101
|
Santos TA, Cabral BR, de Oliveira ACS, Dias MV, de Oliveira CR, Borges SV. Release of papain incorporated in chitosan films reinforced with cellulose nanofibers. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
102
|
Song D, Xu Y, Liu S, Wen L, Wang X. Progress of 3D Bioprinting in Organ Manufacturing. Polymers (Basel) 2021; 13:3178. [PMID: 34578079 PMCID: PMC8468820 DOI: 10.3390/polym13183178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of rapid prototyping technologies, which assemble biomaterials, including cells and bioactive agents, under the control of a computer-aided design model in a layer-by-layer fashion. It has great potential in organ manufacturing areas with the combination of biology, polymers, chemistry, engineering, medicine, and mechanics. At present, 3D bioprinting technologies can be used to successfully print living tissues and organs, including blood vessels, skin, bones, cartilage, kidney, heart, and liver. The unique advantages of 3D bioprinting technologies for organ manufacturing have improved the traditional medical level significantly. In this article, we summarize the latest research progress of polymers in bioartificial organ 3D printing areas. The important characteristics of the printable polymers and the typical 3D bioprinting technologies for several complex bioartificial organs, such as the heart, liver, nerve, and skin, are introduced.
Collapse
Affiliation(s)
- Dabin Song
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Yukun Xu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Liang Wen
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
- Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Ministry of Education & Center of Organ Manufacturing, Beijing 100084, China
| |
Collapse
|
103
|
Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with "Pitanga" (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int J Biol Macromol 2021; 186:328-340. [PMID: 34246680 DOI: 10.1016/j.ijbiomac.2021.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Mechanical properties of biopolymer films can be a limitation for their application as packaging. Soybean straw crystalline nanocelluloses (NC) can act as reinforcement load to improve these material properties, and W/O/W double emulsion (DE) as encapsulating bioactive agents can contribute to produce active packaging. DE droplets were loaded with pitanga leaf (Eugenia uniflora L.) hydroethanolic extract. The mechanical, physicochemical, and barrier properties, and the microstructure of gelatin and/or chitosan films incorporated with NC or NC/DE were determined by classical methods. Film antioxidant activities were determined by ABTS and DPPH methods. The incorporation of NC/DE in gelatin and/or chitosan films (NC/DE films) changed the morphology of these films, which presented more heterogeneous air-side surfaces and cross-sections. They presented rougher topographies, notably greater resistance and stiffness, higher barrier properties to UV/Vis light and higher antioxidant activity than the NC films. Moisture content, solubility in water and water vapor permeability decreased due to the presence of DE. Overall, the NC/DE films improved all properties, when compared to the properties of NC films or those of films with only DE, from a previously published study. In spite of not having antimicrobial activity against the studied bacteria, NC/DE films did display a great antioxidant activity.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil.
| | - Rodrigo Vinícius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C, 05508-080 São Paulo, SP, Brazil
| |
Collapse
|
104
|
Santos TA, Oliveira ACS, Lago AMT, Yoshida MI, Dias MV, Borges SV. Properties of chitosan–papain biopolymers reinforced with cellulose nanofibers. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Maria Irene Yoshida
- Department of Chemistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | | |
Collapse
|
105
|
Kulkarni AS, Sajjan AM, Khan TMY, Badruddin IA, Kamangar S, Banapurmath NR, Ayachit NH, Ashwini M, Sharanappa A. Development and Characterization of Biocompatible Membranes from Natural Chitosan and Gelatin for Pervaporative Separation of Water-Isopropanol Mixture. Polymers (Basel) 2021; 13:2868. [PMID: 34502908 PMCID: PMC8434005 DOI: 10.3390/polym13172868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/28/2023] Open
Abstract
Natural polymers have attracted a lot of interest in researchers of late as they are environmentally friendly, biocompatible, and possess excellent characters. Membranes forming natural polymers have provided a whole new dimension to the separation technology. In this work, chitosan-gelatin blend membranes were fabricated using chitosan as the base and varying the amount of gelatin. Transport, mechanical, and surface characteristics of the fabricated membranes were examined in detail by means of the characterizing techniques such as Fourier transform infrared spectroscopy, differential scanning colorimetry, wide angle X-ray diffraction, scanning electron microscope, and thermogravimetric analysis. In order to analyze the water affinity of the developed blend chitosan-gelatin membranes, the percentage degree of swelling was examined. Out of the fabricated membranes, the membrane loaded with 15 mass% of gelatin exhibited the better pervaporation performance with a pervaporation separation index value of 266 at 30 °C for the solution containing 10% in terms of the mass of water, which is the highest among the contemporary membranes. All the fabricated membranes were stable during the pervaporation experiments, and permeation flux of water for the fabricated membranes was dominant in the overall total permeation flux, signifying that the developed membranes could be chosen for efficient separation of water-isopropanol mixture on a larger scale.
