101
|
Ji J, Shankar S, Royon F, Salmieri S, Lacroix M. Essential oils as natural antimicrobials applied in meat and meat products-a review. Crit Rev Food Sci Nutr 2021; 63:993-1009. [PMID: 34309444 DOI: 10.1080/10408398.2021.1957766] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meat and meat products are highly susceptible to the growth of micro-organism and foodborne pathogens that leads to severe economic loss and health hazards. High consumption and a considerable waste of meat and meat products result in the demand for safe and efficient preservation methods. Instead of synthetic additives, the use of natural preservative materials represents an interest. Essential oils (EOs), as the all-natural and green-label trend attributing to remarkable biological potency, have been adopted for controlling the safety and quality of meat products. Some EOs, such as thyme, cinnamon, rosemary, and garlic, showed a strong antimicrobial activity individually and in combination. To eliminate or reduce the organoleptic defects of EOs in practical application, EOs encapsulation in wall materials can improve the stability and antimicrobial ability of EOs in meat products. In this review, meat deteriorations, antimicrobial capacity (components, effectiveness, and interactions), and mechanisms of EOs are reviewed, as well as the demonstration of using encapsulation for masking intense aroma and conducting control release is presented. The use of EOs individually or in combination and encapsulated applications of EOs in meat and meat products are also discussed.
Collapse
Affiliation(s)
- Jiali Ji
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Shiv Shankar
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Fiona Royon
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Stéphane Salmieri
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| |
Collapse
|
102
|
Lobato Rodrigues AB, Martins RL, Rabelo ÉDM, Tomazi R, Santos LL, Brandão LB, Faustino CG, Ferreira Farias AL, dos Santos CBR, de Castro Cantuária P, Galardo AKR, de Almeida SSMDS. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS One 2021; 16:e0254225. [PMID: 34242328 PMCID: PMC8270136 DOI: 10.1371/journal.pone.0254225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Ayapana triplinervis is a plant species used in traditional medicine and in mystical-religious rituals by traditional communities in the Amazon. The aim of this study are to develop a nano-emulsion containing essential oil from A. triplinervis morphotypes, to evaluate larvicidal activity against Aedes aegypti and acute oral toxicity in Swiss albino mice (Mus musculus). The essential oils were extracted by steam dragging, identified by gas chromatography coupled to mass spectrometry, and nano-emulsions were prepared using the low energy method. Phytochemical analyses indicated the major compounds, expressed as area percentage, β-Caryophyllene (45.93%) and Thymohydroquinone Dimethyl Ether (32.93%) in morphotype A; and Thymohydroquinone Dimethyl Ether (84.53%) was found in morphotype B. Morphotype A essential oil nano-emulsion showed a particle size of 101.400 ± 0.971 nm (polydispersity index = 0.124 ± 0.009 and zeta potential = -19.300 ± 0.787 mV). Morphotype B essential oil nano-emulsion had a particle size of 104.567 ± 0.416 nm (polydispersity index = 0.168 ± 0.016 and zeta potential = -27.700 ± 1.307 mV). Histomorphological analyses showed the presence of inflammatory cells in the liver of animals treated with morphotype A essential oil nano-emulsion (MAEON) and morphotype B essential oil nano-emulsion (MBEON). Congestion and the presence of transudate with leukocyte infiltration in the lung of animals treated with MAEON were observed. The nano-emulsions containing essential oils of A. triplinervis morphotypes showed an effective nanobiotechnological product in the chemical control of A. aegypti larvae with minimal toxicological action for non-target mammals.
Collapse
Affiliation(s)
| | - Rosany Lopes Martins
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Érica de Menezes Rabelo
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Rosana Tomazi
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lizandra Lima Santos
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Lethícia Barreto Brandão
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | - Cleidjane Gomes Faustino
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| | | | | | - Patrick de Castro Cantuária
- Amapaense Herbarium, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Sheylla Susan Moreira da Silva de Almeida
- Department of Exact and Technological Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- Department of Biological and Health Sciences, Federal University of Amapa, Macapá, Amapá, Brazil
| |
Collapse
|
103
|
Shi Z, Jiang Y, Sun Y, Min D, Li F, Li X, Zhang X. Nanocapsules of oregano essential oil preparation and characterization and its fungistasis on apricot fruit during shelf life. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zedong Shi
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Yaping Jiang
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Yingjie Sun
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Dedong Min
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Fujun Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| |
Collapse
|
104
|
Cineole-containing nanoemulsion: Development, stability, and antibacterial activity. Chem Phys Lipids 2021; 239:105113. [PMID: 34216586 DOI: 10.1016/j.chemphyslip.2021.105113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.
Collapse
|
105
|
Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Natural food antimicrobials and especially essential oils (EOs) possess strong antimicrobial activities that could play a remarkable role as a novel source of food preservatives. Despite the excellent efficacy of EOs, they have not been widely used in the food industry due to some major intrinsic barriers, such as low water solubility, bioavailability, volatility, and stability in food systems. Recent advances in nanotechnology have the potential to address these existing barriers in order to use EOs as preservatives in food systems at low doses. Thus, in this review, we explored the latest advances of using natural actives as antimicrobial agents and the different strategies for nanoencapsulation used for this purpose. The state of the art concerning the antibacterial properties of EOs will be summarized, and the main latest applications of nanoencapsulated antimicrobial agents in food systems will be presented. This review should help researchers to better choose the most suitable encapsulation techniques and materials.
