101
|
Effect of tannic acid-grafted chitosan coating on the quality of fresh pork slices during cold storage. Meat Sci 2022; 188:108779. [DOI: 10.1016/j.meatsci.2022.108779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023]
|
102
|
Mei L, Ji Q, Jin Z, Guo T, Yu K, Ding W, Liu C, Wu Y, Zhang N. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
103
|
Cui H, Yang M, Shi C, Li C, Lin L. Application of Xanthan-Gum-Based Edible Coating Incorporated with Litsea cubeba Essential Oil Nanoliposomes in Salmon Preservation. Foods 2022; 11:foods11111535. [PMID: 35681285 PMCID: PMC9180108 DOI: 10.3390/foods11111535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/22/2023] Open
Abstract
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba essential oil (LC-EO) for salmon preservation at 4 °C. First, the results of the growth curves and scanning electron microscopy (SEM) showed that LC-EO displayed potent antibacterial activity against V. parahaemolyticus; the optimal concentration of LC-EO in the liposomes was 5 mg/mL, and the maximal encapsulation efficiency (EE) was 37.8%. The particle size, polydispersity coefficient (PDI), and zeta potential of the liposomes were 168.10 nm, 0.250, and −32.14 mV, respectively. The rheological test results of xanthan-gum-based edible coatings incorporating liposomes showed that the prepared coating was suitable for applying on food surfaces. The results in the challenge test at 4 °C demonstrated that the treatment of 1:3 (liposome: xanthan gum, v/v) coating performed the best preservative properties, the coating treatment delayed the oxidation of salmon, and controlled the growth of V. parahaemolyticus. These findings suggest that the coatings formulated in this study could be used as a promising approach to control V. parahaemolyticus contamination and maintain salmon quality.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Mei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
- Correspondence: (C.L.); (L.L.)
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (H.C.); (M.Y.); (C.S.)
- Correspondence: (C.L.); (L.L.)
| |
Collapse
|
104
|
Dai Z, Han L, Li Z, Gu M, Xiao Z, Lu F. Combination of Chitosan, Tea Polyphenols, and Nisin on the Bacterial Inhibition and Quality Maintenance of Plant-Based Meat. Foods 2022; 11:foods11101524. [PMID: 35627094 PMCID: PMC9140481 DOI: 10.3390/foods11101524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plant-based meat products have gained attention in the food industry and with consumers. Plant-based meat products primarily comprise plant proteins and are rich in nutrients. However, the products are highly susceptible to bacterial contamination during storage. Biological preservatives are easily degradable alternatives to chemical preservatives and can preserve different kinds of food. In order to investigate the preservation properties of chitosan (CS), tea polyphenols (TPs), and nisin treatments on plant-based meats, the sensory evaluation, color difference, pH, TBARS, and the total plate count of E. coli, S. aureus, and Salmonella, indicators of the biological preservative-treated plant-based meat, were determined in this study. The experiment involved blank control- and biological preservative-treated samples. We found that the total microbial count exceeded the national standard provisions in the control samples stored for 14 days. The colors, tissue structures, and flavors of plant-based meat have gradually deteriorated, with the sensory score dropping from 90 to 52. The sample had a loose tissue structure and an obvious sour taste. However, the shelf life of the plant-based meat samples treated with different combinations of the biological preservatives increased compared to the shelf life of the control samples. After 56 d of storage, 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin sensory reduction to 56, the total number of colonies and S. aureus were 4.91 and 2.95 lg CFU/g, approaching the national standard threshold; E. coli was 2 lg CFU/g, reaching the national standard threshold. Thus, the samples treated with 1% chitosan, 2.5% tea polyphenols, and 0.04% nisin had the longest shelf life (56 days) among all experimental groups. Hence, this study reveals that a combination of biological preservatives may be a non-toxic alternative for the efficient preservation of plant-based meat products.