Collapse
Affiliation(s)
- Akshay S. Kulkarni
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - T. M. Yunus Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; (T.M.Y.K.); (I.A.B.)
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Irfan Anjum Badruddin
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; (T.M.Y.K.); (I.A.B.)
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sarfaraz Kamangar
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nagaraj R. Banapurmath
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Narasimha H. Ayachit
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - M. Ashwini
- Department of Food and Industrial Microbiology, University of Agricultural Sciences, Dharwad 580005, India;
| | - A. Sharanappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India;
| |
Collapse
|
106
|
Attayil Sukumaran S, Kalimuthu B, Selvamurugan N, Mani P. Wound dressings based on chitosan/gelatin/MgO composite films. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Prabaharan Mani
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, India
| |
Collapse
|
107
|
Zulkiflee I, Fauzi MB. Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review. Biomedicines 2021; 9:biomedicines9080979. [PMID: 34440183 PMCID: PMC8391561 DOI: 10.3390/biomedicines9080979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2023] Open
Abstract
The field of biomaterials has been steadily expanding as a large number of pharmaceutical and manufacturing companies invest in research in order to commercialize biomaterial products. Various three-dimensional biomaterials have been explored including film, hydrogel, sponge, microspheres etc., depending on different applications. Thus, gelatin and polyvinyl alcohol (PVA) are widely used as a natural- and synthetic-based biomaterial, respectively, for tissue engineering and clinical settings. The combination of these materials has proven its synergistic effects in wound-healing applications. Therefore, this review aims to highlight the hybrid gelatin and PVA thin film development and evaluate its potential characteristics for tissue engineering applications from existing published evidence (within year 2010–2020). The primary key factor for polymers mixing technology might improve the quality and the efficacy of the intended polymers. This review provides a concise overview of the current knowledge for hybrid gelatin and PVA with the method of fabricating and mixing technology into thin films. Additionally, the findings guided to an optimal fabrication method and scrutinised characterisation parameters of fabricated gelatin-PVA thin film. In conclusion, hybrid gelatin-PVA thin film has higher potential as a treatment for various biomedical and clinical applications.
Collapse
|
108
|
Xu J, Liu F, Yu Z, Chen M, Zhong F. Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
109
|
Kaczmarek-Szczepańska B, Wekwejt M, Mazur O, Zasada L, Pałubicka A, Olewnik-Kruszkowska E. The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light. Int J Mol Sci 2021; 22:6472. [PMID: 34208782 PMCID: PMC8235692 DOI: 10.3390/ijms22126472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-008 Gdańsk, Poland;
| | - Olha Mazur
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland;
| | - Ewa Olewnik-Kruszkowska
- Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| |
Collapse
|
110
|
Nor Adilah A, Gun Hean C, Nur Hanani Z. Incorporation of graphene oxide to enhance fish gelatin as bio-packaging material. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
111
|
Li Y, Tang C, He Q. Effect of orange (Citrus sinensis L.) peel essential oil on characteristics of blend films based on chitosan and fish skin gelatin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
112
|
Zhang C, Yang Z, Shi J, Zou X, Zhai X, Huang X, Li Z, Holmes M, Daglia M, Xiao J. Physical properties and bioactivities of chitosan/gelatin-based films loaded with tannic acid and its application on the preservation of fresh-cut apples. Lebensm Wiss Technol 2021; 144:111223. [DOI: 10.1016/j.lwt.2021.111223] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
113
|
The influence of 3‐glycidyloxypropyl trimethoxysilane on the rheological and in‐vitro behavior of injectable composites containing
64S
bioactive glass, chitosan, and gelatin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
114
|
Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
115
|
Tessaro L, Luciano CG, Quinta Barbosa Bittante AM, Lourenço RV, Martelli-Tosi M, José do Amaral Sobral P. Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
116
|
Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.084] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
117
|
Liu J, Zhang L, Liu C, Zheng X, Tang K. Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
118
|