Collapse
|
106
|
Pereira SF, Barroso A, Mourão RHV, Fernandes CP. A Low Energy Approach for the Preparation of Nano-Emulsions with a High Citral-Content Essential Oil. Molecules 2021; 26:molecules26123666. [PMID: 34208560 PMCID: PMC8234283 DOI: 10.3390/molecules26123666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pectis elongata is found in the northern and northeastern regions of Brazil. It is considered a lemongrass due to its citric scent. The remarkable citral content and the wide antimicrobial properties and bioactive features of this terpene make this essential oil (EO) eligible for several industrial purposes, especially in cosmetics and phytotherapics. However, to address the problems regarding citral solubility, nano-emulsification is considered a promising strategy thanks to its improved dispersability. Thus, in this paper we propose a low-energy approach for the development of citral-based nano-emulsions prepared with P. elongata EO. The plant was hydrodistillated to produce the EO, which was characterized with a gas chromatograph coupled to mass spectrometry. The nano-emulsion prepared by a non-heated water titrating (low-energy) method was composed of 5% (w/w) EO, 5% (w/w) non-ionic surfactants and 90% (w/w) deionized water and was analyzed by dynamic light scattering. Levels of citral of around 90% (neral:geranial—4:5) were detected in the EO and no major alteration in the ratio of citral was observed after the nano-emulsification. The nano-emulsion was stable until the 14th day (size around 115 nm and polydispersity index around 0.2) and no major alteration in droplet size was observed within 30 days of storage. Understanding the droplet size distribution as a function of time and correlating it to concepts of compositional ripening, as opposing forces to the conventional Ostwald ripening destabilization mechanism, may open interesting approaches for further industrial application of novel, low-energy, ecofriendly approaches to high citral essential oil-based nano-emulsions based on lemongrass plants.
Collapse
Affiliation(s)
- Suelen F. Pereira
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68903419, Amapá, Brazil;
- University of the State of Amapá, Macapá 68903419, Amapá, Brazil
- Laboratory of Phytopharmaceutical Nanobiotechnology, Federal University of Amapá, Macapá 68903419, Amapá, Brazil
| | - Adenilson Barroso
- Laboratory of Bioprospection and Experimental Biology, Oeste do Pará Federal University, Santarém 68040070, Pará, Brazil; (A.B.); (R.H.V.M.)
| | - Rosa H. V. Mourão
- Laboratory of Bioprospection and Experimental Biology, Oeste do Pará Federal University, Santarém 68040070, Pará, Brazil; (A.B.); (R.H.V.M.)
- Bionorte Post-Graduate Program (Network Program)–Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Oeste do Pará Federal University (Local Pole), Santarém 68040070, Pará, Brazil
| | - Caio P. Fernandes
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68903419, Amapá, Brazil;
- Laboratory of Phytopharmaceutical Nanobiotechnology, Federal University of Amapá, Macapá 68903419, Amapá, Brazil
- Correspondence:
| |
Collapse
|
107
|
Yadav A, Kumar A, Singh PP, Prakash B. Pesticidal efficacy, mode of action and safety limits profile of essential oils based nanoformulation against Callosobruchus chinensis and Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104813. [PMID: 33993954 DOI: 10.1016/j.pestbp.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The study explores the pesticidal efficacy, mode of action, and safety limit profile of essential oils-based formulation using the combination of Myristica fragrans (M), Bunium persicum (B), and Zanthoxylum alatum (Z) (1:1:1 v/v/v) and their nanoformulation (Ne-MBZ) against the Callosobruchus chinensis, Aspergillus flavus and aflatoxin B1 production. Linalool, γ-terpinene, and cuminaldehyde were identified as the major compounds of the formulation (MBZ) by Gas chromatography-mass spectrometry (GC-MS). Nanoencapsulation of developed formulation (Ne-MBZ) was prepared using chitosan and characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). The pesticidal efficacy of nanoformulation (Ne-MBZ) against C. chinensis IC50 (0.14 μl/ml), A. flavus (0.8 μl/ml) and AFB1 (0.8 μl/ml) was significantly higher in both in-vitro and in-situ conditions than the sum of their individual revealing a notable synergistic effect. Besides, the detailed mode of pesticidal action and safety limit profile were explored using biochemical, in-silico and ADMET (absorption, distribution, metabolism, excretion, and toxicity) approaches.
Collapse
Affiliation(s)
- Amrita Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
108
|
Fabrication and antibacterial evaluation of peppermint oil-loaded composite microcapsules by chitosan-decorated silica nanoparticles stabilized Pickering emulsion templating. Int J Biol Macromol 2021; 183:2314-2325. [PMID: 34087300 DOI: 10.1016/j.ijbiomac.2021.05.198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022]
Abstract
Novel peppermint oil (PO)-loaded composite microcapsules (CM) with hydroxypropyl methyl cellulose (HPMC)/chitosan/silica shells were effectively fabricated by PO Pickering emulsion, which were stabilized with chitosan-decorated silica nanoparticles (CSN). The surface modification of chitosan could improve the hydrophobicity of silica nanoparticles and favor their adsorption at the oil-water interface of PO Pickering emulsions. The microcapsule composite shells were formed dependent on the electrostatic adsorption of HPMC and CSN, and further subjected to spray-drying. The peppermint oil-loaded composite microcapsules with 100% HPMC as wall material (PO-CM@100%HPMC) seemed to be optimum formulation based on the prolonged release, acceptable entrapment efficiency (89.1%) and drug loading (25.5%). The PO-CM@100%HPMC could remarkably prolong the stability of PO. Moreover, the PO-CM@100%HPMC had a long-term antimicrobial activity (85.4%) against S. aureus and E. coli even after storage for 60 days. Therefore, the Pickering emulsions based microcapsules seemed to be a promising strategy for antibacterial application for PO.