Collapse
Affiliation(s)
- Zenghui Dai
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Linna Han
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhe Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Mengqing Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Fei Lu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
105
|
Zhang D, Ivane NM, Haruna SA, Zekrumah M, Elysé FKR, Tahir HE, Wang G, Wang C, Zou X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci 2022; 191:108842. [DOI: 10.1016/j.meatsci.2022.108842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|
106
|
Weisany W, Yousefi S, Tahir NAR, Golestanehzadeh N, McClements DJ, Adhikari B, Ghasemlou M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv Colloid Interface Sci 2022; 303:102655. [PMID: 35364434 DOI: 10.1016/j.cis.2022.102655] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Essential oils (EOs) contain a complex mixture of volatile and non-volatile molecules with diverse biological activities, including flavoring, antioxidant, antimicrobial, and nutraceutical properties. As a result, EOs have numerous potential applications in the agriculture, food, and pharmaceutical industries. However, their hydrophobicity, chemical instability, and volatility pose a challenge for many of their applications. These challenges can often be overcome by encapsulation EOs in colloidal delivery systems. Over the last decade or so, nanoencapsulation and microencapsulation technologies have been widely explored for their potential to improve the handling, dispersibility, and stability of hydrophobic substances, as well as to control their release profiles (e.g., targeted, triggered, sustained, or burst release). These technologies include emulsification, coacervation, precipitation, spray-drying, spray-cooling, freeze-drying, fluidized bed coating, and extrusion. This article reviews some of the most important developments in EOs encapsulation, the physicochemical mechanisms underlying the behavior of encapsulated EOs, current challenges, and potential applications in the food and biomedical sciences. This review has found that nanoencapsulation has countless of potential advantages for the utilization of EOs in the food industry and can improve their water-dispersibility, food matrix compatibility, chemical stability, volatility, and bioactivity.
Collapse
|
107
|
The Inhibitory Effect of Chitosan Based Films, Incorporated with Essential Oil of Perilla frutescens Leaves, against Botrytis cinerea during the Storage of Strawberries. Processes (Basel) 2022. [DOI: 10.3390/pr10040706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reduction in food waste, as well as non-invasive methods for extending the shelf-life of perishable fruits, are important global challenges. To achieve these objectives, in this paper, the use of natural compounds, chitosan films (CS) incorporated with essential oils from leaves, for postharvest fungal protection of strawberries is proposed. In the present study, the CS films incorporated with the essential oil from Perilla frutescens leaves (PFEO) at different concentrations were prepared and employed for packaging strawberries infected by B. cinerea during refrigerated storage at 4 °C for 10 days. Interestingly, the strawberries coated with CS films containing PFEO at 1.0% during this period possessed an effective antimicrobial effect against B. cinerea infection in potato dextrose agar (PDA). Moreover, the quality properties of the strawberries, (i.e., weight loss, firmness index, decay percentage, yeasts/molds, pH value, total soluble solids, titrable acidity, and maturity index), together with the sensory attributes (i.e., appearance, flavor, taste, and overall acceptability (p < 0.05 or p < 0.01)) were improved. These results demonstrated that (i) PFEO displayed a significant inhibitory effect against B. cinerea infection in strawberries, (ii) CS films containing PFEO at 1.0% could be a sustainable active food packaging for the refrigerated storage of strawberries.
Collapse
|
108
|
Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
109
|
Song J, Jiang L, Qi M, Suo W, Deng Y, Ma C, Li H, Zhang D. Microencapsulated procyanidins by extruding starch improved physicochemical properties, inhibited the protein and lipid oxidant of chicken sausages. J Food Sci 2022; 87:1184-1196. [PMID: 35122248 DOI: 10.1111/1750-3841.16057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Microencapsulated procyanidins by extruding starch (MPS) were used in meat and meat products as an antioxidant for their simple production process and high stability. This study investigated the controlled released properties of MPS and their effect on antioxidant capacity, physicochemical properties, and sensory qualities of chicken sausages during 4°C storage within 28 days. Antioxidant capacity, particle size analysis, and simulated digestion in vitro demonstrated that microencapsulation by extruding starch delayed the procyanidins release. The reduced crystal structure of MPS was determined by the morphology observation (SEM) and the decrease of the typical diffraction peak at 2θ of 20.9° (XRD). The MPS-added sausage had a higher (p < 0.05) ABTS and DPPH radical scavenging ratio (97.6% and 67.3%) and sulfhydryl contents (114.69 nmol/g protein) than other groups. Moreover, lower (p < 0.05) thiobarbituric acid reactive substances (TBARS) (0.67 mg MDA/kg sausage) and carbonyl values (3.24 nmol/mg protein) were detected in MPS-added sausages than others at the end of storage. The MPS addition increased redness (a* value) and decreased the lightness (L* value). The sensory analysis suggested that the sausage with the increased redness was favorable. These results denominated that MPS was an alternative antioxidant in chicken sausages. Practical Application: In this study, microencapsulated procyanidins were prepared by extrusion technology, and the effect on the quality of chicken sausages was investigated, which provides an alternative natural antioxidant for meat and meat products.
