101
|
Wang C, Hang H, Zhou S, Niu YD, Du H, Stanford K, McAllister TA. Bacteriophage biocontrol of Shiga toxigenic Escherichia coli (STEC) O145 biofilms on stainless steel reduces the contamination of beef. Food Microbiol 2020; 92:103572. [PMID: 32950157 DOI: 10.1016/j.fm.2020.103572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) can form biofilms and frequently cause serious foodborne illnesses. A strain of STEC O145:H25 (EC19990166) known to be a strong biofilm former was used to evaluate the efficacy of bacteriophage AZO145A against biofilms formed on stainless steel (SS) coupons. Exposure of STEC O145:H25 to phage AZO145A (1010 PFU/mL) for 2 h resulted in a 4.0 log10 reduction (P < 0.01) of planktonic cells grown in M9 broth at 24 °C for 24 h, while reductions were 2.0 log10 CFU/mL if these cells were grown for 48 h or 72 h prior to phage treatment. STEC O145 biofilms formed on SS coupons for 24, 48 and 72 h were reduced (P < 0.01) 2.9, 1.9 and 1.9 log10 CFU/coupon by phages. STEC O145 cells in biofilms were readily transferred from the surface of the SS coupon to beef (3.6 log10 CFU/coupon) even with as little as 10 s of contact with the meat surface. However, transfer of STEC O145 cells from biofilms that formed on SS coupons for 48 h to beef was reduced (P < 0.01) by 3.1 log10 CFU by phage (2 × 1010 PFU/mL) at 24 °C. Scanning electron microscopy revealed that bacterial cells within indentations on the surface of SS coupons were reduced by phage. These results suggest that bacteriophage AZO145A could be effective in reducing the viability of biofilm-adherent STEC O145 on stainless steel in food industry environments.
Collapse
Affiliation(s)
- Changbao Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China.
| | - Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Hechao Du
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
102
|
Guo Y, Liu Y, Zhang Z, Chen M, Zhang D, Tian C, Liu M, Jiang G. The Antibacterial Activity and Mechanism of Action of Luteolin Against Trueperella pyogenes. Infect Drug Resist 2020; 13:1697-1711. [PMID: 32606820 PMCID: PMC7293968 DOI: 10.2147/idr.s253363] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/16/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose This research aimed to investigate the antibacterial activity and potential mechanism of luteolin against T. pyogenes. Materials and Methods The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of luteolin against various T. pyogenes strains. The potential mechanism of action of luteolin was elucidated through testing and analysing the luteolin-induced alterations of T. pyogenes in several aspects, including cell wall, cell membrane, protein expression, nucleic acid content, topoisomerase activity and energy metabolism. Results The MIC values of luteolin against various T. pyogenes isolates and ATCC19411 were 78 µg/mL. The increased cell membrane permeability, destruction of cell wall integrity and TEM images after exposure to luteolin showed that the cell wall and membrane were damaged. The content of total protein and nucleic acid in T. pyogenes decreased significantly after treatment with luteolin (1/2 MIC) for 12, 24, and 36 h. Moreover, a hypochromic effect was observed in the absorption spectrum of luteolin when deoxyribonucleic acid (DNA) was added. In addition, after treatment with luteolin, a decrease in nicked or relaxed DNA content, which was catalysed by T. pyogenes-isolated DNA topoisomerase, was observed. In addition, the adenosine triphosphate (ATP) content in cells and the activity of succinate dehydrogenase (SDH) both decreased when T. pyogenes was exposed to different concentrations (1/4 MIC, 1/2 MIC, 1 MIC, 2 MIC) of luteolin for 1 h. Conclusion Luteolin showed distinct antibacterial activity against T. pyogenes by multiple actions, which mainly include destroying the integrity of the cell wall and cell membrane, influencing the expression of proteins, inhibiting nucleic acid synthesis, and interfering with energy metabolism.