Collapse
|
109
|
Battisti MA, Caon T, Machado de Campos A. A short review on the antimicrobial micro- and nanoparticles loaded with Melaleuca alternifolia essential oil. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
110
|
Quality parameters and oxidative stability of functional beef burgers fortified with microencapsulated cod liver oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
111
|
Essential oil nanoemulsions for the control of Clostridium sporogenes in cooked meat product: An alternative? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
112
|
Critical review on the use of essential oils against spoilage in chilled stored fish: A quantitative meta-analyses. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
113
|
Akhavan HR, Hosseini FS, Amiri S, Radi M. Cinnamaldehyde-Loaded Nanostructured Lipid Carriers Extend the Shelf Life of Date Palm Fruit. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02645-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
114
|
Combination Therapy Involving Lavandula angustifolia and Its Derivatives in Exhibiting Antimicrobial Properties and Combatting Antimicrobial Resistance: Current Challenges and Future Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9040609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.
Collapse
|
115
|
Singh PP, Jaiswal AK, Kumar A, Gupta V, Prakash B. Untangling the multi-regime molecular mechanism of verbenol-chemotype Zingiber officinale essential oil against Aspergillus flavus and aflatoxin B 1. Sci Rep 2021; 11:6832. [PMID: 33767280 PMCID: PMC7994644 DOI: 10.1038/s41598-021-86253-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Aflatoxin B1 (AFB1), the natural polyketide produced by Aspergillus flavus, has a potent carcinogenic effect on humans as well as animals. In the present study, the antifungal and anti-aflatoxigenic B1 activity of chemically characterized Zingiber officinale essential oil (ZOEO) was investigated via in vitro analysis aided with molecular dynamics (MD) approaches. The GC-MS results revealed verbenol (52.41%) as the major component of oil. The antifungal and anti-aflatoxigenic activity of ZOEO was found to be 0.6 µl/ml and 0.5 µl/ml respectively. In-vitro analysis targeting the cell membrane, mitochondria and carbohydrate catabolism elucidated the probable antifungal mode of action. Further, docking and MD simulation results confirmed the inhibitory action of verbenol on the structural gene products (Nor-1, Omt-1, and Vbs) of aflatoxin biosynthetic machinery. Biochemical assays revealed the fungitoxic potential of the ZOEO while, computational results infers the stabilizing effects on the gene products upon verbenol binding leads to the impairment in its functionality. This is the first attempt to assess the multi-regime anti-AFB1 mechanism of verbenol chemotype-ZOEO targeting the Nor-1, Omt-1, and Vbs via computational approaches.
Collapse
Affiliation(s)
- Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Atul Kumar Jaiswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
116
|
Pateiro M, Gómez B, Munekata PES, Barba FJ, Putnik P, Kovačević DB, Lorenzo JM. Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules 2021; 26:1547. [PMID: 33799855 PMCID: PMC7999092 DOI: 10.3390/molecules26061547] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The design of functional foods has grown recently as an answer to rising consumers' concerns and demands for natural, nutritional and healthy food products. Nanoencapsulation is a technique based on enclosing a bioactive compound (BAC) in liquid, solid or gaseous states within a matrix or inert material for preserving the coated substance (food or flavor molecules/ingredients). Nanoencapsulation can improve stability of BACs, improving the regulation of their release at physiologically active sites. Regarding materials for food and nutraceutical applications, the most used are carbohydrate-, protein- or lipid-based alternatives such as chitosan, peptide-chitosan and β-lactoglobulin nanoparticles (NPs) or emulsion biopolymer complexes. On the other hand, the main BACs used in foods for health promoting, including antioxidants, antimicrobials, vitamins, probiotics and prebiotics and others (minerals, enzymes and flavoring compounds). Nanotechnology can also play notable role in the development of programmable food, an original futuristic concept promising the consumers to obtain high quality food of desired nutritive and sensory characteristics.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (M.P.); (B.G.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Vigo, Ourense, Spain
| |
Collapse
|
117
|
Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
118
|
Kujur A, Kumar A, Prakash B. Elucidation of antifungal and aflatoxin B 1 inhibitory mode of action of Eugenia caryophyllata L. essential oil loaded chitosan nanomatrix against Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104755. [PMID: 33518049 DOI: 10.1016/j.pestbp.2020.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The present study investigated the novel antifungal, and anti-aflatoxin B1 mechanism of Eugenia caryophyllata L. essential oil (ECEO) loaded chitosan nanomatrix against the toxigenic strain of A. flavus (AFLV-DK-02). Phytochemical profiling of ECEO was done by GC-MS which revealed eugenol (73.6%) as the primary bioactive compound. ECEO was encapsulated inside the chitosan nanomatrix (ECEO-Np) and characterized using SEM, AFM, FTIR and XRD analysis. The ECEO-Np exhibited enhance antifungal (0.25 μL/mL) and anti-aflatoxin B1 inhibitory activity (0.15 μL/mL) than ECEO. Antifungal and antiaflatoxin B1 inhibitory activity was found to be related with impairment in the biological functioning of the plasma membrane (ergosterol synthesis, leakage of membrane ions, UV light (260, 280 nm) absorbing material, dead cell by propidium iodide assay, mitochondrial membrane potential (MMP), methylglyoxal and inhibition in essential carbon substrate utilization). ECEO-Np exhibited remarkable free radical scavenging activity with IC50 value of 0.002 μL/mL. ECEO-Np effectively preserves the sensory characteristics of exposed maize crop seed up to six months of storage and shows considerable safety profile (non-toxic, non-mutagenic, non-hepatotoxic, non-carcinogenic, non-tumorigenic and biodegradable) using computational ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis.
