101
|
Soy Protein Isolate Interacted with Acrylamide to Reduce the Release of Acrylamide in the In Vitro Digestion Model. Foods 2023; 12:foods12061136. [PMID: 36981063 PMCID: PMC10048519 DOI: 10.3390/foods12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Acrylamide (AA), a common carcinogen, has been found in many dietary products.. This study aimed to explore the interaction of soybean protein isolate (SPI) with AA and further research the different effects of SPI on the AA release due to interactions in the in vitro digestion model. Analysis of variance was used to analyze the data. The results suggested that AA could bind with SPI in vitro, leading to the variation in SPI structure. The intrinsic fluorescence of SPI was quenched by AA via static quenching. The non-covalent (van der Waals forces and hydrogen bonding) and covalent bonds were the main interaction forces between SPI and AA. Furthermore, the release of AA significantly decreased due to its interaction with SPI under simulated gastrointestinal conditions. SPI had different effects on the AA release rate after different treatments. The thermal (80, 85, 90, and 95 °C for either 10 or 20 min) and ultrasound (200, 300, and 400 W for either 15, 30, or 60 min) treatments of SPI were useful in reducing the release of AA. However, the high pressure-homogenized (30, 60, 90, and 120 MPa once, twice, or thrice) treatments of SPI were unfavorable for reducing the release of AA.
Collapse
|
102
|
The effect of preheated WPI interaction with AN on its complexes based on protein structure and function. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
103
|
Effect of High-pressure Homogenization on Structure and Properties of Soy Protein Isolate/polyphenol Complexes. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
104
|
Yang J, Zhu B, Dou J, Li X, Tian T, Tong X, Wang H, Huang Y, Li Y, Qi B, Jiang L. Structural characterization of soy protein hydrolysates and their transglutaminase-induced gelation properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
105
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
106
|
Francisco CRL, Santos TP, Cunha RL. Nano and micro lupin protein-grape seed extract conjugates stabilizing oil-in-water emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Guo Y, Wang M, Xing K, Pan M, Wang L. Covalent binding of ultrasound-treated japonica rice bran protein to catechin: Structural and functional properties of the complex. ULTRASONICS SONOCHEMISTRY 2023; 93:106292. [PMID: 36669429 PMCID: PMC9868872 DOI: 10.1016/j.ultsonch.2023.106292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Due to the existence of many disulfide bonds in japonica rice bran protein (JRBP) molecules, their solubility is poor, which seriously affects other functional properties. To improve the functional characteristics of JRBP molecules, they were processed by ultrasound technology, and JRBP-catechin (CC) covalent complex was prepared. The structural and functional properties of indica and japonica rice bran proteins and their complexes were compared; furthermore, the changes in the structural and functional properties of JRBP-CC under different ultrasound conditions were investigated. The results showed that compared with indica rice bran protein (IRBP), the secondary structure of JRBP-CC was very different, the water holding capacity (WHC) was higher, and the emulsification performance was better. Different ultrasound conditions had different effects on the functional properties of JRBP-CC. When the ultrasound power was 200 W, the λmax redshift of the JRBP-CC complex was the most significant, the particle size was the smallest, the absolute value of the zeta potential was the largest, and the hydrophobicity and microstructure of the JRBP-CC complex were the best. Concurrently, the maximum WHC and oil holding capacity (OHC) of JRBP-CC under these conditions were 7.54 g/g and 6.87 g/g, respectively. Moreover, the emulsifying activity index (EAI) and emulsifying stability index (ESI) were 210 m2/g and 47.8 min, respectively, and the scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS+ were 71.96 % and 80.07 %, respectively.
Collapse
Affiliation(s)
- Yanfei Guo
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Minghao Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kaiwen Xing
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzhe Pan
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Food Science, Harbin University of Commerce, Harbin 150000, China
| |
Collapse
|
108
|
Zhang M, Fan L, Liu Y, Li J. Effects of alkali treatment on structural and functional properties of chickpea protein isolate and its interaction with gallic acid: To improve the physicochemical stability of water–in–oil emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
109
|
Covalent modification of soy protein hydrolysates by EGCG: Improves the emulsifying and antioxidant properties. Food Res Int 2023; 164:112317. [PMID: 36737910 DOI: 10.1016/j.foodres.2022.112317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this study, the effect of EGCG conjugation on the emulsifying and antioxidant properties of SPHs was investigated to improve the functional characteristic of soy protein hydrolysates (SPHs) and develop a novel hydrolysates/peptides-EGCG conjugates. Enzymatic hydrolyzed SPHs (DH 5%, 8%, 10%) covalent with 1% EGCG to prepare conjugates at pH 9.0. The free amino group and tryptophan content of SPHs-EGCG conjugates significantly decreased, indicating the successful preparation of SPHs-EGCG conjugates. Additionally, 5% SPHs-EGCG conjugates showed the highest EGCG binding capacity. EGCG conjugation increased the particle sizes and charge of SPHs. Compared with non-covalent SPHs, the covalent modification of EGCG increased the emulsifying and antioxidant capacity, especially for 5% SPHs-EGCG, it exhibited much higher surface hydrophobicity, ESI (emulsifying stability index), EAI (emulsifying activity index), and antioxidant activity than others. This result revealed that SPHs and EGCG played a synergistic effect in improving the emulsifying and antioxidant capacity. Fluorescence spectroscopy analysis showed that the combination of EGCG conjugation significantly decreased the fluorescence intensity and caused maximum emission red-shift. The formation of a covalent bond between SPHs and EGCG was verified through Fourier transform infrared spectroscopy (FTIR), and the results also showed a significant increase in the α-helix and random coil contents of the conjugation, and a significant decrease in the β-sheet and β-turn contents. These results indicate that EGCG conjugation with SPHs induced the unfolding and stretching of protein flexibility. Overall, SPHs-EGCG conjugates can be applied as a promising emulsifier to fabricate emulsion systems and would be helpful in designing functional beverages containing polyphenols and peptides with enhanced functional nutritional properties.