Collapse
Affiliation(s)
- Yuru Guo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Yan Liu
- Dalian Sanyi Animal Medicine Co., Ltd., Dalian, Liaoning, People's Republic of China
| | - Zehui Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Menghan Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Dexian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Guotuo Jiang
- Dalian Sanyi Animal Medicine Co., Ltd., Dalian, Liaoning, People's Republic of China
| |
Collapse
|
103
|
Yurong G, Dapeng L. Preparation and characterization of corn starch/PVA/glycerol composite films incorporated with ε-polylysine as a novel antimicrobial packaging material. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCorn starch/polyvinyl alcohol (PVA)/glycerol composite films incorporated with ε-polylysine were prepared, and their properties were investigated. The Fourier-transform infrared (FTIR) spectroscopy indicated that the interactions happened between the amino group of ε-polylysine and hydroxyl group starch/PVA composite films. X-ray diffraction (XRD) analysis showed that the addition of ε-polylysine decreased the intensity of all crystal peaks. Thermogravimetric (TGA) analysis suggested that ε-polylysine improved the thermal stability of composite films. Scanning electron microscopic (SEM) analysis showed that the upper surface of composite films incorporated with ε-polylysine presented more compact and flat surface. The antimicrobial activity of the composite film progressively increased with the increasing of ε-polylysine concentration (P < 0.05). The tensile strength, elongation at break and water absorption significantly increased, whereas water solubility decreased with the increasing of ε-polylysine concentration (P < 0.05). Therefore, the corn starch/PVA/glycerol composite films incorporated with ε-polylysine had good mechanical, physical and antimicrobial properties and could have potential application as a novel antimicrobial packaging material.
Collapse
Affiliation(s)
- Gao Yurong
- Chemistry and Material Engineering College of Chaohu University, Hefei 238000, Anhui Province, China
| | - Li Dapeng
- Chemistry and Material Engineering College of Chaohu University, Hefei 238000, Anhui Province, China
| |
Collapse
|
104
|
Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium. Appl Microbiol Biotechnol 2020; 104:5427-5436. [PMID: 32307570 DOI: 10.1007/s00253-020-10575-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/22/2020] [Indexed: 01/08/2023]
Abstract
The pathogenicity of Salmonella Typhimurium, a foodborne pathogen, is mainly attributed to its ability to form biofilm on food contact surfaces. ε-polylysine, a polymer of positively charged lysine, is reported to inhibit biofilm formation of both gram-positive and gram-negative bacteria. To elucidate the mechanism underlying ε-polylysine-mediated inhibition of biofilm formation, the transcriptional profiles of ε-polylysine-treated and untreated Salmonella Typhimurium cells were comparatively analysed. The genome-wide DNA microarray analysis was performed using Salmonella Typhimurium incubated with 0.001% ε-polylysine in 0.1% Bacto Soytone at 30 °C for 2 h. The expression levels of genes involved in curli amyloid fibres and cellulose production, quorum sensing, and flagellar motility were downregulated, whereas those of genes associated with colanic acid synthesis were upregulated after treatment with ε-polylysine. The microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, treatment with ε-polylysine decreased the production of colanic acid in Salmonella Typhimurium. The findings of this study improved our understanding of the mechanisms underlying ε-polylysine-mediated biofilm inhibition and may contribute to the development of new disinfectants to control biofilm during food manufacturing and storage.
Collapse
|
105
|
Cui H, Zhang C, Li C, Lin L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
106
|
Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
107
|
Liu JN, Chang SL, Xu PW, Tan MH, Zhao B, Wang XD, Zhao QS. Structural Changes and Antibacterial Activity of Epsilon-poly-l-lysine in Response to pH and Phase Transition and Their Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1101-1109. [PMID: 31904947 DOI: 10.1021/acs.jafc.9b07524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ε-Poly-l-lysine (ε-PL) consists of 25-35 lysine residues which are linked by an isopeptide bond formed by dehydration condensation of α-carboxyl and ε-amino groups and has good antibacterial activity and broad-spectrum inhibition range. However, there is no clear conclusion about the structure and antibacterial mechanism of ε-PL in aqueous solution. Herein, a high purity of ε-PL was prepared using Amberlite IRC-50 ion-exchange resin. Membrane filtration and dynamic light scattering were used to study the variations of ε-PL aggregation in aqueous solution with pH value. The conformational changes and antibacterial activities of ε-PL and carbamoylated ε-PL in different water environments were studied with circular dichroism (CD) and inhibition zone. The structural changes during the spray-drying process were determined by Fourier transform infrared spectroscopy. The results indicated that the side chain amino charge played a decisive role in the ε-PL conformation and aggregation. ε-PL exhibited the properties of a β-sheet during spray drying from acidic liquids to solids. The cation enhanced the antibacterial activity of ε-PL but did not play a key role. Instead, the backbone of ε-PL might determine the mechanism of ε-PL antibacterial.