Collapse
Affiliation(s)
- Anupam Kujur
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akshay Kumar
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
119
|
Waghmare R, R P, Moses JA, Anandharamakrishnan C. Mucilages: sources, extraction methods, and characteristics for their use as encapsulation agents. Crit Rev Food Sci Nutr 2021; 62:4186-4207. [PMID: 33480265 DOI: 10.1080/10408398.2021.1873730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Collapse
Affiliation(s)
- Roji Waghmare
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Preethi R
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
120
|
Cecchini ME, Paoloni C, Campra N, Picco N, Grosso MC, Soriano Perez ML, Alustiza F, Cariddi N, Bellingeri R. Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial activity. Heliyon 2021; 7:e05896. [PMID: 33521347 PMCID: PMC7820482 DOI: 10.1016/j.heliyon.2021.e05896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Infectious diseases constitute a problem of great importance for animal and human health, as well as the increasing bacterial resistance to antibiotics. In this context, medicinal plants emerge as an effective alternative to replace the use antibiotics. The essential oil (EO) of Minthostachys verticillata (Griseb.) Epling (Lamiaceae) has demonstrated a strong antimicrobial activity. However, its instability and hydrophobicity under normal storage conditions are limitations to its use. Nanoemulsion technology is an excellent way to solubilize, microencapsulate, and protect this compound. This study aimed to obtain a nanoemulsion based on M. verticillata EO and evaluate its antibacterial activity against Staphylococcus aureus. The EO was obtained by steam distillation. Identification and quantification of their components were determined by GC-MS revealing that the dominated chemical group was oxygenated monoterpenes. Nanoemulsions (NE) were characterized by measuring pH, transmittance, separation percentage, release profile, and morphology. The effect of NE on the growth of S. aureus and cyto-compatibility was also evaluated. The results showed that NE containing a higher percentage of tween 20 exhibited higher stability with an approximated droplet size of 10 nm. The effect of encapsulation process was evaluated by GC-MS revealing that the volatile components in EO were no affected. After 24 h, 74.24 ± 0.75% of EO was released from NE and the antibacterial activity of EO was enhanced considerably by its encapsulation. The incubation of S. aureus with the NE and pure EO, show a bacterial growth inhibition of 58.87% ± 0.99 and 46.72% ± 3.32 (p < 0.05), respectively. In addition, nanoemulsión did not cause toxicity to porcine and equine red blood cells. The results obtained showed that NE could be a potential vehicle for M. verticillata EO with promissory properties to emerge as a tool for developing advanced therapies to control and combat infections.
Collapse
Affiliation(s)
- M E Cecchini
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - C Paoloni
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - N Campra
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - N Picco
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - M C Grosso
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - M L Soriano Perez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Marcos Juárez, Marcos Juárez, X2580, Córdoba, Argentina
| | - F Alustiza
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Marcos Juárez, Marcos Juárez, X2580, Córdoba, Argentina
| | - N Cariddi
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - R Bellingeri
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| |
Collapse
|
121
|
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, Bradshaw-Hajek BH, Krasowska M, Beattie DA. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021; 11:1690. [PMID: 33462270 PMCID: PMC7814039 DOI: 10.1038/s41598-020-79702-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
An antimicrobial peptide, nisin Z, was embedded within polyelectrolyte multilayers (PEMs) composed of natural polysaccharides in order to explore the potential of forming a multilayer with antimicrobial properties. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR), the formation of carrageenan/chitosan multilayers and the inclusion of nisin Z in two different configurations was investigated. Approximately 0.89 µg cm-2 nisin Z was contained within a 4.5 bilayer film. The antimicrobial properties of these films were also investigated. The peptide containing films were able to kill over 90% and 99% of planktonic and biofilm cells, respectively, against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) strains compared to control films. Additionally, surface topography and wettability studies using atomic force microscopy (AFM) and the captive bubble technique revealed that surface roughness and hydrophobicity was similar for both nisin containing multilayers. This suggests that the antimicrobial efficacy of the peptide is unaffected by its location within the multilayer. Overall, these results demonstrate the potential to embed and protect natural antimicrobials within a multilayer to create functionalised coatings that may be desired by industry, such as in the food, biomaterials, and pharmaceutical industry sectors.