Collapse
|
110
|
Yan X, Jia Y, Man H, Sun S, Huang Y, Qi B, Li Y. Tracking the driving forces for the unfolding and folding of kidney bean protein isolates: Revealing mechanisms of dynamic changes in structure and function. Food Chem 2023; 402:134230. [DOI: 10.1016/j.foodchem.2022.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
|
111
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
112
|
Impacts of Proanthocyanidin Binding on Conformational and Functional Properties of Decolorized Highland Barley Protein. Foods 2023; 12:foods12030481. [PMID: 36766010 PMCID: PMC9914363 DOI: 10.3390/foods12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
The impacts of interaction between proanthocyanidin (PC) and decolorized highland barley protein (DHBP) at pH 7 and 9 on the functional and conformational changes in DHBP were investigated. It was shown that PC strongly quenched the intrinsic fluorescence of DHBP primarily through static quenching. PC and DHBP were mainly bound by hydrophobic interactions. Additionally, free sulfhydryl groups and surface hydrophobicity obviously decreased in DHBP after combining with PC. The zeta potential of DHBP-PC complexes at pH 7 increased significantly. A change in the structure of DHBP was caused by interactions with PC, resulting in an increase in the number of β-sheets, a decrease in the number of α-helixes, and a spectral shift in the amide Ⅱ band. Furthermore, the presence of PC enhanced the foaming properties and antioxidant activity of DHBP. Overall, this study suggests that DHBP-PC complexes at pH 7 could be designed as a stable additive, and illustrates the potential applications of DHBP-PC complexes in the food industry.
Collapse
|
113
|
Wu K, Wu Z, Kang Y, Su C, Yi F. Hydrogen bond-driven assembly of coral-like soy protein isolate-tannic acid microcomplex for encapsulation of limonene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:185-194. [PMID: 35842518 DOI: 10.1002/jsfa.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The encapsulation of flavor and aroma compounds has great potential in foods, while effective preparation in the food industry is still a great challenge. Inspired by leather tanning, tannic acid (TA) was used for deep crosslinking through hydrogen bond-driven assembly on soy protein isolate for encapsulating limonene with a high loading ratio. RESULTS The added TA changed the protein structure and formed a limonene-loaded microcomplex. The morphology of these microcomplexes changed from smooth to rough, followed by the formation of smooth nanoparticle aggregates, by changing the amount of TA. The encapsulation efficiency and loading ratio were increased from 0.78% and 4.30% to 59.32% and 45.78% after increasing TA from 1.875 to 60 mg mL-1 . The result of confocal laser scanning microscopy indicated that limonene is evenly distributed in microcomplexes. Additionally, the results of thermal stability demonstrated protection of limonene by soy protein-tannic acid microcomplex. CONCLUSION It is suggested that the added TA improved the encapsulation efficiency and loading ratio. Limonene is loaded in the complex in two ways. The present research provides a new and easy path for the preparation of the non-thermal soy protein aroma carrier. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zhenglin Wu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yuxuan Kang
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chang Su
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Fengping Yi
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
114
|
Impact of Phenolic Acid Derivatives on the Oxidative Stability of β-Lactoglobulin-Stabilized Emulsions. Antioxidants (Basel) 2023; 12:antiox12010182. [PMID: 36671043 PMCID: PMC9854828 DOI: 10.3390/antiox12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Proteins, such as β-lactoglobulin (β-Lg), are often used to stabilize oil-water-emulsions. By using an additional implementation of phenolic compounds (PC) that might interact with the proteins, the oxidative stability can be further improved. Whether PC have a certain pro-oxidant effect on oxidation processes, while interacting non-covalently (pH-6) or covalently (pH.9) with the interfacial protein-film, is not known. This study aimed to characterize the impact of phenolic acid derivatives (PCDs) on the antioxidant efficacy of the interfacial β-Lg-film, depending on their structural properties and pH-value. Electron paramagnetic resonance (EPR) analyses were performed to assess the radical scavenging in the aqueous and oil phases of the emulsion, and the complexation of transition metals: these are well known to act as pro-oxidants. Finally, in a model linseed oil emulsion, lipid oxidation products were analyzed over storage time in order to characterize the antioxidant efficacy of the interfacial protein-film. The results showed that, at pH.6, PCDs can scavenge hydrophilic radicals and partially scavenge hydrophobic radicals, as well as reduce transition metals. As expected, transition metals are complexed to only a slight degree, leading to an increased lipid oxidation through non-complexed reduced transition metals. At pH.9, there is a strong complexation between PCDs and the transition metals and, therefore, a decreased ability to reduce the transition metals; these do not promote lipid oxidation in the emulsion anymore.