Vehiculation of Methyl Salicylate from Microcapsules Supported on Textile Matrix. MATERIALS 2021; 14:ma14051087. [PMID: 33652651 PMCID: PMC7956389 DOI: 10.3390/ma14051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022]
Abstract
In recent years, textile industries have focused their attention on the development of functional finishing that presents durability and, consequently, controlled release. However, in the case of methyl salicylate microcapsules supported on a textile matrix, studies indicate only the interactions between substrate and microcapsules and the drug delivery system, not applying the release equations. This study reports the mechanism and kinetics of controlled release of microcapsules of gelatin and gum Arabic containing methyl salicylate as active ingredient incorporated into textile matrices. According to the results presented, it was possible to verify that the wall materials participated in the coacervation process, resulting in microcapsules with well-defined geometry, besides promoting the increase of the thermal stability of the active principle. The samples (100% cotton, CO, and 100% polyamide, PA) functionalized with microcapsules released methyl salicylate in a controlled manner, based on the adjustment made by the Korsmeyer–Peppas model, indicating a Fickian mechanism. The influence of temperature was noticeable when the samples were subjected to washing, since with higher temperature (50 °C), the release was more pronounced than when subjected to lower temperature (37 °C). The results presented in this study indicate that the mechanism of backbone release is influenced by the textile matrix and by the durability of the microcapsule during the wash cycles.
Collapse
|
119
|
Qian F, Gao X, Li L, Safian Murad M, Mu G, Wu X. Influence of forming method of blending versus casting layer‐by‐layer on structural properties and packing performances of casein‐gelatin composite edible film under different appending proportion. J Appl Polym Sci 2020. [DOI: 10.1002/app.50378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaoxi Gao
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Li Li
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Mian Safian Murad
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning China
| |
Collapse
|
120
|
Jahromi M, Niakousari M, Golmakani MT, Mohammadifar MA. Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. Int J Biol Macromol 2020; 165:1949-1959. [DOI: 10.1016/j.ijbiomac.2020.10.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/05/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
121
|
Jessop I, Albornoz J, Ramírez O, Durán B, Molero L, Bonardd S, Kortaberria G, Diaz Diaz D, Leiva A, Saldías C. Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydr Polym 2020; 249:116822. [DOI: 10.1016/j.carbpol.2020.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
|
122
|
Patil G, Torris A, Suresha PR, Jadhav S, Badiger MV, Ghormade V. Design and synthesis of a new topical agent for halting blood loss rapidly: A multimodal chitosan-gelatin xerogel composite loaded with silica nanoparticles and calcium. Colloids Surf B Biointerfaces 2020; 198:111454. [PMID: 33246777 DOI: 10.1016/j.colsurfb.2020.111454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
Uncontrolled hemorrhage often causes death during traumatic injuries and halting exsanguination topically is a challenge. Here, an efficient multimodal topical hemostat was developed by (i) ionically crosslinking chitosan and gelatin with sodium tripolyphosphate for (ii) fabricating a robust, highly porous xerogel by lyophilization having 86.7 % porosity, by micro-CT and large pores ∼30 μm by SEM (iii) incorporating 0.5 mg synthesized silica nanoparticles (SiNPs, 120 nm size, -22 mV charge) and 2.5 mM calcium in xerogel composite that was confirmed by FTIR analysis with peaks at 3372, 986 and 788 cm-1, respectively. XPS analysis displayed the presence of SiNPs (Si2p peak for silicon) and calcium (Ca2p1, Ca2p3 transition peaks) in the composite. Interestingly, in silico percolation simulation for composite revealed interlinked 800 μm long-conduits predicting excellent absorption capacity and validated experimentally (640 % of composite dry weight). The composite achieved >16-fold improved blood clotting in vitro than commercial Celox and Gauze through multimodal interaction of its components with RBCs and platelets. The composite displayed good platelet activation and thrombin generation activities. It displayed high compressive strength (2.45 MPa) and withstood pressure during application. Moreover, xerogel composite showed high biocompatibility. In vivo application of xerogel composite to lethal femoral artery injury in rats achieved hemostasis (2.5 min) significantly faster than commercial Celox (3.3 min) and Gauze (4.6 min) and was easily removed from the wound. The gamma irradiated composite was stable till 1.5 yr. Therefore, the xerogel composite has potential for application as a rapid topical hemostatic agent.