Collapse
Affiliation(s)
- Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| |
Collapse
|
110
|
Alves Mauricio R, Alvares Duarte Bonini Campos J, Tieko Nassu R. Meat with edible coating: acceptance, purchase intention and neophobia. Food Res Int 2022; 154:111002. [DOI: 10.1016/j.foodres.2022.111002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
|
111
|
Ameur A, Bensid A, Ozogul F, Ucar Y, Durmus M, Kulawik P, Boudjenah-Haroun S. Application of oil-in-water nanoemulsions based on grape and cinnamon essential oils for shelf-life extension of chilled flathead mullet fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:105-112. [PMID: 34048077 DOI: 10.1002/jsfa.11336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The effect of nanoemulsions prepared with grape seed and cinnamon essential oils on the shelf-life of flathead mullet (Mugil cephalus) fillets was evaluated by determining physicochemical (pH, free fatty acids, peroxide value, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARs)), sensory and microbiological (mesophilic aerobic bacteria, total psychrophilic bacteria, and Enterobacteriaceae counts) properties during 14 day storage at 2 °C. RESULTS The nanoemulsions showed good stability and low average droplet size. The results indicated that nanoemulsion treatments significantly prolonged the shelf-life of the fillets. Treatment inhibited increases in pH and TVB-N, and retarded lipid oxidation and hydrolysis. Sensory assessment revealed that treatment induced shelf-life extension from 10 to 14 days, compared with controls. Microbiological analyses showed nanoemulsion treatment caused shelf-life extension from 10 to 12 days with reduction of microbiological contamination by up to 1 log cfu g-1 in mesophilic and 1.5 log cfu g-1 in psychrotrophic bacteria. CONCLUSION Considering the results, grape seed and cinnamon essential oil nanoemulsions could be considered as novel antimicrobial and antioxidant materials for shelf-life extension of flathead mullet fillets during cold storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abderrahmane Ameur
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| | - Abdelkader Bensid
- Department of Agronomy, Faculty of Natural Sciences and Life, Ziane Achour University, Djelfa, Algeria
| | - Fatih Ozogul
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Yilmaz Ucar
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Mustafa Durmus
- Department of Seafood and Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Saliha Boudjenah-Haroun
- Université Kasdi Merbah Ouargla. Faculté des Sciences de la Nature et de la Vie. Laboratoire de Recherche sur la Phœniciculture, Ouargla, Algeria
| |
Collapse
|
112
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Chemically characterized nanoencapsulated Homalomena aromatica Schott. essential oil as green preservative against fungal and aflatoxin B 1 contamination of stored spices based on in vitro and in situ efficacy and favorable safety profile on mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3091-3106. [PMID: 34383211 DOI: 10.1007/s11356-021-15794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB1, and free radical-mediated deterioration of stored spices. GC-MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR, and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB1 biosynthesis at 1.25 μL/mL and 1.0 μL/mL, respectively in comparison to unencapsulated HAEO (1.75 μL/mL and 1.25 μL/mL, respectively). CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca+2, Mg+2, and K+) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells illustrated the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne exhibited superior antioxidant efficacy (IC50 (DPPH) = 4.5 μL/mL) over unencapsulated HAEO (IC50 (DPPH) = 15.9 μL/mL) and phenolic content. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting fungal infestation, AFB1 contamination, lipid peroxidation, and mineral loss with acceptable sensorial profile. Moreover, broad safety paradigm (LD50 value = 7150.11 mg/kg) of CS-HAEO-Ne also suggests its application as novel green preservative to enhance shelf life of stored spices.
Collapse
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
113
|
TOMÉ AC, MÁRSICO ET, SILVA GSD, COSTA DPD, GUIMARÃES JDT, RAMOS GLDPA, ESMERINO EA, SILVA FAD. Effects of the addition of microencapsulated aromatic herb extracts on fatty acid profile of different meat products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
114
|
Keykhosravy K, Khanzadi S, Hashemi M, Azizzadeh M. Protective effect of chitosan-loaded nanoemulsion containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils as coating on lipid and protein oxidation in chill stored turkey breast fillets. J Food Sci 2021; 87:251-265. [PMID: 34961941 DOI: 10.1111/1750-3841.16011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022]
Abstract
The present study was conducted to evaluate the lipid and protein oxidation responses of cold stored turkey meat using chitosan-contained nanoemulsions supplemented with the essential oils of two aromatic plants including Zataria multiflora Boiss and Bunium persicum Boiss. Chemical traits such as total volatile basic nitrogen (TVB-N), peroxide value (PV), thiobarbituric reactive substances (TBARs), free fatty acids (FFA), fatty acid composition and TC (total carbonyl) of samples were carried out at 4°C. Moreover, their pH and sensory properties were also determined at the same conditions. The initial value of the TVB-N (2.24 mg N/100 g) reached 20.81 mg N/100 g. TVB-N values achieved for all meat samples were lower than the highest acceptable limit (28-29 mg N/100 g). In all the treatments, PV and TBARs values were increased until day 10, and afterward a decrease was observed until day 20 of storage. TBARs values of the samples (mg MDA/kg) ranged from 1.97 ± 0.04 to 4.48 ± 0.39 in CNE + ZEO 1% to 2.72 ± 0.32 to 6.66 ± 0.21 in CON at zero time and day 5, respectively. FFA and TC were enhanced at a slower rate in the treated samples. The most efficient treatment against chemical deterioration was found to be CNE + ZEO 1%. Chitosan and sonicated chitosan treatments had the highest color score and lowest odor score at zero time. The obtained results suggested coating turkey meat fillets with ZEO and BEO as an effective strategy to delay at their chemical deterioration. PRACTICAL APPLICATION: The spoilage risk of fresh products is higher than other foods. Turkey meat spoils because of biological reactions such as the oxidation of lipids and protein, the action of endogenous enzymes, and the metabolic activities of microorganisms that end in a short shelf life. The oxidation of lipids not only reduces or retards, but also inhibits by edible coatings. Edible coatings formed from bioactive compounds would effectively provide possibility of active compounds onto surface of minimally processed foods. Therefore, application chitosan-loaded nanoemulsion coating containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils is recommended in food industry especially for poultry industry to increase the chemistry and sensory quality of turkey breast fillets.