Collapse
|
115
|
Plant Protein versus Dairy Proteins: A pH-Dependency Investigation on Their Structure and Functional Properties. Foods 2023; 12:foods12020368. [PMID: 36673460 PMCID: PMC9857781 DOI: 10.3390/foods12020368] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Plant proteins are constantly gaining attention as potential substitutes for dairy proteins, due to their suitable functionality and nutritional value. This study was designed to compare the structural and functional responses of different plant protein isolates (soy, pea, lentil, and chickpea) with two commonly used dairy protein (whey protein isolates and sodium caseinate) under different pH treatments (pH 3.0, 5.0, 7.0, and 9.0). The results showed that pH had a different alteration on the structural, surface properties and functional properties of plant and dairy proteins. Plant protein generally possessed a darker color, lower solubility, emulsifying properties, and foaming capacity, whereas their foaming stability and water holding capacity were higher than those of dairy proteins. Soy protein isolates were characterized by its comparable proportion of β-turn and random coils, zeta-potential, emulsifying (30.37 m2/g), and water-holding capacity (9.03 g/g) at alkaline conditions and chickpea protein isolates showed good oil-holding capacity (3.33 g/g at pH 9) among plant proteins. Further analysis confirmed that pH had a greater influence on the structural and functional properties of proteins as compared to protein sources, particularly at acidic conditions. Overall, this study might help processors select the appropriate plant protein as dairy alternatives for their target application in plant-based food products.
Collapse
|
116
|
Wang J, Xu Z, Jiang L, Zhang Y, Sui X. Further evaluation on structural and antioxidant capacities of soy protein isolate under multiple freeze-thaw cycles. Food Chem X 2023; 17:100574. [PMID: 36845472 PMCID: PMC9944477 DOI: 10.1016/j.fochx.2023.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Multiple freeze-thaw (F-T) treatments could change a protein structure and affect its physicochemical activities. In this work, soy protein isolate (SPI) was subjected to multiple F-T treatments, and the changes in its physicochemical and functional properties were investigated. The three-dimensional fluorescence spectroscopy indicated that F-T treatments changed the structure of SPI, including an increase in surface hydrophobicity. Fourier transform infrared spectroscopy showed that SPI underwent denaturation, unfolding and aggregation due to the interchange of sulfhydryl-disulfide bonds and the exposure of hydrophobic groups. Correspondingly, the particle size of SPI increased significantly and the protein precipitation rate also increased from 16.69%/25.33% to 52.52%/55.79% after nine F-T treatments. The F-T treated SPI had a higher antioxidant capacity. Results indicate that F-T treatments may be used as a strategy to ameliorate preparation methods and improve functional characteristics of SPI, and suggest that multiple F-T treatment is an alternative way to recover soy proteins.
Collapse
Affiliation(s)
- Jiayue Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China,Corresponding authors.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China,Corresponding authors.
| |
Collapse
|
117
|
Pereira GM, Jun S, Li QX, Wall MM, Ho KK. Formation and physical characterization of soy protein-isoflavone dispersions and emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
118
|
Wu H, Oliveira G, Lila MA. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr Rev Food Sci Food Saf 2023; 22:333-354. [PMID: 36398759 DOI: 10.1111/1541-4337.13070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Color is an important characteristic of food. Over the last 15 years, more attention has been paid to natural colorants because of the rising demand for clean-label food products. Anthocyanins, which are a group of phytochemicals responsible for the purple, blue or red hues of many plants, offer a market advantage. In addition, anthocyanin-rich foods are associated with protection against cardiovascular disease, thrombosis, diabetes, cancer, microbial-based disorders, neurological disorders, and vision ailments. However, the real health value of anthocyanins, whether as a natural colorant or a functional ingredient, is dependent on the ultimate bioaccessibility and bioavailability in the human body. Many animal and human clinical studies revealed that, after intake of anthocyanin-rich foods or anthocyanin extracts, only trace amounts (< 1% of ingested content) of anthocyanins or their predicted metabolites were detected in plasma after a standard blood draw, which was indicative of low bioavailability of anthocyanins. Protein binding to anthocyanins is a strategy that has recently been reported to enhance the ultimate bioactivity, bioaccessibility, and bioavailability of anthocyanins as compared to anthocyanins delivered without a protein carrier. Therefore, in this review, we address anthocyanin properties in food processing and digestion, anthocyanin-protein complexes used in food matrices, and changes in the bioaccessibility and bioavailability of anthocyanins when bound into anthocyanin-protein complexes in foods. Finally, we summarize the challenges and prospects of this delivery system for anthocyanin pigments.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriel Oliveira
- Department of Food Science, Federal University of Minas Gerais, Brazil
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
119
|
Mérida Lira E, Soto Simental S, Martínez Juárez VM, Quintero Lira A, Piloni Martini J. Proximate chemical, functional, and texture characterization of papaya seed flour (Carica papaya) for the preparation of bread. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
120
|
The Interactional Characterization of Lentil Protein Isolate (LPI) with Cyanidin-3-O-Glucoside (C3G) and Their Effect on the Stability and Antioxidant Activity of C3G. Foods 2022; 12:foods12010104. [PMID: 36613320 PMCID: PMC9818459 DOI: 10.3390/foods12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The interaction between lentil protein isolate (LPI) and cyanidin-3-O-glucoside (C3G) was investigated via with UV−vis spectroscopy, circular dichroism, and fluorescence spectroscopy and the stability of anthocyanin was also evaluated. After LPI mixed with C3G, the turbidity and foaming capacity increased and the particle size and surface charge did not change significantly, while the surface hydrophobicity decreased significantly (p < 0.05). The fluorescence results indicated that C3G quenched the intrinsic of LPI by static quenching and LPI bound with C3G via hydrophobic effects with Ka of 3.24 × 106 M−1 at 298 K. The addition of LPI significantly (p < 0.05) slightly decreased the thermal and oxidation degradation of C3G by up to 90.23% and 54.20%, respectively, while their antioxidant activity was inhibited upon mixing. These alterations of physicochemical properties might be attributed to their structural changes during the interaction. The obtained results would be of help in stabilizing bioactive compounds and the development of functional foods.