Collapse
Affiliation(s)
- Jia-Ning Liu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Sen-Lin Chang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ming-Hui Tan
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiao-Dong Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R.China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
108
|
Razavi R, Tajik H, Moradi M, Molaei R, Ezati P. Antimicrobial, microscopic and spectroscopic properties of cellulose paper coated with chitosan sol-gel solution formulated by epsilon-poly-l-lysine and its application in active food packaging. Carbohydr Res 2020; 489:107912. [PMID: 31978746 DOI: 10.1016/j.carres.2020.107912] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Cellulose paper-chitosan (CC) double-layer films containing epsilon-poly-l-lysine (ε-PL) (0.5 and 1% w/v) were developed. FTIR analysis showed a strong association between the ε-PL and CC film. Antimicrobial activity against Listeria monocytogenes was investigated both in vitro and in the chicken breast meat. The CC films without ε-PL showed no antimicrobial activity, while the addition of ε-PL induced significant (p < 0.05) effects. During the 28 days of storage at 4 °C, no significant difference was found on the anti-listeria activity of films. When storage temperature was raised from 4 to 22 °C, the antimicrobial activity was reduced. Films containing 1% ε-PL exhibited 1.5 log10 CFU/g reduction in L. monocytogenes population during 12 days storage of meat at 4 °C, while no significant reduction was found in CC films with 0.5% ε-PL (p > 0.05). This study revealed an antimicrobial activity for CC films impregnated with ε-PL, to control foodborne pathogens in meat.
Collapse
Affiliation(s)
- Roghayieh Razavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran.
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| | - Parya Ezati
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azarbaijan, Iran
| |
Collapse
|
109
|
Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2019; 25:molecules25010033. [PMID: 31861877 PMCID: PMC6982812 DOI: 10.3390/molecules25010033] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
Limonene is a monoterpenoid compound, which is founded in a lot of plants’ essential oils with good antibacterial activity against food-borne pathogens, but it has an ambiguous antimicrobial susceptibility and mechanism against Listeria monocytogenes (L. monocytogenes). In this study, the antimicrobial susceptibility of Limonene to L. monocytogenes was studied, and some new sights regarding its antibacterial mechanism were further explored. Scanning electron microscopy (SEM) verified that limonene caused the destruction of the cell integrity and wall structure of L. monocytogenes. The increase in conductivity and the leakage of intracellular biomacromolecules (nucleic acids and proteins) confirmed that limonene had an obvious effect on cell membrane permeability. The results of Propidium Iodide (PI) fluorescence staining were consistent with the results of the conductivity measurements. This indicated that limonene treatment caused damage to the L. monocytogenes cell membrane. Furthermore, the decrease in ATP content, ATPase (Na+K+-ATPase, Ca2+-ATPase) activity and respiratory chain complex activity indicated that limonene could hinder ATP synthesis by inhibiting the activity of the respiratory complex and ATPase. Finally, differential expression of proteins in the respiratory chain confirmed that limonene affected respiration and energy metabolism by inhibiting the function of the respiratory chain complex.