Collapse
Affiliation(s)
- Kobra Keykhosravy
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
115
|
Mokarami H, Arabameri M, Shariatifar N, Shiran M. Evaluation of Nanochitosan-zein Coating Containing Free and Nano-encapsulated Mentha pulegium L. Hydroalcoholic Extract on Quality Attributes of Persian Shrimp (Fenneropenaeus persian). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.2021580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hassan Mokarami
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Arabameri
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shiran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
116
|
Chitosan nanoemulsion: Gleam into the futuristic approach for preserving the quality of muscle foods. Int J Biol Macromol 2021; 199:121-137. [PMID: 34953807 DOI: 10.1016/j.ijbiomac.2021.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Trend for consumption of healthy meat without synthetic additives is blooming globally and has attracted the interest of consumers and research sphere to look for enhancement of quality and safety of food. Chitosan is multi-functional marine biopolymer with several befitting properties such as non-toxicity, ease of modification, antimicrobial activity, biodegradability and bio-compatibility, making it suitable for use in meat based food systems, which are highly prone to putrescence due to availability of high level protein, micronutrients and moisture. Bioactive components from plant extracts on account of their natural lineage are exquisite determinants for meat preservation in association with chitosan to replace synthetic molecules, which are considered to evince toxicological effects. Nanoemulsions are viable systems for integrating a myriad of active constituents framed by microfluidization, high-pressure homogenization, ultra-sonication, phase inversion (PIC and PIT) and spontaneous-emulsification with benefits of droplet size reduction, improved solubility, stability and their biological activity. This article summarizes the most important information on formulation, fabrication and advancements in chitosan-based nanoemulsions highlighting their potential benefit for applications in the muscle food system. Supervising the all-around executions of chitosan nanoemulsions for various food systems, the current review has been framed to lay down understandings regarding improvements made in the production and functionality of chitosan nanoemulsions for quality retention of meat products. Furthermore, it highlights the novel trends in chitosan-nanoemulsions application in meat based food systems from a preservation and shelf-life prolongation perspective.
Collapse
|
117
|
Maurya A, Singh VK, Das S, Prasad J, Kedia A, Upadhyay N, Dubey NK, Dwivedy AK. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiol 2021; 12:751062. [PMID: 34912311 PMCID: PMC8667777 DOI: 10.3389/fmicb.2021.751062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes are the biggest shareholder for the quantitative and qualitative deterioration of food commodities at different stages of production, transportation, and storage, along with the secretion of toxic secondary metabolites. Indiscriminate application of synthetic preservatives may develop resistance in microbial strains and associated complications in human health with broad-spectrum environmental non-sustainability. The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the preservation of foods has been of present interest and growing consumer demand in the current generation. However, the loss in bioactivity of EOs from fluctuating environmental conditions is a major limitation during their practical application, which could be overcome by encapsulating them in a suitable biodegradable and biocompatible polymer matrix with enhancement to their efficacy and stability. Among different nanoencapsulated systems, nanoemulsions effectively contribute to the practical applications of EOs by expanding their dispersibility and foster their controlled delivery in food systems. In line with the above background, this review aims to present the practical application of nanoemulsions (a) by addressing their direct and indirect (EO nanoemulsion coating leading to active packaging) consistent support in a real food system, (b) biochemical actions related to antimicrobial mechanisms, (c) effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability, (d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges and future opportunities.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Prasad
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Kedia
- Government General Degree College, Mangalkote, Burdwan, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
118
|