Collapse
|
121
|
Yan S, Yao Y, Xie X, Zhang S, Huang Y, Zhu H, Li Y, Qi B. Comparison of the physical stabilities and oxidation of lipids and proteins in natural and polyphenol-modified soybean protein isolate-stabilized emulsions. Food Res Int 2022; 162:112066. [DOI: 10.1016/j.foodres.2022.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
122
|
Khalifa I, Lorenzo JM, Bangar SP, Morsy OM, Nawaz A, Walayat N, Sobhy R. Effect of the non-covalent and covalent interactions between proteins and mono- or di-glucoside anthocyanins on β-lactoglobulin-digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Interfacial Characterization of an Oxidative Pickering Emulsion Stabilized by Polysaccharides/Polyphenol Complex Nanogels via a Multiscale Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
124
|
Shi J, Cui YF, Zhou G, Li N, Sun X, Wang X, Xu N. Covalent interaction of soy protein isolate and chlorogenic acid: Effect on protein structure and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
125
|
Ke C, Liu B, Dudu OE, Zhang S, Meng L, Wang Y, Wei W, Cheng J, Yan T. Modification of structural and functional characteristics of casein treated with quercetin via two interaction modes: Covalent and non-covalent interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
126
|
Li Y, Jiang R, Gao Y, Duan Y, Zhang Y, Zhu M, Xiao Z. Investigation of the Effect of Rice Bran Content on the Antioxidant Capacity and Related Molecular Conformations of Plant-Based Simulated Meat Based on Raman Spectroscopy. Foods 2022; 11:3529. [PMID: 36360142 PMCID: PMC9657750 DOI: 10.3390/foods11213529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 05/25/2024] Open
Abstract
At present, plant-based simulated meat is attracting more and more attention as a meat substitute. This study discusses the possibility of partial substitution of rice bran (RB) for soybean protein isolate (SPI) in preparing plant-based simulated meat. RB was added to SPI at 0%, 5%, 10%, 15%, and 20% to prepare RB-SPI plant-based simulated meat by the high moisture extrusion technique. RB-SPI plant-based simulated meat revealed greater polyphenol content and preferable antioxidant capacity (DPPH radical scavenging capacity, ABTS scavenging ability, and FRAP antioxidant capacity) compared to SPI plant-based simulated meat. The aromatic amino acids (tryptophan and tyrosine) of RB-SPI plant-based simulated meats tend to be masked first, and then the hydrophobic groups are exposed as RB content increases and the polarity of the surrounding environment increases due to the change in the disulfide conformation of RB-SPI plant-based simulated meats from a stable gauche-gauche-gauche conformation to a trans-gauche-trans conformation.
Collapse
Affiliation(s)
- Yanran Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Ruisheng Jiang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yuzhe Gao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yumin Duan
- Experimental Center of Shenyang Normal University (Department of Grain), Shenyang 110034, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
127
|
Jia Y, Fu Y, Man H, Yan X, Huang Y, Sun S, Qi B, Li Y. Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins. Food Res Int 2022; 161:111784. [DOI: 10.1016/j.foodres.2022.111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
128
|
Limited hydrolysis as a strategy to improve the non-covalent interaction of epigallocatechin-3-gallate (EGCG) with whey protein isolate near the isoelectric point. Food Res Int 2022; 161:111847. [DOI: 10.1016/j.foodres.2022.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
129
|
Lila MA, Hoskin RT, Grace MH, Xiong J, Strauch R, Ferruzzi M, Iorizzo M, Kay C. Boosting the Bioaccessibility of Dietary Bioactives by Delivery as Protein-Polyphenol Aggregate Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13017-13026. [PMID: 35394772 DOI: 10.1021/acs.jafc.2c00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein-polyphenol aggregate particles concurrently fortify a functional food product with healthy dietary proteins and concentrated polyphenols. However, what impact does ingestion of aggregate particles have on ultimate health relevance of either the polyphenolic molecules in the matrix or the protein molecules? Because human health benefits are contingent on bioavailability after ingestion, the fate of these molecules during transit in the gastrointestinal tract (GIT) will dictate their utility as functional food ingredients. This brief review explores diverse applications of protein-polyphenol particles in the food industry and the bioaccessibility of both bioactive polyphenolic compounds and edible proteins. Evidence to date suggests that complexation of phytoactive polyphenolics effectively enhances their health-relevant impacts, specifically because the phytoactives are protected in the protein matrix during transit in the GIT, allowing intact, non-degraded molecules to reach the colon for catabolism at the gut microbiome level, a prerequisite to realize the health benefits of these active compounds.