Collapse
|
110
|
Cui H, Chen X, Bai M, Han D, Lin L, Dong M. Multipathway Antibacterial Mechanism of a Nanoparticle-Supported Artemisinin Promoted by Nitrogen Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47299-47310. [PMID: 31797661 DOI: 10.1021/acsami.9b15124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artemisinin has excellent antimalarial, antiparasitic, and antibacterial activities; however, the poor water solubility of artemisinin crystal limits their application in antibiosis. Herein, artemisinin crystal was first composited with silica nanoparticles (SNPs) to form an artemisinin@silica nanoparticle (A@SNP). After treating with nitrogen plasma, the aqueous solubility of plasma-treated A@SNP (A@SNP-p) approaches 42.26%, which is possibly attributed to the exposure of hydrophilic groups such as -OH groups on the SNPs during the plasma process. Compared with the pristine A@SNP, the antibacterial activity of A@SNP-p against both Gram-positive and Gram-negative strains is further enhanced, and its bactericidal rate against both strains exceeded 6 log CFU/mL (>99.9999%), which is contributed by the increased water solubility of the A@SNP-p. A possible multipathway antibacterial mechanism of A@SNP was proposed and preliminarily proved by the changes of intracellular materials of bacteria and the inhibition of bacterial metabolism processes, including the HMP pathway in Gram-negative strain and EMP pathway in Gram-positive strain, after treating with A@SNP-p. These findings from the present work will provide a new view for fabricating artemisinin-based materials as antibiotics.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food & Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Xiaochen Chen
- Interdisciplinary Nanoscience Center, Sino-Danish Center for Education and Research , Aarhus University , Aarhus 8000 , Denmark
| | - Mei Bai
- School of Food & Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Dong Han
- National Center for Nanoscience and Technology , Beijing , China 100190
| | - Lin Lin
- School of Food & Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Sino-Danish Center for Education and Research , Aarhus University , Aarhus 8000 , Denmark
| |
Collapse
|
111
|
Synergistic efficacy of pulsed magnetic fields and Litseacubeba essential oil treatment against Escherichia coli O157:H7 in vegetable juices. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
112
|
Kang JH, Song KB. Antibacterial activity of the noni fruit extract against Listeria monocytogenes and its applicability as a natural sanitizer for the washing of fresh-cut produce. Food Microbiol 2019; 84:103260. [PMID: 31421758 DOI: 10.1016/j.fm.2019.103260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
This study was conducted to investigate the antibacterial activity of the noni fruit extract (NFE) against Listeria monocytogenes (ATCC, 19111 and 19115) and assess its applicability for the washing of fresh-cut produce. Based on the results of the disc diffusion test, L. monocytogenes (ATCC, 19111 and 19115) was susceptible to the activity of NFE than other pathogens studied. Additionally, results of the time-kill assay indicated that NFE at a concentration of 0.5-0.7% effectively killed L. monocytogenes within 7 h. Furthermore, analysis of the intracellular components such as nucleic acids and proteins released from the bacterial cells and their SEM imaging revealed that NFE could increase the membrane permeability of cells resulting in their death. Compared to their unwashed samples, washing of romaine lettuce, spinach, and kale with 0.5% NFE gave a reduction of 1.47, 2.28, and 3.38 log CFU/g, respectively against L. monocytogenes (ATCC, 19111 and 19115), which is significantly different to that of NaOCl. A significant correlation was observed between the antibacterial effect induced due to NFE washing with the surface roughness of the fresh-cut produce than its surface hydrophobicity. Moreover, washing with NFE was not found to affect the color of the samples. These results indicated that NFE demonstrates good antibacterial activity against L. monocytogenes and can be used as a natural sanitizer to ensure the microbiological safety of fresh-cut produce.
Collapse
Affiliation(s)
- Ji-Hoon Kang
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung Bin Song
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
113
|
Lin L, Wang X, Li C, Cui H. Inactivation mechanism of E. coli O157:H7 under ultrasonic sterilization. ULTRASONICS SONOCHEMISTRY 2019; 59:104751. [PMID: 31473421 DOI: 10.1016/j.ultsonch.2019.104751] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 05/09/2023]
Abstract
Ultrasonic sterilization (US), as a promising non-thermal sterilization method, exhibits unique superiorities than traditional sterilization methods. In this study, the inactivation mechanism of E. coli O157:H7 under US was investigated in cucumber and bitter gourd vegetable juices. Results revealed that the US treatment showed good antibacterial ability in countering E. coli O157:H7. Through determinations of conductivity and β-galactosidase activity, significant augmentation in membrane permeability of the bacteria was confirmed after the US treatment. The morphologies of the US treated E. coli O157:H7 demonstrated that the integrity of the cell membrane was disrupted by US treatment. SDS-PAGE and LSCM data further proved the disruptive action of US, leading to the leakage of proteins and DNA through the breakage on cell membrane. The decrease of metabolic-related enzyme activity was verified through investigation of bacterial metabolism. The antibacterial mechanism analysis indicated that the US can generate free radicals which resulted in the rise of intracellular oxidative stress, attenuation of energy metabolism and inhibition of hexose monophosphate pathway. As the application verification, the US treatment can cause the deprivation of E. coli O157:H7 cell viability in vegetable juices without obvious impact on the sensory quality.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinlei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