Collapse
Affiliation(s)
- Gokul Patil
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - P R Suresha
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune 411004 India
| | - Manohar V Badiger
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Vandana Ghormade
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India.
| |
Collapse
|
123
|
Demircan B, Özdestan-Ocak Ö. Effects of lemon essential oil and ethyl lauroyl arginate on the physico-chemical and mechanical properties of chitosan films for mackerel fillet coating application. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00745-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
124
|
do Nascimento EG, de Azevedo EP, Alves-Silva MF, Aragão CFS, Fernandes-Pedrosa MF, da Silva-Junior AA. Supramolecular aggregates of cyclodextrins with co-solvent modulate drug dispersion and release behavior of poorly soluble corticosteroid from chitosan membranes. Carbohydr Polym 2020; 248:116724. [PMID: 32919548 DOI: 10.1016/j.carbpol.2020.116724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023]
Abstract
In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-β-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.
Collapse
Affiliation(s)
- Ednaldo Gomes do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Eduardo Pereira de Azevedo
- Department of Pharmacy, Federal University of Potiguar, UnP, Av. Sen. Salgado Filho, 1610, Lagoa Nova, 59056-000, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Cícero Flávio S Aragão
- Laboratory of Quality Control of Pharmaceuticals, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
125
|
Ma Y, Li S, Ji T, Wu W, Sameen DE, Ahmed S, Qin W, Dai J, Liu Y. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydr Polym 2020; 247:116738. [DOI: 10.1016/j.carbpol.2020.116738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
126
|
Wu Y, Su H, Yang J, Wang Z, Li D, Sun H, Guo X, Yin S. Photoelectrochemical immunosensor for sensitive detection of alpha-fetoprotein based on a graphene honeycomb film. J Colloid Interface Sci 2020; 580:583-591. [DOI: 10.1016/j.jcis.2020.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
|
127
|
Vedovatto S, Facchini JC, Batista RK, Paim TC, Lionzo MIZ, Wink MR. Development of chitosan, gelatin and liposome film and analysis of its biocompatibility in vitro. Int J Biol Macromol 2020; 160:750-757. [PMID: 32479938 DOI: 10.1016/j.ijbiomac.2020.05.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023]
Abstract
A film of chitosan, gelatin and liposome has been designed for dermatological applications. Several adaptations were required throughout development to facilitate in vitro analysis, physicochemical characterization and biocompatibility evaluation. The final version of the film was characterized by differential scanning calorimetry, evaluation of swelling and scanning electron microscopy. The biocompatibility of the film was assessed by investigating cellular parameters of three types of human cells by direct contact or through films extracts: I) primary culture of adipose-derived mesenchymal stromal cells (ADCSs) and melanoma cell lines were used to test cell adhesion and morphology by direct cell culture on the material; II) ADSCs and immortalized keratinocytes were used in cell viability assay using different films extracts. The film showed physicochemical characteristics that favored cellular input, being suitable for in vitro analysis, which allowed its biocompatible characteristics such as the absence of toxicity to be verified without causing significant morphological changes in ADSCs and melanoma cell line. Altogether, these results suggest that the material has a potential application for drug delivery and promotion of skin tissue repair and is therefore worthwhile for further investigations using preclinical models to cover dermal lesions.
