-linked GalA (93.48%) with side chains of 1,2,4-linked Rha and 1,3,5-linked Ara and terminals of 1-linked Rha and 1-linked Ara, which might be the homogalacturonan (HG) type with side chains of the RG-I type, corresponding to the results of NMR. In AFM and SEM images, self-assembly and aggregation of SAZMP4 were respectively observed indicating its structural features. The antioxidant activity of SAZMP4 against H2O2-induced oxidative stress in Caco-2 cells was determined by activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as malondialdehyde (MDA) and reactive oxygen species (ROS) levels, indicating SAZMP4 can be a natural antioxidant. Also, a better water retention capacity and thermal stability of SAZMP4 was observed based on DSC analysis, which could be applied in food industry as an additive.
Collapse
|
114
|
Preparation, characterization and bioactivity of polysaccharide fractions from Sagittaria sagittifolia L. Carbohydr Polym 2020; 229:115355. [DOI: 10.1016/j.carbpol.2019.115355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
|
115
|
Ye J, Wang X, Wang K, Deng Y, Yang Y, Ali R, Chen F, Wu Z, Liao W, Mao L. A novel polysaccharide isolated from Flammulina velutipes, characterization, macrophage immunomodulatory activities and its impact on gut microbiota in rats. J Anim Physiol Anim Nutr (Berl) 2020; 104:735-748. [PMID: 31900998 DOI: 10.1111/jpn.13290] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
The structural characteristics of a novel Flammulina velutipes polysaccharide (FVP2) were explored in this study. Besides, immunomodulatory activities of FVP2 on RAW 264.7 cell and its impact on gut microbiota in rats were investigated. FVP2 has a molecular weight of 18.3 kD, and its main components include galactose (19.96%), glucose (60.66%) and mannose (19.38%). By NMR analysis, the main-chain structure consisted of (1 → 3)-linked-β-D-Gal, (1 → 6) -linked-β-D-Gal, (1 → 6)-linked-α-D-Glc and (1 → 3,6)-linked-α-D-Man was identified. Results of the in vitro assays on RAW 264.7 murine macrophage cells showed FVP2 could significantly up-regulate the expression of NO, TNF-α and IL-6. FVP2 was intragastrically administered to rats for 2 weeks. Compared with the control group, two caecal short-chain fatty acids (SCFAs) concentration (isobutyric acid and butyric acid) and the abundance of beneficial microbiota of the FVP2-treated group were significantly increased (p < .05) respectively. The results demonstrated that FVP2 could effectively enhance the level of butyric acid and increase beneficial gut microbiota, which could improve the intestinal barrier function and maintain the intestinal mucosal integrity, suggesting that FVP2 could potentially be an immunomodulators or a functional food to promote intestinal health.
Collapse
Affiliation(s)
- Jufeng Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiangdong Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Wang
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yichao Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rufida Ali
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- School of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
| | - Zijian Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
116
|
Xing YY, Xu YQ, Jin X, Shi LL, Guo SW, Yan SM, Shi BL. Optimization extraction and characterization of Artemisia ordosica polysaccharide and its beneficial effects on antioxidant function and gut microbiota in rats. RSC Adv 2020; 10:26151-26164. [PMID: 35519751 PMCID: PMC9055353 DOI: 10.1039/d0ra05063f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, a novel polysaccharide was isolated from Artemisia ordosica by water-extraction-ethanol-precipitation method. The optimal extraction conditions of Artemisia ordosica polysaccharide (AOP) were determined by single factor investigation and response surface methodology optimization, and were shown as follows: a liquid–solid ratio of 15.4 : 1 mL g−1, extraction time of 4.3 h, extraction temperature of 60 °C. Under the optimal conditions, the extraction yield and the sugar content of the AOP were 5.56% and 52.65%. Gel permeation chromatography coupled to multi-angle laser light scattering, a refractive index detection system and ion-exchange chromatography were used to determine the characterization of AOP. These results indicated that AOP, with a molecular weight of 2.1 kDa (62.6%) and 1.5 kDa (37.4%), had narrow polydispersity and rod conformations, and was composed of arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid with molar ratio of 6.87 : 10.67 : 54.13 : 2.49 : 18.37 : 4.83 : 2.64 : 2.64. In addition, AOP exerted antioxidant ability in vitro and in vivo (rats). Moreover, AOP significantly modulated the composition of cecal microbiota population. Therefore, AOP is expected to be a functional ingredient for health improvement through improving antioxidant ability and modulating gut health. Artemisia ordosica polysaccharide is expected to be functional ingredient for health improvement through improving antioxidant ability and modulating gut health.![]()