Collapse
Affiliation(s)
- Jessie L Webber
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sławomir Drozdek
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Marta Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
122
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
123
|
Kumar A, Gupta V, Singh PP, Kujur A, Prakash B. Fabrication of volatile compounds loaded-chitosan biopolymer nanoparticles: Optimization, characterization and assessment against Aspergillus flavus and aflatoxin B 1 contamination. Int J Biol Macromol 2020; 165:1507-1518. [PMID: 33038402 DOI: 10.1016/j.ijbiomac.2020.09.257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
The study demonstrates the use of chitosan as a carrier agent of designed antifungal formulation (CME 4:1:1) based on a combination of plant compounds such as trans- cinnamaldehyde (C), methyl eugenol (M), and estragole (E). The formulation was encapsulated inside the chitosan biopolymer nanomatrix (Ne-CME) and characterized by SEM, FTIR, and XRD. The Ne-CME exhibited enhanced antifungal and aflatoxin B1 inhibitory effect compared to the individual compounds and unencapsulated form. Ne-CME (0.04 μl/ml) caused significant protection of Piper longum fruit from fungal (90.05%) and aflatoxin B1 (100%) contamination and had no significant negative effects on its nutritional properties. In addition, the probable antifungal mechanism of Ne-CME was investigated using in-silico (effect on Omt-1 and Vbs structural genes of AFB1 biosynthesis) and biochemical (perturbances in the cell membrane, carbohydrate catabolism, methyl-glyoxal, mitochondrial membrane potential, and antioxidant defense system) assay.
Collapse
Affiliation(s)
- Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anupam Kujur
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
124
|
Guo L, Fang YQ, Liang XR, Xu YY, Chen J, Li YH, Fang S, Meng YC. Influence of polysorbates (Tweens) on structural and antimicrobial properties for microemulsions. Int J Pharm 2020; 590:119939. [PMID: 33011247 DOI: 10.1016/j.ijpharm.2020.119939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 11/17/2022]
Abstract
Polysorbates (Tweens) are one of the most used excipients for essential oils encapsulation. In this work, the polysorbate based microemulsions (PMEs) for R-(+)-limonene (LMN) encapsulation were investigated for the structural and antimicrobial properties. PMEs were constructed using the pseudoternary phase diagrams, and then characterized for electrical conductivity, rheology, size distribution and particle geometry. Conductivity and rheological measurement results showed that Tween 80 and Tween 60 based microemulsions have identical phase transitions. Dynamic light scattering demonstrated that hydrodynamic diameters of oil-in-water microemulsions decreased from 30 nm to 25 nm during the dilution, while small-angle X-ray scattering indicated that their spherical geometries were maintained. PMEs exhibited enhanced antimicrobial efficiencies in vitro against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Interestingly, when Tween 80 was replaced by Tween 60, PME was observed more effective against S. aureus. The two PMEs structural analogues exhibited different antimicrobial efficiencies corresponding to the bioactivity of polysorbates. In conclusion, PMEs can be considered as a desirable system for LMN encapsulation to enhance its solubility and antimicrobial efficiency. Furthermore, the difference in the antimicrobial efficiency suggested that the choice of emulsifiers should be concerned to improve further applications.
Collapse
Affiliation(s)
- Liang Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ya-Qian Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xian-Rui Liang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310018, PR China
| | - Yu-Yan Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yan-Hua Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yue-Cheng Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
125
|
Pateiro M, Munekata PES, Sant'Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2020; 337:108966. [PMID: 33202297 DOI: 10.1016/j.ijfoodmicro.2020.108966] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
126
|
Lee JS, Choi YS, Lee HG. Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria. Food Sci Biotechnol 2020; 29:1597-1604. [PMID: 33088608 PMCID: PMC7561649 DOI: 10.1007/s10068-020-00803-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to improve the antimicrobial activity of natural extracts against oral bacteria by synergistic combination and nanoencapsulation. Among five natural antimicrobials: clove oil, thymol, naringin, naringenin, and licorice, clove oil and thymol were selected by comparing the antimicrobial activities against Streptococcus mutans and Streptococcus sobrinus before and after nanoencapsulation. The combination of clove oil and thymol (CLTY) was nanoencapsulated using chitosan and poly-γ-glutamic acid. While free CLTY showed additive and synergistic antimicrobial activity against S. mutans and S. sobrinus, respectively, CLTY nanoparticles (NPs) exhibited synergistic activity against both strains in a time-kill kinetic assay. CLTY NPs significantly decreased the growth of salivary S. mutans during testing, compared with free CLTY in the mouth rinse test. These results indicate that nanoencapsulation can significantly increase the synergistic antimicrobial activity of CLTY and maintain its antimicrobial activity in oral cavities for a longer time.