Collapse
Affiliation(s)
- Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Renee Strauch
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mario Ferruzzi
- Arkansas Childrens Nutrition Center and University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Colin Kay
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
130
|
Lei D, Li J, Zhang C, Li S, Zhu Z, Wang F, Deng Q, Grimi N. Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chem X 2022; 15:100426. [PMID: 36211777 PMCID: PMC9532785 DOI: 10.1016/j.fochx.2022.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The ternary complex of SPI, β-glucan and myricetin was prepared, and the interaction mechanism was studied. QCM-D was used to explore the binding affinity of 7S and 11S to β-glucan and myricetin. Molecular docking analysis indicated that 11S protein has a stronger binding capacity compared with 7S.
The complexation of soybean protein isolate (SPI) with β-glucan (DG) and myricetin (MC) was focused in this study. UV-Vis, circular dichroism and 3D fluorescence analysis jointly proved that interaction with DG and MC altered the structures of SPI, whose β-sheet decreased to 29 % and random coil increased to 35 %, respectively. Moreover, the microenvironment of tryptophan and tyrosine from protein were changed. The ternary complex performed a different molecular weight distribution, showing a larger molecular weight of 1.17×106 g/mol compared with SPI verified by gel permeation chromatography (GPC). And it was further evidenced by Quartz Crystal Microbalance with Dissipation (QCM-D) and molecular docking that glycinin (11S) possessed a better affinity toward DG and MC compared with β-conglycinin (7S), which indicated stronger binding ability through hydrogen bonds. The successful preparation of SPI-DG-MC complex will advance the application of soybean resource as a functional food ingredient.
Collapse
Affiliation(s)
- Dan Lei
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junsheng Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Corresponding authors.
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Corresponding authors.
| | - Feifei Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Nabil Grimi
- Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu – CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|
131
|
Wang Y, Yang C, Zhang J, Zhang L. Interaction between whey protein isolate and rose anthocyanin extracts at different pHs: Structure, emulsification and digestibility of complexes. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
132
|
Designing covalent sodium caseinate-quercetin complexes to improve emulsifying properties and oxidative stability. Food Res Int 2022; 160:111738. [DOI: 10.1016/j.foodres.2022.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
133
|
Wu K, Shi Z, Liu C, Su C, Zhang S, Yi F. Preparation of Pickering emulsions based on soy protein isolate-tannic acid for protecting aroma compounds and their application in beverages. Food Chem 2022; 390:133182. [DOI: 10.1016/j.foodchem.2022.133182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
|
134
|
Jiang B, Zhong S, Yu H, Chen P, Li B, Li D, Liu C, Feng Z. Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11715-11726. [PMID: 36095172 DOI: 10.1021/acs.jafc.2c03990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To investigate the effects of different binding modes on the structure, function, and digestive properties of the phosvitin (Pv) and gallic acid (GA) complex, Pv was covalently and noncovalently combined with different concentrations of GA (0.5, 1.5, and 2.5 mM). The structural characterization of the two Pv-GA complexes was performed by Fourier transform infrared, circular dichroism, and LC-MS/MS to investigate the covalent and noncovalent binding of Pv and GA. In addition, the microstructure of the two Pv-GA complexes was investigated by super-resolution microscopy and transmission electron microscopy. The particle size and zeta potential results showed that the addition of GA increased the particle size and the absolute potential of Pv. The determination of protein digestibility, polyphenol content, SH and S-S group levels, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and antioxidant capacity of the digests indicated that noncovalent complexes had greater antioxidant and protective effects on polyphenols. Molecular docking revealed that GA was conjugated with Pv through hydrogen bond interactions.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shaojing Zhong
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Hongliang Yu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Baoyun Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
135
|
Han S, Cui F, McClements DJ, Xu X, Ma C, Wang Y, Liu X, Liu F. Structural Characterization and Evaluation of Interfacial Properties of Pea Protein Isolate-EGCG Molecular Complexes. Foods 2022; 11:foods11182895. [PMID: 36141023 PMCID: PMC9498586 DOI: 10.3390/foods11182895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Highlights Pea protein isolate (PPI) and EGCG spontaneously formed complexes. Protein–polyphenol complexation was mainly driven by hydrogen bonding. The binding of EGCG influenced the structure and functionality of PPI. PPI-EGCG complexes had better emulsifier properties than PPI.