Collapse
Affiliation(s)
- Y. Y. Xing
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Y. Q. Xu
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - X. Jin
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - L. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. W. Guo
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - S. M. Yan
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - B. L. Shi
- College of Animal Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| |
Collapse
|
117
|
Wang D, Dong Y, Wang Q, Wang X, Fan W. Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep-frying of Chinese Maye. Food Sci Nutr 2020; 8:511-520. [PMID: 31993175 PMCID: PMC6977485 DOI: 10.1002/fsn3.1333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The deep-frying process for plenty of fried products using vegetable oils needs safe and effective antioxidants. In the present exploration, the nutmeg essential oil (NEO) was employed as a potential antioxidant for sunflower oil during the deep-frying of Chinese Maye at 180°C for 30 hr. In the comparative study, the additions for NEO at 0.12 g/kg, TBHQ at 0.12 g/kg, BHA at 0.08 g/kg, and BHT at 0.08 g/kg to sunflower oil were able to obviously improve its oxidative stability during the deep-frying process, and their antioxidant effects were in the relative order: TBHQ at 0.12 g/kg > NEO at 0.12 g/kg > BHA at 0.08 g/kg > BHT at 0.08 g/kg (p < .05). Besides, NEO at 0.12 g/kg could markedly ameliorate the sensory properties including flavor, taste, crispness, and overall acceptability of the fried products, Chinese Maye (p < .05 or p < .01). In addition, using antioxidant activity-guided fractionation, three active compounds including limonene, terpinolene, and geranyl acetate were isolated from NEO. Among them, limonene was demonstrated to not only significantly increase the oxidative stability of sunflower oil in the deep-frying process, but also significantly increase the sensory properties of the fried products, Chinese Maye (p < .05 or p < .01). Consequently, limonene could be employed as antioxidants in sunflower oil for the deep-frying of Chinese Maye, and the sunflower oil flavored by NEO could be used as frying oils for its oxidative stability and unique flavor.
Collapse
Affiliation(s)
- Dongying Wang
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ying Dong
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Qing Wang
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Xuede Wang
- College of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Wenchang Fan
- Institute of Chinese Medicine Health CareGuangdong Food and Drug Vocational CollegeGuangzhouChina
| |
Collapse
|
118
|
Wang M, Wang J, Fu L, Al-Wraikat M, Lin S, Lu P, Shan L, Fan J, Zhang B. Degradation of polysaccharides from Lycium barbarum L. leaves improves bioaccessibility and gastrointestinal transport of endogenous minerals. Int J Biol Macromol 2020; 143:76-84. [DOI: 10.1016/j.ijbiomac.2019.11.243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023]
|
119
|
Fan S, Li J, Bai B. Purification, structural elucidation and in vivo immunity-enhancing activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 2019; 83:2334-2344. [DOI: 10.1080/09168451.2019.1650635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT
Quinoa crude polysaccharides (QPS) were extracted from Chenopodium quinoa Willd. The soluble non-starch polysaccharide fraction (QPS1) was subsequently purified by DEAE-52 cellulose and Sephadex G-50 gel chromatography, using QPS as raw materials. Its chemical structure was identified using FT-IR, NMR, AFM, SEM and Congo red staining. High performance gel permeation chromatography (HPGPC) was used to determine molecular weight, and composition by HPLC. QPS1, with a molecular weight of 34.0 kDa, was mainly composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose and arabinose at a molar ratio of 2.63:2.40:1.64:6.28:1.95:2.48:5.01. In addition, we evaluated the ameliorative effects of QPS1 on the improvement of anti-cyclophosphamide (CTX)-induced immunosuppression in ICR mice. The result exhibited significantly immune-enhancing activity: QPS1 successfully improved the content of IFN-γ, IL-6, IFN-ɑ, IgM and lysozyme (LYSO) in serum for three weeks, enhanced the phagocytic function of mononuclear macrophages and ameliorated delayed allergy in mice.