114
|
ε-Polylysine Inhibits Shewanella putrefaciens with Membrane Disruption and Cell Damage. Molecules 2019; 24:molecules24203727. [PMID: 31623152 PMCID: PMC6832906 DOI: 10.3390/molecules24203727] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
ε-Polylysine (ε-PL) was studied for the growth inhibition of Shewanella putrefaciens (S. putrefaciens). The minimal inhibitory concentration (MIC) of ε-PL against S. putrefaciens was measured by the broth dilution method, while the membrane permeability and metabolism of S. putrefaciens were assessed after ε-PL treatment. Additionally, growth curves, the content of alkaline phosphatase (AKP), the electrical conductivity (EC), the UV absorbance and scanning electron microscope (SEM) data were used to study cellular morphology. The impact of ε-PL on cell metabolism was also investigated by different methods, such as enzyme activity (peroxidase [POD], catalase [CAT], succinodehydrogenase [SDH] and malic dehydrogenase [MDH]) and cell metabolic activity. The results showed that the MIC of ε-PL against S. putrefaciens was 1.0 mg/mL. When S. putrefaciens was treated with ε-PL, the growth of the bacteria was inhibited and the AKP content, electrical conductivity and UV absorbance were increased, which demonstrated that ε-PL could damage the cell structure. The enzyme activities of POD, CAT, SDH, and MDH in the bacterial solution with ε-PL were decreased compared to those in the ordinary bacterial solution. As the concentration of ε-PL was increased, the enzyme activity decreased further. The respiratory activity of S. putrefaciens was also inhibited by ε-PL. The results suggest that ε-PL acts on the cell membrane of S. putrefaciens, thereby increasing membrane permeability and inhibiting enzyme activity in relation to respiratory metabolism and cell metabolism. This leads to inhibition of cell growth, and eventually cell death.
Collapse
|
115
|
Niaz T, Ihsan A, Abbasi R, Shabbir S, Noor T, Imran M. Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. Int J Biol Macromol 2019; 138:1006-1018. [DOI: 10.1016/j.ijbiomac.2019.07.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
116
|
Lin L, Liao X, Cui H. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100337] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
117
|
Lin L, Agyemang K, Abdel‐Samie MA, Cui H. Antibacterial mechanism of
Tetrapleura tetraptera
extract against
Escherichia coli
and
Staphylococcus aureus
and its application in pork. J Food Saf 2019. [DOI: 10.1111/jfs.12693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Lin
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| | - Kwabena Agyemang
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| | | | - Haiying Cui
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| |
Collapse
|
118
|
Tuersuntuoheti T, Wang Z, Wang Z, Liang S, Li X, Zhang M. Review of the application of ε‐poly‐L‐lysine in improving food quality and preservation. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14153] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| | - Zhenhua Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| | - Ziyuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| | - Xinping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University Beijing China
| |
Collapse
|
119
|
Xiao XN, Wang F, Yuan YT, Liu J, Liu YZ, Yi X. Antibacterial Activity and Mode of Action of Dihydromyricetin from Ampelopsis grossedentata Leaves against Food-Borne Bacteria. Molecules 2019; 24:molecules24152831. [PMID: 31382605 PMCID: PMC6695662 DOI: 10.3390/molecules24152831] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Dihydromyricetin (DMY) has recently attracted increased interest due to its considerable health-promoting activities but there are few reports on its antibacterial activity and mechanism. In this paper, the activity and mechanisms of DMY from Ampelopsis grossedentata leaves against food-borne bacteria are investigated. Moreover, the effects of pH, thermal-processing, and metal ions on the antibacterial activity of DMY are also evaluated. The results show that DMY exhibits ideal antibacterial activity on five types of food-borne bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella paratyphi, and Pseudomonas aeruginosa). The activities of DMY against bacteria are extremely sensitive to pH, thermal-processing, and metal ions. The morphology of the tested bacteria is changed and damaged more seriously with the exposure time of DMY. Furthermore, the results of the oxidative respiratory metabolism assay and the integrity of the cell membrane and wall tests revealed that the death of bacteria caused by DMY might be due to lysis of the cell wall, leakage of intracellular ingredients, and inhibition of the tricarboxylic acid cycle (TCA) pathway.