Abstract There is increasing interest in using plant-derived proteins in foods and beverages for environmental, health, and ethical reasons. However, the inherent physicochemical properties and functional performance of many plant proteins limit their widespread application. Here, we prepared pea protein isolate (PPI) dispersions using a combined pH-shift/heat treatment method, and then, prepared PPI-epigallocatechin-3-gallate (EGCG) complexes under neutral conditions. Spectroscopy, calorimetry, molecular docking, and light scattering analysis demonstrated that the molecular complexes formed spontaneously. This was primarily ascribed to hydrogen bonds and van der Waals forces. The complexation of EGCG caused changes in the secondary structure of PPI, including the reduction in the α-helix and increase in the β-sheet and disordered regions. These changes slightly decreased the thermal stability of the protein. With the accretion of EGCG, the hydrophilicity of the complexes increased significantly, which improved the functional attributes of the protein. Optimization of the PPI-to-EGCG ratio led to the complexes having better foaming and emulsifying properties than the protein alone. This study could broaden the utilization of pea proteins as functional ingredients in foods. Moreover, protein–polyphenol complexes can be used as multifunctional ingredients, such as antioxidants or nutraceutical emulsifiers.
Collapse
Affiliation(s)
- Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fengzhan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | | | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
136
|
Chen Y, Cao X, Chen Q, Ye X, Zeng Q, Yuan Y, Dong L, Huang F, Su D. Hydrogel With the Network Structure Fabricated by Anthocyanin‐Gelatin Crosslinking and Improved Mineral Encapsulation Ability. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xuejiao Cao
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qiqi Chen
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Xueying Ye
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| | - Lihong Dong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Fei Huang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou Guangdong 510006 China
| |
Collapse
|
137
|
Xu Q, Li X, Lv Y, Liu Y, Yin C. Effects of ultrasonic treatment on ovomucin: Structure, functional properties and bioactivity. ULTRASONICS SONOCHEMISTRY 2022; 89:106153. [PMID: 36088894 PMCID: PMC9474920 DOI: 10.1016/j.ultsonch.2022.106153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The effects of ultrasonic treatment on the structure, functional properties and bioactivity of Ovomucin (OVM) were investigated in this study. Ultrasonic treatment could significantly enhance OVM solubility without destroying protein molecules. The secondary structure changes, including β-sheet reduction and random coil increase, indicate more disorder in OVM structure. After ultrasonic treatment, the OVM molecule was unfolded partially, resulting in the exposure of hydrophobic regions. The changes in OVM molecules led to an increase in intrinsic fluorescence and surface hydrophobicity. By detecting the particle size of protein solution, it was confirmed that ultrasonic treatment disassembled the OVM aggregations causing a smaller particle size. Field emission scanning electron microscopy (FE-SEM) images showed that ultrasonic cavitation significantly reduced the tendency of OVM to form stacked lamellar structure. Those changes in structure resulted in the improvement of foaming, emulsification and antioxidant capacity of OVM. Meanwhile, the detection results of ELISA showed that ultrasonic treatment did not change the biological activity of OVM. These results suggested that the relatively gentle ultrasound treatment could be utilized as a potential approach to modify OVM for property improvement.
Collapse
Affiliation(s)
- Qi Xu
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China.
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yunzheng Lv
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chunfang Yin
- Institute of Advanced Cross-Field Science, College of Life Science, Qingdao University, Qingdao, Shandong Province 266800, China
| |
Collapse
|
138
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
139
|
Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Food Chem 2022; 387:132874. [DOI: 10.1016/j.foodchem.2022.132874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/10/2023]
|
140
|
Formation, Structure and stability of high internal phase Pickering emulsions stabilized by BSPI-C3G covalent complexes. Food Chem X 2022; 16:100455. [PMID: 36203951 PMCID: PMC9530839 DOI: 10.1016/j.fochx.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
The HIIPPE was stabilized by BSPI-C3G covalent particles. HIPPEs stabilized with 74% (v/v) oil phase fraction have a stable gel-like state. HIPPEs stability was the best with the 3 % (w/v) BSPI-C3G particle concentration.
Food-grade high internal phase Pickering emulsions (HIPPEs) are stabilized by protein-based particles, which have attracted extensive attention due to their good gel-like structure. The black soybean isolate protein/cyanidin-3-O-glucoside (BSPI-C3G) covalent particles were used as a particulate emulsifier to form stable HIPPEs with oil phase fractions (74 % v/v) and low particle concentrations (0.5 %–3 % w/v) The particle size distribution and microstructure demonstrated that the BSPI-C3G covalent particles acted as an interfacial layer and surrounded the oil droplets. As the concentration of BSPI-C3G particles increased from 0.5 % to 3 %, the droplet size, elasticity, antioxidant capacity of the heated or stored HIPPEs more stable. So, the HIPPEs had the best stability with the BSPI-C3G particle at 3 % (w/v) concentration. These findings may extend the application of BSPI and C3G in foods and provide the guidelines for the rational design of food-grade HIPPEs stabilized by protein/anthocyanin complexes.