Collapse
Affiliation(s)
- Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan, P. R. China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, P. R. China
| | - Jiani Li
- College of Life Science, Shanxi University, Taiyuan, P. R. China
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan, P. R. China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, P. R. China
| |
Collapse
|
120
|
Wang L, Zhang PZ, Shen JW, Qian YY, Liu M, Ruan Y, Wang XG, Zhang SN, Ma BJ. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus. Int J Biol Macromol 2019; 141:150-160. [PMID: 31487514 DOI: 10.1016/j.ijbiomac.2019.08.250] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
Three polysaccharides (WZP1, WZP2, WZP3) and their Se-enriched products (SeWZP1, SeWZP2 and SeWZP3) were obtained from Pleurotus ostreatus using a simple, rapid method and HNO3-Na2SeO3 method, respectively. The molecular weight distribution profiles of all samples except SeWZP2 showed double peaks. The average molecular weights (Mw) of WZP1-3 were 48.6 kDa, 20.2 kDa and 11.8 kDa, respectively, and of SeWZP1-3 were 19.6 kDa, 37.7 kDa, 14.5 kDa, respectively. The complexity of monosaccharide composition of WZP1-3 was inversely proportional to the ethanol concentration used in the ethanol precipitation process. Additionally, the results of biological activity tests indicated that α-glucosidase inhibitory activity of WZP1-3 was related to the molecular weight and the monosaccharide composition complexity. The selenized modification can improve the α-glucosidase-inhibiting, hydroxyl radical-scavenging activity of P. ostreatus polysaccharides. Therefore, by improving their bioactivities by selenization, the polysaccharides of P. ostreatus could be utilized as a natural health food supplement.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Peng-Zhan Zhang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Jin-Wen Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450001, China
| | - Yan-Yan Qian
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Miao Liu
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Xu-Guang Wang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China
| | - Shao-Ning Zhang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China.
| |
Collapse
|
121
|
Meng Y, Yi L, Chen L, Hao J, Li DX, Xue J, Xu NY, Zhang ZQ. Purification, structure characterization and antioxidant activity of polysaccharides from Saposhnikovia divaricata. Chin J Nat Med 2019; 17:792-800. [PMID: 31703760 DOI: 10.1016/s1875-5364(19)30096-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Polysaccharide from traditional Chinese herb, Saposhnikovia divaricata (Turcz.) Schischk. (SD) was extracted, fractionated and characterized in this work. Four fractions were prepared. Their molecular weight, monosaccharide compositions, linkage modes and structural properties were characterized with SEC-MALS-RI, HPAEC-PAD, GC-MS and NMR. SDP1 was assigned as a 1, 4-α-glucan with small amount of O-6 linked branches. SDP2 contained a big amount of the 1, 4-α-glucan and a small amount of arabinogalactan, while SDP3 possessed relatively lower amount of the 1, 4-α-glucan and a big amount of the arabinogalactan. SDP4 was defined as a pectic arabinogalactan. Four fractions showed antioxidant activities in both molecular and cellular levels and their activity was ranked as SDP4 ≈ SDP3>SDP2>SDP1. The 1, 4-α-glucan in SDP1 had the weakest, while SDP3 and SDP4 showed similar and the highest antioxidant activity. The arabinogalactan was the major component of both SDP3 and SDP4, which significantly contributed to the antioxidant activity of SDP.
Collapse
Affiliation(s)
- Yao Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Yi
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Hao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Du-Xin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Nai-Yu Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China
| | - Zhen-Qing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China.
| |
Collapse
|
122
|
Structural characterization and in vitro hepatoprotective activity of polysaccharide from pine nut (Pinus koraiensis Sieb. et Zucc.). Carbohydr Polym 2019; 223:115056. [DOI: 10.1016/j.carbpol.2019.115056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
|
123
|
Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydr Polym 2019; 229:115432. [PMID: 31826528 DOI: 10.1016/j.carbpol.2019.115432] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023]
Abstract
Two polysaccharides, ALF1 and ALF2 were obtained from the fermentation liquid of Floccularia luteovirens. These fractions had good performance in scavenging radicals and ALF1 exhibited obvious antioxidant activities. Further, linkage analysis and NMR were used to characterize the structures of ALF1. Linkage and NMR data comprehensively showed that ALF1 mainly contained six kinds of linkage type units as →4)-β-D-Manp→, 1,3-α-Fucp→, α-L-Araf-C1→, →6)-β-D-Galp-C1→, →4)-α-D-GlcAp-(1→ and →3)-β-D-Glcp(1→. In addition, ALF1 had good bioactivities such as anticancer and antioxidant activities. ALF1 was proven to be able to inhibit tumor cells without affecting the normal cells. Besides, ALF1 improved the activities of SOD, GSH-Px and CAT, and decreased the production of MDA which result in protecting PC12 cells against H2O2-induced oxidative stress. ALF1 decreased ROS production, and stabilize mitochondrial membrane potential. The findings indicated that the fermentation liquid of Floccularia luteovirens could be used as a potential natural source of antioxidant.