Zhang B, Liu Y, Wang H, Liu W, Cheong KL, Teng B. Effect of sodium alginate-agar coating containing ginger essential oil on the shelf life and quality of beef. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
119
|
The effects of chitosan containing nano-capsulated Cuminum cyminum essential oil on the shelf-life of veal in modified atmosphere packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01213-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Zhang H, Li X, Kang H, Peng X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and
Schizonepeta tenuifolia
essential oil in fresh pork. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinling Li
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Huaibin Kang
- Food and Bioengineering Department Henan University of Science and Technology Luoyang China
| | - Xinyan Peng
- College of Life Science Yantai University Yantai China
| |
Collapse
|
121
|
Homayounpour P, Alizadeh Sani M, Shariatifar N. Application of nano‐encapsulated
Allium sativum
L. essential oil to increase the shelf life of hamburger at refrigerated temperature with analysis of microbial and physical properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene Department of Environmental Health Engineering School of Public Heath Tehran University of Medical Sciences Tehran Iran
| | - Nabi Shariatifar
- Division of Food Safety and Hygiene Department of Environmental Health Engineering School of Public Heath Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
122
|
|
123
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
124
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
125
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
126
|
Rahnemoon P, Sarabi-Jamab M, Bostan A, Mansouri E. Nano-encapsulation of pomegranate (Punica granatum L.) peel extract and evaluation of its antimicrobial properties on coated chicken meat. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
127
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
128
|
Ren B, Wu W, Soladoye OP, Bak KH, Fu Y, Zhang Y. Application of biopreservatives in meat preservation: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baojing Ren
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
- Westa College Southwest University Chongqing 400715 China
| | - Wei Wu
- College of Animal Science and Technology Southwest University Chongqing 400715 China
| | - Olugbenga P. Soladoye
- Agriculture and Agri‐Food Canada Government of Canada Lacombe Research and Development Centre 6000 C&E Trail Lacombe AB T4L 1W1 Canada
| | - Kathrine H. Bak
- Institute of Food Safety, Food Technology and Veterinary Public Health University of Veterinary Medicine, Vienna Veterinärplatz 1 Vienna 1210 Austria
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- National Demonstration Center for Experimental Food Science and Technology Education Southwest University Chongqing 400715 China
| |
Collapse
|
129
|
Dammak I, Luciano CG, Pérez-Córdoba LJ, Monteiro ML, Conte-Junior CA, Sobral PJDA. Advances in biopolymeric active films incorporated with emulsified lipophilic compounds: a review. RSC Adv 2021; 11:28148-28168. [PMID: 35480739 PMCID: PMC9038010 DOI: 10.1039/d1ra04888k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The attention towards active films has increased due to consumer demand for high-quality foods without chemical additives. Active biopolymer-based films have shown great potential for active films by impacting food safety, acting as the carriers of various natural antioxidant and antimicrobial compounds, and decreasing environmental pollution from petrol-derived packaging materials. However, there is a wide range of challenges concerning the different characteristics of biopolymers and plasticizers, often hygroscopic/hydrophilic, compared to numerous lipophilic bioactive compounds. Therefore, recent studies have focused on applying oil-in-water emulsion-based systems to enhance the lipophilic bioactive compounds' dispersibility into the film matrix, improving their performance. It is worth emphasizing that resulting complex systems give rise to new challenges such as (i) dispersion technology of the bioactive compounds with minimum adverse effects on its bioactivities, (ii) interactions between different components of the active films, giving rise to new physicochemical properties, and (iii) the change of the diffusion properties of bioactive compounds into the active films, resulting in different release properties. These challenges are profound and critically discussed in this review, as well as the encapsulation techniques employed in preparing emulsions loaded with lipophilic bioactive compounds for the active film development. An outlook of future directions in the research, development, and application of these active films are given.