Collapse
Affiliation(s)
- Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Republic of Korea
| | - Ye Seul Choi
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 Republic of Korea
| |
Collapse
|
127
|
He Q, Guo M, Jin TZ, Arabi SA, Liu D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int J Food Microbiol 2020; 337:108936. [PMID: 33161345 DOI: 10.1016/j.ijfoodmicro.2020.108936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Development of novel and effective decontamination technologies to ensure the microbiological safety of fresh produce has gained considerable attention, mainly driven by numerous outbreaks. This work presented the first approach regarding to the application of the previously reported hurdle technologies on the sanitization of artificially contaminated cherry tomatoes. Thyme (Thymus daenensis) essential oil nanoemulsion (TEON, 8.28 nm in diameter with a narrow size distribution) was formulated via ultrasonic nanoemulsification, showing remarkably improved antimicrobial activity against Escherichia coli (E. coli) O157:H7, compared to the coarse emulsion. The antimicrobial effect of ultrasound (US), thyme essential oil nanoemulsion (TEON) and the combination of both treatments was assessed against E. coli O157:H7. The remarkable synergistic effects of the combined treatments were achieved, which decontaminated the E. coli populations by 4.49-6.72 log CFU/g on the surface of cherry tomatoes, and led to a reduction of 4.48-6.94 log CFU/sample of the total inactivation. TEON combined with US were effective in reducing the presence of bacteria in wastewater, which averted the potential detrimental effect of cross-contamination resulted from washing wastewater in fresh produce industry. Moreover, the treatments did not noticeably alter the surface color and firmness of cherry tomatoes. Therefore, ultrasound combined with TEON is a promising and feasible alternative for the reduction of microbiological contaminants, as well as retaining the quality characteristics of cherry tomatoes.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
128
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
129
|
Mihai AD, Chircov C, Grumezescu AM, Holban AM. Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. Int J Mol Sci 2020; 21:ijms21197355. [PMID: 33027980 PMCID: PMC7582471 DOI: 10.3390/ijms21197355] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) have attracted considerable interest in the past few years, with increasing evidence of their antibacterial, antiviral, antifungal, and insecticidal effects. However, as they are highly volatile, the administration of EOs to achieve the desired effects is challenging. Therefore, nanotechnology-based strategies for developing nanoscaled carriers for their efficient delivery might offer potential solutions. Owing to their biocompatibility, biodegradability, low toxicity, ability to target a tissue specifically, and primary structures that allow for the attachment of various therapeutics, magnetite nanoparticles (MNPs) are an example of such nanocarriers that could be used for the efficient delivery of EOs for antimicrobial therapies. The aim of this paper is to provide an overview of the use of EOs as antibacterial agents when coupled with magnetite nanoparticles (NPs), emphasizing the synthesis, properties and functionalization of such NPs to enhance their efficiency. In this manner, systems comprising EOs and MNPs could offer potential solutions that could overcome the challenges associated with biofilm formation on prosthetic devices and antibiotic-resistant bacteria by ensuring a controlled and sustained release of the antibacterial agents.
Collapse
Affiliation(s)
- Antonio David Mihai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.D.M.); (C.C.)
- Correspondence: or ; Tel.: +40-21-318-1000
| | - Alina Maria Holban
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest, Romania; or
| |
Collapse
|
130
|
Rupasinghe HPV, Davis A, Kumar SK, Murray B, Zheljazkov VD. Industrial Hemp ( Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020; 25:E4078. [PMID: 32906622 PMCID: PMC7571072 DOI: 10.3390/molecules25184078] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Industrial hemp (Cannabis sativa L., Cannabaceae) is an ancient cultivated plant originating from Central Asia and historically has been a multi-use crop valued for its fiber, food, and medicinal uses. Various oriental and Asian cultures kept records of its production and numerous uses. Due to the similarities between industrial hemp (fiber and grain) and the narcotic/medical type of Cannabis, the production of industrial hemp was prohibited in most countries, wiping out centuries of learning and genetic resources. In the past two decades, most countries have legalized industrial hemp production, prompting a significant amount of research on the health benefits of hemp and hemp products. Current research is yet to verify the various health claims of the numerous commercially available hemp products. Hence, this review aims to compile recent advances in the science of industrial hemp, with respect to its use as value-added functional food ingredients/nutraceuticals and health benefits, while also highlighting gaps in our current knowledge and avenues of future research on this high-value multi-use plant for the global food chain.
Collapse
Affiliation(s)
- H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Amy Davis
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Shanthanu K. Kumar
- Section of Horticulture, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA;
| | - Beth Murray
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (A.D.); (B.M.)
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, 431A Crop Science Building, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
131
|
Singh PP, Kumar A, Prakash B. Elucidation of antifungal toxicity of Callistemon lanceolatus essential oil encapsulated in chitosan nanogel against Aspergillus flavus using biochemical and in-silico approaches. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1520-1530. [DOI: 10.1080/19440049.2020.1775310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
132
|
Kujur A, Kumar A, Yadav A, Prakash B. Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
133
|
Cai L, Wang Y, Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luyun Cai
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Yaru Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Ailing Cao
- Zhejiang Academy of Science & Technology for Inspection and Quarantine Hangzhou Customs District Hangzhou China
| |
Collapse
|
134
|
Chaudhari AK, Singh VK, Das S, Deepika, Singh BK, Dubey NK. Antimicrobial, Aflatoxin B1 Inhibitory and Lipid Oxidation Suppressing Potential of Anethole-Based Chitosan Nanoemulsion as Novel Preservative for Protection of Stored Maize. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02479-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
135
|
Timbe PPR, Motta ADS, Isaía HA, Brandelli A. Polymeric nanoparticles loaded with
Baccharis dracunculifolia
DC essential oil: Preparation, characterization, and antibacterial activity in milk. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Palmira Penina Raúl Timbe
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Amanda de Souza Motta
- Departamento de Microbiologia, Imunologia e Parasitologia Instituto de Ciências Básicas da Saúde Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Henrique Ataíde Isaía
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
136
|
Trifan A, Luca SV, Greige-Gerges H, Miron A, Gille E, Aprotosoaie AC. Recent advances in tackling microbial multidrug resistance with essential oils: combinatorial and nano-based strategies. Crit Rev Microbiol 2020; 46:338-357. [DOI: 10.1080/1040841x.2020.1782339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Jdaidet El-Matn, Lebanon
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| | - Elvira Gille
- National Institute of Research & Development for Biological Sciences Bucuresti/Stejarul Biological Research Centre, Piatra Neamt, Romania
| | - Ana Clara Aprotosoaie
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, Romania
| |
Collapse
|
137
|
Kumar A, Singh PP, Gupta V, Prakash B. Assessing the antifungal and aflatoxin B 1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils. Int J Food Microbiol 2020; 330:108766. [PMID: 32659522 DOI: 10.1016/j.ijfoodmicro.2020.108766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023]
Abstract
The aim of the study was to explore the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation. Mixture design response surface methodology (RSM) was utilized to design the antifungal formulation (SBC 4:1:1) based on the combination of chemically characterized Ocimum sanctum (S), O. basilicum (B), and O. canum (C) against Aspergillus flavus. The SBC was incorporated inside the chitosan nanomatrix (Ne-SBC) using an ultrasonic probe (40 kHz) and interactions were confirmed by SEM, FTIR and XRD analysis. The results showed that the Ne-SBC possessed enhanced antifungal and aflatoxin B1 inhibitory effect over the free form of SBC. The biochemical and in silico results indicate that the antifungal and aflatoxin B1 inhibitory effect was related to perturbance in the plasma membrane function (ergosterol biosynthesis and membrane cation) mitochondrial membrane potential, C-sources utilization, antioxidant defense system, and the targeted gene products Erg 28, cytochrome c oxidase subunit Va, and Nor-1. In-situ observation revealed that Ne-SBC effectively protects the Avena sativa seeds from A. flavus and AFB1 contamination and preserves its sensory profile. The findings suggest that the fabrication of SBC inside the chitosan nano-matrix has promising use in the food industries as an antifungal agent.