Collapse
|
124
|
Wen Y, Peng D, Li C, Hu X, Bi S, Song L, Peng B, Zhu J, Chen Y, Yu R. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. Int J Biol Macromol 2019; 137:8-19. [DOI: 10.1016/j.ijbiomac.2019.06.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
|
125
|
Emulsifying and structural properties of polysaccharides extracted from Chinese yam by an enzyme-assisted method. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
126
|
Xiao H, Chen C, Li C, Huang Q, Fu X. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. Int J Biol Macromol 2019; 132:308-315. [PMID: 30910676 DOI: 10.1016/j.ijbiomac.2019.03.138] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
Abstract
This study was carried out to study the effects of selenylation on physicochemical and biological properties of polysaccharide (SPP) extracted from Sargassum pallidum. The selenized derivative of SPP (Se-SPP) with the selenium content of 2419 μg/g was synthesized by sodium selenite/dilute nitric acid method. Physicochemical characterization indicated that selenylation modification resulted in some changes in chemical composition, monosaccharide composition, molecular weight and surface morphology of polysaccharides. FT-IR spectroscopy showed that a new absorption peak appeared at 675 cm-1 in Se-SPP probably due to the substitution of selenyl groups. Bioactivity assay showed that Se-SPP exhibited higher scavenging radical activities and ferrous ion chelating activities than native SPP. Compared with SPP and acarbose, Se-SPP showed more significantly inhibitory effect on α-glucosidase activity in a noncompetitive inhibition type. The IC50 values of SPP, Se-SPP and acarbose were determined as 1.579, 0.896 and 2.742 mg/mL, respectively. These results suggest that Se-SPP can be used to develop a new selenium-complementary ingredient in functional foods.
Collapse
Affiliation(s)
- Heng Xiao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
127
|
Wang D, Li C, Fan W, Yi T, Wei A, Ma Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from Fructus Corni in streptozotocin-induced diabetic rats. Int J Biol Macromol 2019; 133:420-427. [DOI: 10.1016/j.ijbiomac.2019.04.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/11/2023]
|
128
|
Wusiman A, Xu S, Ni H, Gu P, Liu Z, Zhang Y, Qiu T, Hu Y, Liu J, Wu Y, Wang D, Lu Y. Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Carbohydr Polym 2019; 211:217-226. [DOI: 10.1016/j.carbpol.2019.01.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/15/2023]
|
129
|
Zhang J, Chen M, Wen C, Zhou J, Gu J, Duan Y, Zhang H, Ren X, Ma H. Structural characterization and immunostimulatory activity of a novel polysaccharide isolated with subcritical water from Sagittaria sagittifolia L. Int J Biol Macromol 2019; 133:11-20. [PMID: 30986467 DOI: 10.1016/j.ijbiomac.2019.04.077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
In the present study, we obtained polysaccharides from Sagittaria sagittifolia L. (SSP) with subcritical water extraction (SWE). Two water-soluble polysaccharides (SSP-W1 and SSP-S1) from the acquired SSP were isolated with DEAE-52 and Sephadex G-100. Besides, the structural characteristics and immunostimulatory activity were also investigated. The results showed that both SSP-W1 and SSP-S1 were homogeneous polysaccharides and the molecular weight was 62.03 KDa and 15.2 KDa, respectively. In addition, both SSP-W1 and SSP-S1 are heteropolysaccharides. Moreover, FT-IR analysis showed that SSP-W1 was α-pyranose polysaccharide, while SSP-S1 was a typical β-pyranose polysaccharide. Congo red staining showed that there was no triple helix structure in both SSP-W1 and SSP-S1. Furthermore, both SSP-W1 and SSP-S1 could promote the proliferation, production of NO, and secretion of TNF-α and IL-10 of macrophages RAW 264.7, significantly. Therefore, the polysaccharides extracted from Sagittaria sagittifolia L. with SWE have the potential to be used as immunoreactive agent in medicine and functional foods.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