Collapse
|
141
|
Zhao X, Zheng H, Sun Y, Zhang M, Geng M, Li Y, Teng F. Effect of enzymatic hydrolysis conditions on structure of soy protein isolate/gum arabic complex and stability of oil-in-water emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4830-4842. [PMID: 35229290 DOI: 10.1002/jsfa.11846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The emulsifying, antioxidant and foaming properties of soy protein isolate hydrolysates (SPH) can be improved by the addition of gum arabic (GA). We investigated the effects of different hydrolysis conditions on the complexation of SPH and GA, and the effects of the complex on the properties of emulsions. RESULTS Fluorescence spectroscopy showed that the addition of GA had a stronger effect on bromelain and pepsin hydrolysates than trypsin hydrolysate, and therefore had a higher binding constant (KA ) and a larger number of binding sites (n). The addition of GA could also improve protein solubility and emulsifying ability. The emulsions prepared with complexes, especially the complex of GA and SPH obtained by pepsin hydrolysis for 3 h, had a high absolute charge value, uniform particle size distribution, stable morphology, and good storage stability. After storage, the emulsification index (CI) of the emulsion only increased to 23.08%; its 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity was 24.37 ± 1.22% and its 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+ ) free radical scavenging activity was largely retained. CONCLUSION During long-term storage, pepsin-treated protein (especially protein treated for 3 h) and GA can form a stable emulsion with antioxidant properties. This work provides new ideas for the development of natural and safe emulsifiers that have antioxidant properties and can be stored long-term and used in the food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Zhao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meng Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
142
|
Dai Y, Yang R, Yan Y, Wu Y, Meng X, Yang A, Wu Z, Shi L, Li X, Chen H. Digestive stability and transport ability changes of β-lactoglobulin–catechin complexes by M cell model in vitro. Front Nutr 2022; 9:955135. [PMID: 36071941 PMCID: PMC9441877 DOI: 10.3389/fnut.2022.955135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
The current research on interaction between catechin and protein has focused on non-covalent crosslinking, however, the mechanism of free radical-induced crosslinking between catechin and β-lactoglobulin (BLG) is not known. In this study, BLG bound to four catechins [epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG)]. The structure change of complex was investigated by circular dichroism spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and Acid and 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence spectroscopy. M cell model was constructed to evaluate the transintestinal epithelial transport capacity of complex digestive products. The results showed that catechins were covalently bound to BLG by C-S and C-N bonds and their binding content was EGCG>EGC>ECG>EC. Moreover, catechins could change the secondary structure of BLG, with the decrease of α-helix and reduction of the irregular coilings, which leads to the loose spatial structure of the protein. Moreover, the catechin could enhance further the digestibility of BLG. Transport capacity of digestive products of M cell model was about twice of that of the Caco-2 cell model, indicating that M cell model had better antigen transport capacity. The difference between groups indicated that the transport efficiency of digestive products was decreased with the presence of catechin, in which BLG-EGCG and BLG-EGC groups were transported more strong than those of BLG-EC and BLG-ECG groups. The transport efficiency of BLG-catechin complexes were lower than that of BLG, indicating that catechin had the protective and repair roles on intestinal barrier permeability.
Collapse
Affiliation(s)
- Yan Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ruoting Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yuting Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
- *Correspondence: Xin Li,
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, China
| |
Collapse
|
143
|
Sun F, Li B, Guo Y, Wang Y, Cheng T, Yang Q, Liu J, Fan Z, Guo Z, Wang Z. Effects of ultrasonic pretreatment of soybean protein isolate on the binding efficiency, structural changes, and bioavailability of a protein-luteolin nanodelivery system. ULTRASONICS SONOCHEMISTRY 2022; 88:106075. [PMID: 35753139 PMCID: PMC9240864 DOI: 10.1016/j.ultsonch.2022.106075] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 μg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, β-sheet and random coil, increase β-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.
Collapse
Affiliation(s)
- Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jun Liu
- Kedong Yuwang Soybean Protein Food Co., Ltd, Qiqihaer, Heilongjiang 161000, China; Shandong Yuwang Industrial Co., Ltd, Dezhou, Shandong 251299, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd, Jiamusi, Heilongjiang 154007, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
144
|
Encapsulation of β-carotene in high internal phase Pickering emulsions stabilized by soy protein isolate – epigallocatechin-3-gallate covalent composite microgel particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
145
|
Lv D, Zhang L, Chen F, Yin L, Zhu T, Jie Y. Wheat bran arabinoxylan and bovine serum albumin conjugates: Enzymatic synthesis, characterization, and applications in O/W emulsions. Food Res Int 2022; 158:111452. [DOI: 10.1016/j.foodres.2022.111452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
|
146
|
Hao L, Sun J, Pei M, Zhang G, Li C, Li C, Ma X, He S, Liu L. Impact of non-covalent bound polyphenols on conformational, functional properties and in vitro digestibility of pea protein. Food Chem 2022; 383:132623. [PMID: 35413763 DOI: 10.1016/j.foodchem.2022.132623] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
This study investigated the effects of the non-covalent interaction of pea protein isolate (PPI) with epigallocatechin-3-gallate (EGCG), chlorogenic acid (CA) and resveratrol (RES) on the structural and functional properties of proteins. The conformational changes of the protein structure with EGCG, CA and RES were analyzed using fourier transform infrared spectroscopy. Polyphenols strongly quenched the intrinsic fluorescence of PPI mainly through static quenching. The main interaction force was hydrogen bonding and van der Waals forces for PPI-EGCG, the main interaction force of PPI-CA complex was electrostatic interaction, while RES and PPI were bound by hydrophobic interaction. Free sulfhydryl groups and surface hydrophobicity significantly decreased in PPI after binding with phenolic compounds. The presence of EGCG, CA and RES enhanced the emulsification, foaming and in vitro digestibility of PPI. These results illustrate the potential applications of PPI-polyphenol complexes in food formulations.