Collapse
Affiliation(s)
- Samlai Vedovatto
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jordano C Facchini
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raquel K Batista
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Thaís C Paim
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Ismenia Z Lionzo
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
128
|
Yu N, Li J, Ma F, Yang P, Liu W, Zhou M, Zhu Z, Xing S. Preparation and Properties of Cationic Gelatin Cross-Linked with Tannin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9537-9545. [PMID: 32786843 DOI: 10.1021/acs.jafc.0c01131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A kind of biomaterial with antibacterial and mechanical properties was prepared using gelatin (GE) as a raw material. GE was modified by antibacterial epoxy quaternary ammonium salt (QAS) and then cross-linked with tannic acid (TA). Analysis of the Fourier transform infrared spectroscopy (FTIR) results showed that the cationic group was grafted onto GE by reaction of the amino of GE with the epoxy of QAS, and the cross-linking occurred between the amino of GE and the active groups of TA under alkaline conditions. The cross-linking degree was determined by the fluorescence method via a derivative reaction of fluorescamin. The influence of the cross-linking degree on the physical and chemical properties of the GE film was studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and mechanical testing. The results showed that the modified GE film formed a compact cross-linking structure, and its thermostability and mechanical properties were improved with increasing cross-linking degree. The in vitro antibacterial rate of the cross-linked cationic GE film to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 95.83% and 100% respectively, and the in vitro cell relative growth rate (RGR) of HeLa cells cultured in the extracted leachate of the cross-linked cationic GE film exceeded 85%, which illustrated that the modified GE film had excellent antibacterial activity and biocompatibility.
Collapse
Affiliation(s)
- Ning Yu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Junying Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Feng Ma
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Pengfei Yang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenjie Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingyang Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhifei Zhu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
129
|
Youzhi W, Jincheng W, Shiqiang S, Pinhua R, Runkai W, Shihui L, Liqi X, Feng Z. Preparation and application properties of sustainable gelatin/chitosan soil conditioner microspheres. Int J Biol Macromol 2020; 159:685-695. [DOI: 10.1016/j.ijbiomac.2020.05.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
|
130
|
Hu H, Yao X, Qin Y, Yong H, Liu J. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. Int J Biol Macromol 2020; 159:675-684. [DOI: 10.1016/j.ijbiomac.2020.05.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
131
|
Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr Polym 2020; 244:116471. [DOI: 10.1016/j.carbpol.2020.116471] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
|
132
|
Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
133
|
Xu D, Chen T, Liu Y. The physical properties, antioxidant and antimicrobial activity of chitosan–gelatin edible films incorporated with the extract from hop plant. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
134
|
Importance of gelatin, nanoparticles and their interactions in the formulation of biodegradable composite films: a review. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03283-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
135
|
Zhong Y, Xiang X, Wang X, Zhang Y, Hu M, Chen T, Liu C. Fabrication and characterization of oil-in-water emulsions stabilized by macadamia protein isolate/chitosan hydrochloride composite polymers. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
136
|
Asim M, Paridah MT, Chandrasekar M, Shahroze RM, Jawaid M, Nasir M, Siakeng R. Thermal stability of natural fibers and their polymer composites. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00824-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
137
|
Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, Liu C, Song J, Li D. Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol 2020; 150:595-604. [DOI: 10.1016/j.ijbiomac.2020.02.078] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
|
138
|
Riaz A, Lagnika C, Luo H, Nie M, Dai Z, Liu C, Abdin M, Hashim MM, Li D, Song J. Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydr Polym 2020; 235:115944. [DOI: 10.1016/j.carbpol.2020.115944] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
|
139
|
Amjadi S, Nazari M, Alizadeh SA, Hamishehkar H. Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci 2020; 167:108161. [PMID: 32380358 DOI: 10.1016/j.meatsci.2020.108161] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The objective of this study was to fabricate betanin nanoliposomes incorporated gelatin/chitosan nanofiber/ZnO nanoparticles bionanocomposite film (G/CH NF/ZnO NPs/B NLPs) and investigate its effects on the preservation of fresh beef. The scanning electron microscopy image of nanocomposite film displayed a good inter-connective porous morphology. Fourier transform infrared and X-ray diffraction analysis confirmed the formation of new hydrogen bonds and enhanced crystallinity through the addition of CH NF, ZnO NPs, and B NLPs. The G/CH NF/ZnO NPs/B NLPs film exhibited satisfactory mechanical properties and high surface hydrophobicity (water contact angle = 92.49 ± 3.71°). The incorporation of ZnO NPs and B NLPs in the nanocomposite film provided high antibacterial activity and DPPH inhibition activity (53.02 ± 3.26%). The growth of inoculated bacteria, lipid oxidation, and the changes in the pH and color quality of the beef samples were controlled by packaging with the fabricated film. In conclusion, the G/CH NF/ZnO NPs/B NLPs nanocomposite has a high potential for meat preservation.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Maryam Nazari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Ali Alizadeh