130
|
Zeng X, Li P, Chen X, Kang Y, Xie Y, Li X, Xie T, Zhang Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int J Biol Macromol 2019; 126:867-876. [DOI: 10.1016/j.ijbiomac.2018.12.222] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
|
131
|
Influence of fermented and unfermented Agaricus bisporus polysaccharide flours on the antioxidant and structural properties of composite gluten-free cookies. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
132
|
He P, Dong Z, Wang Q, Zhan QP, Zhang MM, Wu H. Structural Characterization and Immunomodulatory Activity of a Polysaccharide from Eurycoma longifolia. JOURNAL OF NATURAL PRODUCTS 2019; 82:169-176. [PMID: 30714735 DOI: 10.1021/acs.jnatprod.8b00238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A polysaccharide, Ali-1, was isolated from the roots of Eurycoma longifolia, a popular traditional medicinal herb in Malaysia. The structure of Ali-1 was characterized by monosaccharide, methylation, and NMR data analyses. The average molecular weight of Ali-1 is 14.3 ku, and it is composed of arabinose (14.31%), xylose (57.69%), galacturonic acid (13.03%), and glucuronic acid (14.86%). The main chain comprises (1→4)-linked xylose residues. It has branch points in the main chain; (1→2,4)-linked xylose residues, 1,2-linked glucuronic acid residues, and 1,2-linked arabinose residues form the branches, and the branches are terminated with T-linked galacturonic acid residues and T-linked arabinose residues. Ali-1 significantly improves the pinocytic and phagocytic abilities of RAW264.7 cells and facilitates cytokine secretion according to an immunostimulation assay. These results demonstrate that Ali-1 has potential as a functional supplement for people with compromised immune systems.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Zhou Dong
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Qian Wang
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Qi-Ping Zhan
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Meng-Meng Zhang
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Hui Wu
- College of Food Sciences and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
133
|
Polysaccharides from the Edible Mushroom Agaricus bitorquis (Quél.) Sacc. Chaidam Show Anti-hypoxia Activities in Pulmonary Artery Smooth Muscle Cells. Int J Mol Sci 2019; 20:ijms20030637. [PMID: 30717240 PMCID: PMC6387285 DOI: 10.3390/ijms20030637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Three kinds of new water-soluble polysaccharides (FA, FB and FC) were isolated from wild mushroom Agaricus bitorquis (Quél.) Sacc. Chaidam by the classical method “water extraction and alcohol precipitation” and purified by column chromatography. The Mw of FA, FB and FC ranged from 5690 Da to 38,340 Da. The three polysaccharide fractions in the fruiting body were mainly composed of 4 kinds of monosaccharides, including glucose, galactose, mannose, and arabinose, among which glucose and galactose were the major monosaccharides. The FTIR and NMR spectroscopy indicated that the skeleton of three fractions composed of a (1→4)-α-D-glycosidic backbone containing α-D-mannopyranose. In vitro anti-hypoxia activity data showed that three polysaccharide fractions possessed a significant effect on inhibiting PASM cells apoptosis under hypoxia. Among them, FC at the concentration of 200 µg/mL revealed a significant anti-hypoxia effect. These results revealed that the intracellular polysaccharides possessed potent anti-hypoxic activity, which might be related to inhibiting LDH and NADPH oxidase expression and promoting the formation of 5-hydroxytryptamine, dopamine, endothelins, acetylcholine. More importantly, FC showed good performance inducing KV1.5 expression and prohibiting KIR6.2 formation at protein level.