Collapse
Affiliation(s)
- Ilyes Dammak
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
| | | | - Maria Lúcia Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Athos da Silveira Ramos, no. 149, Bloco A, 5° andar, sala 534 e 545 Rio de Janeiro, RJ 21941-909 Brazil +55-21-3938-7825
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, FZEA, University of São Paulo (USP) Pirassununga SP Brazil
- Food Research Center (FoRC), University of São Paulo (USP) São Paulo (SP) Brazil
| |
Collapse
|
130
|
Das S, Singh VK, Chaudhari AK, Dwivedy AK, Dubey NK. Fabrication, physico-chemical characterization, and bioactivity evaluation of chitosan-linalool composite nano-matrix as innovative controlled release delivery system for food preservation. Int J Biol Macromol 2021; 188:751-763. [PMID: 34384804 DOI: 10.1016/j.ijbiomac.2021.08.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to encapsulate linalool into chitosan nanocomposite (Nm-linalool) for developing novel controlled release delivery system in order to protect stored rice against fungal infestation, aflatoxin B1 (AFB1) contamination, and lipid peroxidation. The chitosan-linalool nanocomposite showed spherical shapes, smooth surface with monomodal distribution as revealed by SEM and AFM investigation. FTIR and XRD represented peak shifting and changes in degree of crystallinity after incorporation of linalool into chitosan nanocomposite. Nanoencapsulation of linalool showed higher zeta potential and lowered polydispersity index. TGA analysis reflected the stability of Nm-linalool with reduced weight loss at varying temperatures. Biphasic pattern, with initial rapid release followed by sustained release illustrated controlled delivery of linalool from chitosan nanocomposite, a prerequisite for shelf-life enhancement of stored food products. Chitosan nanocomposite incorporating linalool displayed prominent antifungal and antiaflatoxigenic activity during in vitro as well as in situ investigation in rice with improved antioxidant potentiality. Further, Nm-linalool displayed considerable reduction of lipid peroxidation in rice without exerting any adverse impact on organoleptic attributes. In conclusion, the investigation strengthens the application of chitosan-linalool nanocomposite as an innovative controlled nano-delivery system for its practical application as novel environmentally friendly eco-smart preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
131
|
Sayadi M, Mojaddar Langroodi A, Jafarpour D. Impact of zein coating impregnated with ginger extract and Pimpinella anisum essential oil on the shelf life of bovine meat packaged in modified atmosphere. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01096-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
132
|
Xiao L, Xin S, Wei Z, Feng F, Yan Q, Xian D, Du S, Liu W. Effect of chitosan nanoparticles loaded with curcumin on the quality of Schizothorax prenanti surimi. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
133
|
Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
134
|
Afshar Mehrabi F, Sharifi A, Ahvazi M. Effect of chitosan coating containing Nepeta pogonosperma extract on shelf life of chicken fillets during chilled storage. Food Sci Nutr 2021; 9:4517-4528. [PMID: 34401099 PMCID: PMC8358330 DOI: 10.1002/fsn3.2429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Chicken meat is highly susceptible to microbial and chemical spoilage due to its high moisture and protein content. The use of edible coatings contains herbal extracts with antioxidant and antibacterial properties that help to extend the shelf life of meat products. In this study, the effect of chitosan coating (2%) and Nepeta pogonosperma extract (NPe) (0.2% and 0.6%) and their combination on chemical properties (pH, peroxide value (PV), thiobarbituric acid index (TBARS), total volatile basic nitrogen (TVB-N)) and microbial (aerobic mesophilic and psychrotrophic microorganisms, lactic acid bacteria, Enterobacteriaceae and Pseudomonas sp.) of chicken fillets were studied over a 12-day refrigerated storage period compared to the control sample. The results of NPe DPPH radical scavenging activity (DRSA) showed that IC50 and total phenolic contents values were 94.65 μg/ml and 113.53 mg GAE/g extract, respectively. Statistical results showed that the rate of increase in pH, PV, TBARS, and TVB-N of all coated treatments were lower than control. Microbial analysis results showed a decrease in the growth of different bacteria in chitosan-treated combined with NPe compared to the control sample during chilled storage. Chicken fillets coated with chitosan and 0.6% NPe displayed a longer shelf life compared to other samples.
Collapse
Affiliation(s)
- Fatemeh Afshar Mehrabi
- Department of Food Science and TechnologyFaculty of Industrial and Mechanical EngineeringQazvin BranchIslamic Azad UniversityQazvinIran
| | - Akram Sharifi
- Department of Food Science and TechnologyFaculty of Industrial and Mechanical EngineeringQazvin BranchIslamic Azad UniversityQazvinIran
| | - Maryam Ahvazi
- Medicinal Plants Research CenterInstitute of Medicinal PlantsACECRKarajIran
| |
Collapse
|
135
|
Ji J, Shankar S, Royon F, Salmieri S, Lacroix M. Essential oils as natural antimicrobials applied in meat and meat products-a review. Crit Rev Food Sci Nutr 2021; 63:993-1009. [PMID: 34309444 DOI: 10.1080/10408398.2021.1957766] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meat and meat products are highly susceptible to the growth of micro-organism and foodborne pathogens that leads to severe economic loss and health hazards. High consumption and a considerable waste of meat and meat products result in the demand for safe and efficient preservation methods. Instead of synthetic additives, the use of natural preservative materials represents an interest. Essential oils (EOs), as the all-natural and green-label trend attributing to remarkable biological potency, have been adopted for controlling the safety and quality of meat products. Some EOs, such as thyme, cinnamon, rosemary, and garlic, showed a strong antimicrobial activity individually and in combination. To eliminate or reduce the organoleptic defects of EOs in practical application, EOs encapsulation in wall materials can improve the stability and antimicrobial ability of EOs in meat products. In this review, meat deteriorations, antimicrobial capacity (components, effectiveness, and interactions), and mechanisms of EOs are reviewed, as well as the demonstration of using encapsulation for masking intense aroma and conducting control release is presented. The use of EOs individually or in combination and encapsulated applications of EOs in meat and meat products are also discussed.