Collapse
Affiliation(s)
- Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
138
|
Dehghani S, Noshad M, Rastegarzadeh S, Hojjati M, Fazlara A. Electrospun chia seed mucilage/PVA encapsulated with green cardamonmum essential oils: Antioxidant and antibacterial property. Int J Biol Macromol 2020; 161:1-9. [PMID: 32512085 DOI: 10.1016/j.ijbiomac.2020.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022]
Abstract
In this work, the potential of chia seed mucilage (CSM) as a new source of carbohydrate for encapsulation of green cardamonmum Essential oils (GCEOs) was evaluated. 1H NMR spectrum, FTIR spectrum and, SEM image has confirmed the existence of the GCEOs in the nanofibers. The nanofibers of CSM and polyvinyl alcohol have not antibacterial property, while nanofibers containing GCEOs show antibacterial activity against E. coli and S. aureus. Incorporating GCEOs in CSM nanofibers improved the antioxidant of the generated nanofibers. The amount of radical scavenging for the nanofibers containing 16 (mg/ml) of GCEOs was 18% and increasing the GCEOs concentration up to 64 (mg/ml) leads to grow the activity up to 41%. Thus, our studies indicate that nanofiber can be used as a novel antioxidant and antibacterial agent in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Samira Dehghani
- Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Noshad
- Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Saadat Rastegarzadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Hojjati
- Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
139
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|
140
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Nakisozi H, Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
141
|
Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
142
|
Kumar A, Pratap Singh P, Prakash B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr Polym 2020; 236:116050. [DOI: 10.1016/j.carbpol.2020.116050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 01/12/2023]
|
143
|
Mele E. Electrospinning of Essential Oils. Polymers (Basel) 2020; 12:E908. [PMID: 32295167 PMCID: PMC7240577 DOI: 10.3390/polym12040908] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/13/2023] Open
Abstract
The extensive and sometimes unregulated use of synthetic chemicals, such as drugs, preservatives, and pesticides, is posing big threats to global health, the environment, and food security. This has stimulated the research of new strategies to deal with bacterial infections in animals and humans and to eradicate pests. Plant extracts, particularly essential oils, have recently emerged as valid alternatives to synthetic drugs, due to their properties which include antibacterial, antifungal, anti-inflammatory, antioxidant, and insecticidal activity. This review discusses the current research on the use of electrospinning to encapsulate essential oils into polymeric nanofibres and achieve controlled release of these bioactive compounds, while protecting them from degradation. The works here analysed demonstrate that the electrospinning process is an effective strategy to preserve the properties of essential oils and create bioactive membranes for biomedical, pharmaceutical, and food packaging applications.
Collapse
Affiliation(s)
- Elisa Mele
- Materials Department, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
144
|
Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020; 9:foods9040433. [PMID: 32260398 PMCID: PMC7230466 DOI: 10.3390/foods9040433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, nutraceuticals based on antimicrobial ingredients (Artemisia absinthium water extract and essential oil (EO), Lactobacillus uvarum LUHS245 strain cultivated in a whey media, and blackcurrants juice (BCJ) preparation by-products were developed. In addition, two texture forming agents for nutraceutical preparations were tested (gelatin and agar). The developed nutraceutical ingredients showed antimicrobial properties: Artemisia absinthium EO (concentration 0.1%) inhibited methicillin-resistant Staphylococcus aureus, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Staphylococcus epidermidis, and Pasteurella multocida; LUHS245 strain inhibited 14 from the 15 tested pathogenic strains; and BCP inhibited 13 from the 15 tested pathogenic strains. The best formulation consisted of the Artemisia absinthium EO, LUHS245, and BCP immobilised in agar and this formulation showed higher TPC content (by 2.1% higher), as well as higher overall acceptability (by 17.7% higher), compared with the formulation prepared using gelatin.