Collapse
|
134
|
Peng B, Luo Y, Hu X, Song L, Yang J, Zhu J, Wen Y, Yu R. Isolation, structural characterization, and immunostimulatory activity of a new water-soluble polysaccharide and its sulfated derivative from Citrus medica L. var. sarcodactylis. Int J Biol Macromol 2019; 123:500-511. [DOI: 10.1016/j.ijbiomac.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
|
135
|
Endogenous calcium attenuates the immunomodulatory activity of a polysaccharide from Lycium barbarum L. leaves by altering the global molecular conformation. Int J Biol Macromol 2019; 123:182-188. [DOI: 10.1016/j.ijbiomac.2018.11.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/03/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022]
|
136
|
Ji X, Zhang F, Zhang R, Liu F, Peng Q, Wang M. An acidic polysaccharide from Ziziphus Jujuba cv. Muzao: Purification and structural characterization. Food Chem 2019; 274:494-499. [DOI: 10.1016/j.foodchem.2018.09.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
|
137
|
Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydr Polym 2019; 205:63-71. [DOI: 10.1016/j.carbpol.2018.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
|
138
|
Hot water extraction and artificial simulated gastrointestinal digestion of wheat germ polysaccharide. Int J Biol Macromol 2019; 123:174-181. [DOI: 10.1016/j.ijbiomac.2018.11.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022]
|
139
|
Chen C, Wang PP, Huang Q, You LJ, Liu RH, Zhao MM, Fu X, Luo ZG. A comparison study on polysaccharides extracted from Fructus Mori using different methods: structural characterization and glucose entrapment. Food Funct 2019; 10:3684-3695. [DOI: 10.1039/c9fo00026g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The characteristics and hypoglycemic and antioxidant activities of mulberry fruit polysaccharides obtained by the hot water (MFPh)-, ultrasonic (MFPu)-, acid (MFPc)- and alkali (MFPa)-assisted extraction methods were investigated.
Collapse
Affiliation(s)
- Chun Chen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Institute of Modern Industrial Technology
| | - Ping-ping Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Institute of Modern Industrial Technology
| | - Qiang Huang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Li-Jun You
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Rui Hai Liu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)
| | - Mou-ming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Institute of Modern Industrial Technology
| | - Xiong Fu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Institute of Modern Industrial Technology
| | - Zhi-Gang Luo
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Institute of Modern Industrial Technology
| |
Collapse
|
140
|
Yuan Q, Fu Y, Xiang PY, Zhao L, Wang SP, Zhang Q, Liu YT, Qin W, Li DQ, Wu DT. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. RSC Adv 2019; 9:35443-35451. [PMID: 35528079 PMCID: PMC9074740 DOI: 10.1039/c9ra05820f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/28/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, structural characteristics, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas were investigated and compared.
Collapse
Affiliation(s)
- Qin Yuan
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Yuan Fu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Pan-Yin Xiang
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Li Zhao
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Qing Zhang
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Yun-Tao Liu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - Wen Qin
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| | - De-Qiang Li
- Department of Pharmacy
- The Second Hospital of Hebei Medical University
- Shijiazhuang
- China
| | - Ding-Tao Wu
- College of Food Science
- Sichuan Agricultural University
- Ya'an 625014
- China
| |
Collapse
|
141
|
He B, Guo L, Zheng Q, Lin S, Lin J, Wei T, Ye Z. A simple and effective method using macroporous resins for the simultaneous decoloration and deproteinisation of
Cordyceps militaris
polysaccharides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao‐Lin He
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Li‐Qiong Guo
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Qian‐Wang Zheng
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Shuo‐Xin Lin
- James Clark School of Engineering University of Maryland College Park MD 20742 USA
| | - Jun‐Fang Lin
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| | - Zhi‐Wei Ye
- College of Food Science & Institute of Food Biotechnology South China Agricultural University Guangzhou 510640 China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou 510640 China
| |
Collapse
|
142
|
Huang Y, Wu X, Zhou S, Lin Y, Zhang W, Fu C, Luo L, Wang K, Xie X, Fan H. Biphasic extraction of different polysaccharides from Radix Sophorae Tonkinensis by microwave-assisted aqueous two-phase extraction: Process optimization, structural characterization and mechanism exploration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
143
|
|
144
|
Salehi M, Tabarsa M, Amraie M, Anvari M, Rezaei M, Smith BM. Characterization of rheological and structural properties of a gum from Balangu seeds. Int J Biol Macromol 2018; 117:294-300. [DOI: 10.1016/j.ijbiomac.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/31/2023]
|
145
|
Xu Y, Jiang H, Sun C, Adu-Frimpong M, Deng W, Yu J, Xu X. Antioxidant and hepatoprotective effects of purified Rhodiola rosea polysaccharides. Int J Biol Macromol 2018; 117:167-178. [DOI: 10.1016/j.ijbiomac.2018.05.168] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