Collapse
Affiliation(s)
- Jiali Ji
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Shiv Shankar
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Fiona Royon
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Stéphane Salmieri
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS Armand-Frappier, Health and Biotechnology Centre, Institute of Nutraceutical and Functional, Laval, Quebec, Canada
| |
Collapse
|
136
|
Zixiang W, Jingjing Z, Huachen Z, Ning Z, Ruiyan Z, Lanjie L, Guiqin L. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan‐coated ε‐polylysine on the preservation of donkey meat during refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zixiang
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Jingjing
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Huachen
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Zhang Ning
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Zhang Ruiyan
- Biopharmaceutical Research Institute Liaocheng University Liaocheng China
| | - Li Lanjie
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| | - Liu Guiqin
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center Liaocheng University Liaocheng China
| |
Collapse
|
137
|
Ruiz-Hernández K, Sosa-Morales ME, Cerón-García A, Gómez-Salazar JA. Physical, Chemical and Sensory Changes in Meat and Meat Products Induced by the Addition of Essential Oils: A Concise Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - María Elena Sosa-Morales
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - Abel Cerón-García
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| | - Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad De Guanajuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
138
|
Abstract
Essential oils (EOs) are known as any aromatic oily organic substances which are naturally synthesized in plants. Exhibiting a broad range of biological activities, EOs have played a key role in numerous industries for ages, including pharmaceutical, textile, and food. However, the volatility and high sensitivity to environmental influences pose challenges to the application of EOs on industrial scale. Microencapsulation via the spray-drying method is one of the promising techniques to overcome these challenges, thanks to the presence of wall materials that properly protect the core EOs from oxidation and evaporation. By optimization of key factors related to the infeed emulsion properties and spray-drying process, the encapsulation efficiency and retention of encapsulated EOs could be significantly improved, thus allowing a wide range of EO applications. This review attempts to discuss on different determining factors of the spray-drying process to develop an effective encapsulation formula for EOs. Furthermore, recent applications of encapsulated EOs in the fields of foods, pharmaceuticals, and textile industries are also thoroughly addressed.
Collapse
|
139
|
Gumienna M, Górna B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021; 26:3735. [PMID: 34207426 PMCID: PMC8234186 DOI: 10.3390/molecules26123735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | | |
Collapse
|
140
|
Chen X, Chen W, Lu X, Mao Y, Luo X, Liu G, Zhu L, Zhang Y. Effect of chitosan coating incorporated with oregano or cinnamon essential oil on the bacterial diversity and shelf life of roast duck in modified atmosphere packaging. Food Res Int 2021; 147:110491. [PMID: 34399487 DOI: 10.1016/j.foodres.2021.110491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/01/2021] [Accepted: 05/23/2021] [Indexed: 12/31/2022]
Abstract
The present study aimed to investigate the effect of chitosan edible coating containing 0.15% oregano essential oil (OEO) or 0.60% cinnamon essential oil (CEO) on the quality characteristics and dynamic changes in the bacterial community of roast duck slices under modified atmosphere packaging (MAP, 30% CO2/70% N2) during 21 days of storage at 2 ± 2 °C. The results showed that the application of chitosan coating (CH) alone inhibited the growth of microorganisms and prevented lipid oxidation throughout storage. Moreover, the storage stability was further improved by including OEO or CEO, which lowered (P < 0.05) values for total viable count (TVC), Enterobacteriaceae, 2-thiobarbituric acid reactive substance (TBARS) and total volatile basic nitrogen (TVB-N). Based on the microbiological results, the shelf-life of CH-OEO and CH-CEO treated roast duck slices was prolonged by at least 7 days compared to that of the control. In addition, packaging types applied in this study played a major role in the bacterial community development. Notably, Vibrio spp. were the most predominant bacteria in all samples, when TVC values approached the shelf-life threshold, suggesting that this bacterium may be the main contributor to the spoilage of roast duck. The growth inhibition of Vibrio spp. in the CH-OEO and CH-CEO treatments during the early period of chilled storage might be the reason for the extension of the shelf life. Taken together, CH incorporated with OEO or CEO could be developed as prospective edible packaging materials to preserve roast duck meat.