Collapse
Affiliation(s)
- Xiao-Nian Xiao
- OAI Sino-German United Research Institute, Nanchang University, Nanchang 330047, Jiangxi Province, China
| | - Fan Wang
- OAI Sino-German United Research Institute, Nanchang University, Nanchang 330047, Jiangxi Province, China
| | - Yi-Ting Yuan
- Sino-German Food Engineering Center, Nanchang University, Nanchang 330047, Jiangxi Province, China
| | - Jing Liu
- OAI Sino-German United Research Institute, Nanchang University, Nanchang 330047, Jiangxi Province, China
| | - Yue-Zhen Liu
- OAI Sino-German United Research Institute, Nanchang University, Nanchang 330047, Jiangxi Province, China
| | - Xing Yi
- Sino-German Food Engineering Center, Nanchang University, Nanchang 330047, Jiangxi Province, China.
| |
Collapse
|
120
|
Lin L, Gu Y, Sun Y, Cui H. Characterization of chrysanthemum essential oil triple-layer liposomes and its application against Campylobacter jejuni on chicken. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
121
|
Tan Z, Shi Y, Xing B, Hou Y, Cui J, Jia S. The antimicrobial effects and mechanism of ε-poly-lysine against Staphylococcus aureus. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0246-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
122
|
Lee HW, Yoon SR, Lee HM, Lee JY, Kim SH, Ha JH. Use of RT-qPCR with combined intercalating dye and sodium lauroyl sarcosinate pretreatment to evaluate the virucidal activity of halophyte extracts against norovirus. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
123
|
Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2018.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
124
|
Cai R, Miao M, Yue T, Zhang Y, Cui L, Wang Z, Yuan Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid againstAlicyclobacillus acidoterrestrisvegetative cells in apple juice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Miao Miao
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Yijun Zhang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Lu Cui
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Zhouli Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| |
Collapse
|
125
|
Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int J Food Microbiol 2018; 292:21-30. [PMID: 30553179 DOI: 10.1016/j.ijfoodmicro.2018.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
Abstract
This study was aimed to develop novel antibacterial packaging materials in order to reduce the microbial contamination of food surface. Chrysanthemum essential oil (CHEO) was successfully incorporated into chitosan nanofibers (CS/NF) through electrospinning which was demonstrated by SEM and AFM analysis. The antibacterial mechanism of CHEO against Listeria monocytogenes (L. monocytogenes) was explored as well. The cell membrane permeability of L. monocytogenes appeared to be increased by CHEO. In addition, respiratory metabolism of L. monocytogenes was inhibited by CHEO through the inhibition of the Embden-Meyerhof-Parnas (EMP) pathway. The presence of CHEO had a negative effect on the activity of hexokinase, phosphofructokinase and pyruvate kinase in L. monocytogenes cells. Release efficiency study indicated that the CHEO could be released slowly from CHEO/CS/NF to achieve long-lasting antibacterial effect. The antibacterial application of the CHEO nanofibers against L. monocytogenes was tested on beef, with an inhibition rate of 99.91%, 99.97%, and 99.95% at the temperature of 4 °C, 12 °C and 25 °C, respectively, after 7 days of storage. Beef parameters like thiobarbituric acid reactive substances (TBARS), pH values, and texture at different storage temperatures (4 °C, 12 °C and 25 °C) were evaluated as well. Due to the presence of antioxidant components in CHEO released from CHEO/CS/NF, the TBARS value in treated beef was 0.135 MDA/kg lower (P < 0.05) than the untreated sample at 4 °C after 12 days. PH value assay indicated that PH value of beef sample packed with CHEO/CS/NF (6.43) was lower than unpacked sample (7.05) at 4 °C after 10 days of storage. These obtained results all illustrated the fact that CHEO/CS/NF could prolong the shelf-life of beef, suggesting a potential application in food packaging.
Collapse
|
126
|
Lin L, Gu Y, Cui H. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
127
|
|
128
|
Tan Z, Bo T, Guo F, Cui J, Jia S. Effects of ε-Poly-l-lysine on the cell wall of Saccharomyces cerevisiae and its involved antimicrobial mechanism. Int J Biol Macromol 2018; 118:2230-2236. [DOI: 10.1016/j.ijbiomac.2018.07.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 01/08/2023]
|
129
|
Cui H, Bai M, Sun Y, Abdel-Samie MAS, Lin L. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|