|
146
|
Kurt A, Atalar I. Effects of quince seed on the rheological, structural and sensory characteristics of ice cream. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
147
|
Sun Y, Chen X, Song L, Liu S, Yu H, Wang X, Qin Y, Li P. Antiviral Activity against Avian Leucosis Virus Subgroup J of Degraded Polysaccharides from Ulva pertusa. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9415965. [PMID: 30155485 PMCID: PMC6098872 DOI: 10.1155/2018/9415965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022]
Abstract
Avian Leukosis Virus Subgroup J (ALV-J), a retrovirus of avian, has caused enormous economics losses to poultry industry around the world. Polysaccharides from marine algae are featured diversity bioactivities. To find the potential effect to prevent ALV-J spread, in this study, polysaccharides from Ulva pertusa (UPPs) and four low molecular weight (Mw) U. pertusa polysaccharides (LUPPs) were prepared and their functions on ALV-J were investigated. Firstly, LUPPs were obtained by hydrogen peroxide (H2O2) oxidative degradation. The effects of degradation conditions on Mw of the UPP were also investigated. Results showed that the H2O2 oxidative degradation method could degrade UPP effectively, and the degradation was positively related to H2O2 concentration and temperature and negatively to pH. The chemical characteristics of UPP and LUPPs were also determined. Afterwards, the anti-ALV-J activity of the polysaccharides were carried out in vitro. Results showed that UPP and LUPPs could inhibit ALV-J and LUPP-3 and Mw of 4.3 kDa exerted the strongest suppression. The action phase assay showed that LUPP-3 could bind with the viral particles and prevented ALV-J adsorption onto the host cells. And the ALV-J relative gene and gp85 protein expression were significantly suppressed after being administration with LUPP-3. Therefore, the low Mw polysaccharides from U. pertusa have great potential as an anti-ALV-J drug alternative.
Collapse
Affiliation(s)
- Yuhao Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lin Song
- Qingdao University of Science and Technology, College of Marine Science and Biological Engineering, Qingdao 266042, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xueqin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
148
|
Jin X, Wang Q, Yang X, Guo M, Li W, Shi J, Adu-Frimpong M, Xu X, Deng W, Yu J. Chemical characterisation and hypolipidaemic effects of two purified Pleurotus eryngii
polysaccharides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xing Jin
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Qilong Wang
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xia Yang
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Min Guo
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Wenjing Li
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jixiang Shi
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Ximing Xu
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Wenwen Deng
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Jiangnan Yu
- Department of Pharmaceutics; School of Pharmacy; Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
149
|
Ji X, Liu F, Peng Q, Wang M. Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus Jujuba cv. Muzao. Food Chem 2018; 245:1124-1130. [DOI: 10.1016/j.foodchem.2017.11.058] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
|
150
|
Yun L, Wu T, Liu R, Li K, Zhang M. Structural Variation and Microrheological Properties of a Homogeneous Polysaccharide from Wheat Germ. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2977-2987. [PMID: 29350530 DOI: 10.1021/acs.jafc.7b04730] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel polysaccharide (WGP) was purified from crude wheat germ polysaccharide by Sephacryl S-500HRgel filtration. The molecular weight of WGP was determined as 4.89 × 106 Da and consisted of arabinose, xylose, glucose, and galactose. Methylation analysis and 1D/2D nuclear magnetic resonance was used to analyze the structural characterization of WGP. WGP was mainly a backbone composed of (1 → 4)-linked-β-d-Xylp (19.01%) and (1 → 3, 4)-linked-β-d-Xylp (26.27%) residues, which was branched of (1 → 5)-linked α-l-Araf (28.09%) and (1 → 3,6)-linked β-d-Galp (12.11%) with β-d-Glcp (14.52%) as terminal unit. The calculated values of Turbiscan stability indexes suggested that WGP (0.1-0.5 mg/mL) is a stable system. Microrheology results showed that WGP can form gel behavior when the concentration of WGP ranges from 0.1 to 3 mg/mL. Results of in vitro assays showed that WGP could cause the proliferation of RAW264.7 macrophages, upregulating the release of TNF-α and IL-8 in the lymphocytes.
Collapse
Affiliation(s)
- Liyuan Yun
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) , Key Laboratory of Food Nutrition and Safety, Ministry of Education , Tianjin 300457 , China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) , Key Laboratory of Food Nutrition and Safety, Ministry of Education , Tianjin 300457 , China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) , Key Laboratory of Food Nutrition and Safety, Ministry of Education , Tianjin 300457 , China
| | - Kun Li
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) , Key Laboratory of Food Nutrition and Safety, Ministry of Education , Tianjin 300457 , China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology) , Key Laboratory of Food Nutrition and Safety, Ministry of Education , Tianjin 300457 , China
| |
Collapse
|