Collapse
Affiliation(s)
- Xue Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenwen Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xiao Lu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guoxing Liu
- Beijing Henghuitong Meat Food CO., LTD, Shunyi District, Beijing 101302, PR China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
141
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
142
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
143
|
Combining edible coatings technology and nanoencapsulation for food application: A brief review with an emphasis on nanoliposomes. Food Res Int 2021; 145:110402. [PMID: 34112405 DOI: 10.1016/j.foodres.2021.110402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.
Collapse
|
144
|
Sayyari Z, Rabani M, Farahmandfar R, Esmaeilzadeh Kenari R, Mousavi Nadoshan R. The Effect of Nanocomposite Edible Coating Enriched with Foeniculum vulgare Essential Oil on the Shelf Life of Oncorhynchus mykiss Fish Fillets during the Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1901815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Sayyari
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Rabani
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Reza Farahmandfar
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rezvaneh Mousavi Nadoshan
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
145
|
Pandhi S, Mahato DK, Kumar A. Overview of Green Nanofabrication Technologies for Food Quality and Safety Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
146
|
Gedarawatte ST, Ravensdale JT, Johns ML, Azizi A, Al‐Salami H, Dykes GA, Coorey R. Effectiveness of gelatine and chitosan spray coating for extending shelf life of vacuum‐packaged beef. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shamika T.G. Gedarawatte
- School of Molecular and Life Sciences Faculty of Science and Engineering Curtin University Perth WA6102Australia
| | - Joshua T. Ravensdale
- Faculty of Health Sciences School of Public Health Curtin University Perth WA6102Australia
| | - Michael L. Johns
- Department of Chemical Engineering School of Engineering University of Western Australia Perth WA6009Australia
| | - Azlinda Azizi
- Department of Chemical Engineering School of Engineering University of Western Australia Perth WA6009Australia
| | - Hani Al‐Salami
- Biotechnology and Drug Development Research Laboratory Curtin Medical School and Curtin Health Innovation Research Institute Curtin University Bentley WA6102Australia
| | - Gary A. Dykes
- Graduate Research School Curtin University Perth WA6102Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences Faculty of Science and Engineering Curtin University Perth WA6102Australia
| |
Collapse
|
147
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
148
|
Cheng Y, Hu J, Wu S. Chitosan based coatings extend the shelf-life of beef slices during refrigerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
Yaghoubi M, Ayaseh A, Alirezalu K, Nemati Z, Pateiro M, Lorenzo JM. Effect of Chitosan Coating Incorporated with Artemisia fragrans Essential Oil on Fresh Chicken Meat during Refrigerated Storage. Polymers (Basel) 2021; 13:716. [PMID: 33652853 PMCID: PMC7956520 DOI: 10.3390/polym13050716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to assess the impact of chitosan coating (1%) containing Artemisia fragrans essential oil (500, 1000, and 1500 ppm) as antioxidant and antimicrobial agent on the quality properties and shelf life of chicken fillets during refrigerated storage. After packaging meat samples, physicochemical, microbiological, and organoleptic attributes were evaluated at 0, 3, 6, 9, and 12 days at 4 °C. The results revealed that applied chitosan (CH) coating in combination with Artemisia fragrans essential oils (AFEOs) had no significant (p < 0.05) effects on proximate composition among treatments. The results showed that the incorporation of AFEOs into CH coating significantly reduced (p < 0.05) pH, thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N), especially for 1% CH coating + 1500 ppm AFEOs, with values at the end of storage of 5.58, 1.61, and 2.53, respectively. The coated samples also displayed higher phenolic compounds than those obtained by uncoated samples. Coated chicken meat had, significantly (p < 0.05), the highest inhibitory effects against microbial growth. The counts of TVC (total viable counts), coliforms, molds, and yeasts were significantly lower (p < 0.05) in 1% CH coating + 1500 ppm AFEOs fillets (5.32, 3.87, and 4.27 Log CFU/g, respectively) at day 12. Organoleptic attributes of coated samples also showed the highest overall acceptability scores than uncoated ones. Therefore, the incorporation of AFEOs into CH coating could be effectively used for improving stability and shelf life of chicken fillets during refrigerated storage.
Collapse
Affiliation(s)
- Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran; (M.Y.); (A.A.)
| | - Ali Ayaseh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran; (M.Y.); (A.A.)
| | - Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz 51666, Iran
| | - Zabihollah Nemati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz 51666, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
150
|
Packaging of beef fillet with active chitosan film incorporated with ɛ-polylysine: An assessment of quality indices and shelf life. Meat Sci 2021; 176:108475. [PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022]
Abstract
In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
Collapse
|