Collapse
Affiliation(s)
- Linlin Hao
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jinwei Sun
- Institute of Science and Technology Newhopedairy Co., Ltd, Chengdu 610011, China
| | - Mengqi Pei
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Research Institute, Harbin 150028, China
| | - Chunmei Li
- Heilongjiang Green Food Research Institute, Harbin 150028, China
| | - Xinkai Ma
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Sixuan He
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
147
|
Zhang Y, Hou R, Zhu B, Yin G, Zhang J, Zhao W, Zhang J, Li T, Zhang Z, Wang H, Li Z. Changes on the conformational and functional properties of soybean protein isolate induced by quercetin. Front Nutr 2022; 9:966750. [PMID: 35938098 PMCID: PMC9354261 DOI: 10.3389/fnut.2022.966750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The conformational changes and functional properties of SPI induced by quercetin was investigated via fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. A decrease in the fluorescence intensity and a blue shift in the maximum wavelength were observed due to the binding process with fluorescent residues. The analysis of Stern-Volmer equation showed that the fluorescence quenching induced by quercetin took the form of static quenching, and the binding stoichiometry between SPI and quercetin was 1:1. The values of ΔH and ΔS were both positive illustrating that hydrophobic interaction was the primary binding force between quercetin and SPI. Results of FTIR and CD indicated that the binding with quercetin changed the secondary structure of SPI, resulting in a partially unfolded and more flexible structure. SDS-PAGE confirmed there was no covalent interaction between the two constituents. Molecular docking demonstrated that there were stable configurations and high matching degrees in both 11S and 7S proteins with quercetin via hydrogen bonds and hydrophobic interactions. Meanwhile, modification by quercetin enhanced the foaming and emulsifying capacities of SPI. These findings might provide theory reference for elucidation the mechanism of polyphenols-proteins interaction and development of related food additive products in future.
Collapse
Affiliation(s)
- Yating Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiyang Hou
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangwei Yin
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqi Zhao
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junxi Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Taoran Li
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zifan Zhang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
148
|
Huang L, Jia S, Wu R, Chen Y, Ding S, Dai C, He R. The structure, antioxidant and antibacterial properties of thiol-modified soy protein isolate induced by allicin. Food Chem 2022; 396:133713. [PMID: 35868284 DOI: 10.1016/j.foodchem.2022.133713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
This study investigated the effect of allicin binding on the structure, antioxidant and antibacterial properties of soy protein isolate (SPI). Results showed that allicin bound to 82.6 % free thiol groups of SPI at a molar ratio of 0.5. The combination of allicin and SPI significantly affected the structure of protein. Result of circular dichroism showed that the content of α-helix decreased by 26.9 % and the content of β-sheet increased by 12.2 % over control when the molar ratio was 0.5. The result of surface hydrophobicity signified the unfolding of SPI with the action of allicin. These results implied that allicin binding might be a suitable method for the modification of SPI. Furthermore, the antibacterialand antioxidant experiments indicated that allicin-SPI conjugates not only had the capacity to inhibit the growth of Escherichia coli and Staphyloccocus aureus, but also had DPPH and ABTS radicals scavenging activities.
Collapse
Affiliation(s)
- Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Shifang Jia
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ruike Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yanyue Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Shuang Ding
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
149
|
Jia Y, Yan X, Huang Y, Zhu H, Qi B, Li Y. Different interactions driving the binding of soy proteins (7S/11S) and flavonoids (quercetin/rutin): Alterations in the conformational and functional properties of soy proteins. Food Chem 2022; 396:133685. [PMID: 35843004 DOI: 10.1016/j.foodchem.2022.133685] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/02/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this research was to comparatively investigate the interactions between bioactive flavonoids (quercetin and rutin) and two predominant soy proteins (β-conglycinin and glycinin), and the structural and functional properties of their complexes. The binding affinities of quercetin/rutin toward 7S/11S were structure-dependent, in that rutin had a higher binding affinity than that of quercetin, and 11S exhibited higher affinity toward quercetin/rutin than that of 7S. The interactions in the 7S/11S-quercetin complexes were driven by van der Waals forces and hydrogen-bonding interactions, whereas the 7S/11S-rutin complexes exhibited hydrophobic interactions. Binding to quercetin or rutin altered the secondary structures (decrease in the α-helix and random coil contents and increase in the β-sheet content), decreased the surface hydrophobicity and thermal stability, and enhanced the antioxidant capacity of 7S and 11S. These findings provide valuable information that can facilitate the design of custom-tailored protein-flavonoid macromolecules.
Collapse
Affiliation(s)
- Yijia Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Yan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China; National Research Center of Soybean Engineering and Technology, Harbin 150028, China
| | - Huaping Zhu
- Ministry of Science and Technology China Rural Technology Development Center, Beijing 100045, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China; National Research Center of Soybean Engineering and Technology, Harbin 150028, China.
| |
Collapse
|
150
|
Gao N, Tian J, Shu C, Tan H, Jiao X, Lang Y, Zang Z, Cui H, Li B. Protective effects and mechanism of amino acids as chokeberry cyanidin and its glycoside protectant under the condition of vitamin C coexistence. Food Chem 2022; 397:133783. [DOI: 10.1016/j.foodchem.2022.133783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/04/2022]
|