- Department of microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
140
|
Sha XM, Wang GY, Li X, Zhang LZ, Tu ZC. Identification and quantification of gelatin by a high-resolution mass spectrometry-based label-free method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
141
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
142
|
Sohrabi M, Eftekhari Yekta B, Rezaie HR, Naimi‐Jamal MR. Rheology, injectability, and bioactivity of bioactive glass containing chitosan/gelatin, nano pastes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehri Sohrabi
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Bijan Eftekhari Yekta
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Hamid R. Rezaie
- School of Metallurgy and Materials Engineering Iran University of Science and Technology Tehran Iran
| | - Mohammad R. Naimi‐Jamal
- Research Laboratory of Green Organic Synthesis and Polymers Iran University of Science and Technology Tehran Iran
| |
Collapse
|
143
|
Yang X, Wang B, Qiao C, Li Z, Li Y, Xu C, Li T. Molecular interactions in N-[(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride-sodium alginate polyelectrolyte complexes. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
144
|
Xu J, Wei R, Jia Z, Song R. Characteristics and bioactive functions of chitosan/gelatin-based film incorporated with ε-polylysine and astaxanthin extracts derived from by-products of shrimp (Litopenaeus vannamei). Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105436] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
145
|
UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. Int J Biol Macromol 2020; 147:990-996. [DOI: 10.1016/j.ijbiomac.2019.10.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022]
|
146
|
Abstract
This study was targeted towards the synthesis and characterization of new chitosan–gelatin biocomposite films reinforced with graphene oxide and crosslinked with genipin. The composites’ mode of structuration was characterized by Fourier Transform Infrared spectroscopy and X-ray diffraction, while morphology and topography were investigated by scanning electron microscopy, nano-computer tomography and profilometry. Eventually, thermal stability was evaluated through thermogravimetrical analysis, mechanical properties assessment was carried out to detect potential improvements as a result of graphene oxide (GO) addition and in vitro enzyme degradation was performed to discern the most promising formulations for the maturation of the study towards in vivo assays. In accordance with similar works, results indicated the possibility of using GO as an agent for adjusting films’ roughness, chemical stability and polymer structuration. The enzymatic stability of chitosan–gelatin (CHT-GEL) films was also improved by genipin (GEN) crosslinking and GO supplementation, with the best results being obtained for CHT-GEL-GEN and CHT-GEL-GEN-GO3 (crosslinked formulation with 3 wt.% GO). Yet, contrary to previous reports, no great enhancement of CHT-GEN-GEL-GO thermal performances was obtained by the incorporation of GO.
Collapse
|
147
|
Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. Int J Biol Macromol 2020; 145:1129-1139. [DOI: 10.1016/j.ijbiomac.2019.10.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
|
148
|
Polyelectrolyte Polysaccharide-Gelatin Complexes: Rheology and Structure. Polymers (Basel) 2020; 12:polym12020266. [PMID: 31991901 PMCID: PMC7077483 DOI: 10.3390/polym12020266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 01/10/2023] Open
Abstract
General features of rheological properties and structural peculiarities of polyelectrolyte polysaccharide–gelatin complexes were discussed in this paper. Experimental results were obtained for typical complexes, such as κ-carrageenan–gelatin, chitosan–gelatin and sodium alginate–gelatin complexes. A rheological method allows us to examine the physical state of a complex in aqueous phase and the kinetics of the sol–gel transition and temperature dependences of properties as a result of structural changes. The storage modulus below the gelation temperature is constant, which is a reflection of the solid-like state of a material. The gels of these complexes are usually viscoplastic media. The quantitative values of the rheological parameters depend on the ratio of the components in the complexes. The formation of the structure as a result of strong interactions of the components in the complexes was confirmed by UV and FTIR data and SEM analysis. Interaction with polysaccharides causes a change in the secondary structure of gelatin, i.e., the content of triple helices in an α-chain increases. The joint analysis of the structural and rheological characteristics suggests that the formation of additional junctions in the complex gel network results in increases in elasticity and hardening compared with those of the native gelatin.
Collapse
|
149
|
Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydr Polym 2020; 228:115386. [DOI: 10.1016/j.carbpol.2019.115386] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
|
150
|
Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105174] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|