Collapse
|
145
|
Esmaeili H, Cheraghi N, Khanjari A, Rezaeigolestani M, Basti AA, Kamkar A, Aghaee EM. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci 2020; 166:108135. [PMID: 32259681 DOI: 10.1016/j.meatsci.2020.108135] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
The efficacy of chitosan (CH) and whey protein (WP) films impregnated with garlic essential oil (GEO, 2% v/v) or nanoencapsulated GEO (NGEO, 2% v/v) to extend the shelf life of refrigerated vacuum-packed sausages were assessed and compared during 50 days. The primary evaluation of GEO and NGEO showed that GEO had a considerable amount of active compounds diallyl sulfide derivatives (~67%) and the mean size and zeta potential of NGEO were 101 nm and -7.27 mV, respectively. Based on the microbiological and lipid stability analysis of the sausages, all active films retarded lipid oxidation and the growth of main spoilage bacterial groups compared to the control, and CH film containing NGEO exhibited the best result with the peroxide value, thiobarbituric acid reactive substances and aerobic plate count of 0.37 (meq/kg lipid), 0.47 (mg malondialdehyde/kg) and 3.69 (log CFU/g), respectively, on day 50. The nanoencapsulation of GEO made no significant differences in the sensory properties comparing to free-GEO samples (P < .05).
Collapse
Affiliation(s)
- Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Narjes Cheraghi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Tehran Hamburger Company, Tehran, Iran
| | - Ali Khanjari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammadreza Rezaeigolestani
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran..
| | - Afshin Akhondzadeh Basti
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Kamkar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Department of Environmental Health, Division of Food Safety & Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
146
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
147
|
Becerril R, Nerín C, Silva F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020; 25:E1134. [PMID: 32138320 PMCID: PMC7179124 DOI: 10.3390/molecules25051134] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobially active packaging has emerged as an effective technology to reduce microbial growth in food products increasing both their shelf-life and microbial safety for the consumer while maintaining their quality and sensorial properties. In the last years, a great effort has been made to develop more efficient, long-lasting and eco-friendly antimicrobial materials by improving the performance of the incorporated antimicrobial substances. With this purpose, more effective antimicrobial compounds of natural origin such as bacteriocins, bacteriophages and essential oils have been preferred over synthetic ones and new encapsulation strategies such as emulsions, core-shell nanofibres, cyclodextrins and liposomes among others, have been applied in order to protect these antimicrobials from degradation or volatilization while trying to enable a more controlled release and sustained antimicrobial action. On that account, this article provides an overview of the types of antimicrobials agents used and the most recent trends on the strategies used to encapsulate the antimicrobial agents for their stable inclusion in the packaging materials. Moreover, a thorough discussion regarding the benefits of each encapsulation technology as well as their application in food products is presented.
Collapse
Affiliation(s)
- Raquel Becerril
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Cristina Nerín
- I3A–Aragón Institute of Engineering Research, University of Zaragoza, Calle María de Luna 3, 50018 Zaragoza, Spain; (R.B.); (C.N.)
| | - Filomena Silva
- ARAID–Agencia Aragonesa para la Investigación y el Desarollo, Av. de Ranillas 1-D, planta 2ª, oficina B, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
148
|
Jesser E, Lorenzetti AS, Yeguerman C, Murray AP, Domini C, Werdin-González JO. Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management. ULTRASONICS SONOCHEMISTRY 2020; 61:104832. [PMID: 31675660 DOI: 10.1016/j.ultsonch.2019.104832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Over the last years, nanotechnology has contributed to the development of new botanical insecticides formulations based on essential oils (EO), which are safe for the human health and the environment. Nanoemulsions (NEs) can enhance the bioactivity of the EO to prevent the premature volatility and degradation of the active ingredients. In our work, geranium EO (Geranium maculatum L.) was used to develop micro and nanoemulsions adding Tween 80 as surfactant. For NEs formulation, ultrasound was applied and the physicochemical and ultrasound parameters were optimized: oil: surfactant ratio = 1:2, ultrasound power = 65 W, sonication time = 2 min, cycles = 30 on/20 off and ultrasonic probe distance = 3.7 cm. The NEs obtained had 13.58 nm and polydisperse index (PDI) values of 0.069. They were stored at 25 °C and were stable for 60 days. The present study also demonstrated the potential of NEs to enhance the toxicity of geranium EO against larvae of Culex pipiens pipiens (EO LC50 = 80.97 ppm, NEs LC50 = 48.27 ppm) and Plodia interpunctella (EO + β-cypermethrin LD50 = 0.16 μg larvae-1, NEs + β-cypermethrin LD50 = 0.07 μg larvae-1). Overall, our findings pointed out that NEs can increase twofold the insecticidal efficacy of EO, and thus, they can be considered further for the development of botanical insecticides.
Collapse
Affiliation(s)
- E Jesser
- INBIOSUR-CONICET-Universidad Nacional del Sur, San Juan 670 (B8000CPB), Bahía Blanca, Buenos Aires 4785, Argentina; Laboratorio de Zoología de Invertebrados II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - A S Lorenzetti
- INQUISUR-CONICET-Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - C Yeguerman
- Laboratorio de Zoología de Invertebrados II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - A P Murray
- INQUISUR-CONICET-Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - C Domini
- INQUISUR-CONICET-Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - J O Werdin-González
- Laboratorio de Zoología de Invertebrados II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina; INQUISUR-CONICET-Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
149
|
Gonçalves da Rosa C, Zapelini de Melo AP, Sganzerla WG, Machado MH, Nunes MR, Vinicius de Oliveira Brisola Maciel M, Bertoldi FC, Manique Barreto PL. Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105339] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
150
|
Rodríguez-López MI, Mercader-Ros MT, Pellicer JA, Gómez-López VM, Martínez-Romero D, Núñez-Delicado E, Gabaldón JA. Evaluation of monoterpene-cyclodextrin complexes as bacterial growth effective hurdles. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|